
                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11. NUMBER 8 AUGUST 1970 

New Integral Formulation of the Schrodinger Equation* 

L. C. BAIRD 
Indiana University, Bloomington, Indiana 47401 

(Received 23 December 1969) 

The I-dimensional Schrodinger equation is replaced by a pair of coupled integral equations. The equa
tions are solved by iteration. The zeroth-order solution is the WKB approximation. The solutions are 
valid even in the presence of classical turning points and discontinuous potentials. Thus, connection 
formulas are not required. Low-order calculations are carried out in several cases of interest. In each case, 
a first-order calculation gives results comparable to or better than those obtained with connection 
formulas. 

I. MOTIVATION 

Let r be a smooth rectifiable Jordan arc with end 
points {p, q} in the complex X plane. Consider the 
Schrodinger equation for x E r and an arbitrary 
potential V(x): 

o = ?p"(x) + k2(x)?p(x), (1) 

k2(x) = 2mli-2 [E - Vex)]. (2) 

Since the discussion is restricted to x E r, it is under
stood that all derivatives are r derivatives; for ex
ample, 

?p'(x) = lim ?p(y) - ?p(x) . (3) 
1/-+", Y - x 
",.IIEr 

There are four fourth roots of k 2(x). Let one of them 
be indicated by kl(x). For the present, it is assumed 
that kl(x) is nonzero and r differentiable. 

The successes of the WKB approximation suggest 
that the solution to Eq. (1) might profitably be written 
in the form 

?p(x) = X+(x)W+(x) + X_(x)W_(x), (4) 

Sex) = L'" k(z) dz, (5) 

W±(x) = k-l(x)e'~is(",). (6) 

Further conditions are needed to make Eq. (4) a 
well-defined decomposition of ?p(x). The formal manip
ulations of the next paragraph suggest that these 
conditions might consist of requiring that X+ and x
satisfy a pair of coupled integral equations (12). The 
"derivation" of these equations is to some extent 
based on intuitive arguments. It should simply be re
garded as motivation for the more rigorous approach 
in the next section. 

Let ::::;; denote the natural ordering from p to q along 
r. We choose a partition PN of r: 

p = Xo < Xl < ... < XN = q. (7) 

We define 

k(PN , x) = k(xn), if p < Xn_l < X ::::;; X n, 

k(PN , x) = k(P), if p = x. 
(8) 

If one wishes to solve Eq. (1) with k(x) --+ k(PN , x), 
it is necessary to match ?p(PN , x) and ?p'(PN , x) across 
the discontinuity at Xn . If X+ and x- are held constant 
between the discontinuities, this condition leads to 

(Xn+l - Xn)-l[X±(PN , xn+1) - X±(PN • xnHy~+)] 

= X±(PN , xn)(xn+1 - Xn)-l 

x {y~-)exp [=F2iS(PN , xn)]}, (9) 

y~±) = kl (xn+1)k-l (xn) ± k-l(xn+l)kl(xn)' (10) 

If k(PN , x) is a good approximation to k(x) and if 
(xn+1 - x n) is small, then Eq. (9) reduces to 

X~(x) = X=f(x)k'(x)tk-1(x) exp [=F2iS(x)]. (11) 

Integration of Eq. (11) yields 

X±(x) = A± + f'X=f(zHk'(Z)k-1(z) exp [=F2iS(z)] dz, 

where A+ and A_ are constants. 
(12) 

II. EQUIVALENCE 

The following theorems put the preceding result on 
a firmer footing. 

Theorem 1: If ?p satisfies Eq. (1), then there exist 
functions x+ and x-, together with constants A+ and 
A_, such that Eqs. (4) and (12) hold. 

Proof: We define 

?P± = H?p ± ?p' !ik) , 

and rewrite Eq. (13) in the form 

?p = ?p+ + ?p-, 

?p' = ik?p+ - ik?p_. 

(13) 

(14) 

(15) 
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Notice that Eqs. (1) and (14) give 

1p" = -k2(1p+ + 1p-). (16) 

We differentiate Eq. (13) and then apply Eqs. (15) and 
(16) to obtain 

1p~ = [ikt(1 ± 1) T k'j2k]1p+ 

+ [ikt( -1 ± 1) ± k'j2k]1p_ 

= (±ik - k'/2k)1p± + tk'k-l1p'f 

= W~ W;;;11p± + tk' k-
l
1p'f . (17) 

Now we solve Eq. (17) for 1p± in terms of 1p'f: 

1p±(x) = W±(x) 

X (1piP)W;;;l(p) + ftk'(Z)W'f(Z)1p'f(z) dZ). 

(18) 
It remains only to make the identifications 

X±(x) = 1p±(x)/W±(x), 

A± = X±(p). 

(19) 

(20) 

Theorem 2: If X+ and x- satisfy Eq. (11), then there 
exists a function 1p satisfying Eqs. (1) and (4). 

Proof: We define 

U = X+W+ + X_W-. (21) 

We differentiate Eq. (21) and apply Eq. (11) to obtain 

U' = (W~ + e2iSW_k'/2k)X+ 

+ (W~ + W+e-2iSk'j2k)X_. (22) 

We differentiate Eq. (22) and apply Eq. (11) to obtain 

UtI = [(W~ + W_e2iSk'j2k)' 

+ (W~ + W+e-2iSk'j2k)e2iSk'j2k]X+ 

+ [(W~ + W+e-2iSk'j2k), 
+ (W~ + W_e2iSk'j2k)e-2iSk'j2k]X_ 

= _k2W+X+ - k2W_X_ 

= -k2U. 

It remains only to make the identification 

1p = U. 

(23) 

(24) 

Thus, the second-order differential equation (1) is 
equivalent to the two coupled integral equations (12). 
The solution of these integral equations is the main 
concern of the remainder of this paper. 

III. SOLVING THE INTEGRAL EQUATIONS 

It is convenient to write Eq. (12) in operator nota
tion: 

(25) 

This equation represents a pair of coupled integral 
equations which can be uncoupled to yield 

Notice that (K'fK±) is a Voltera operator. Further
more, the restrictions on kt guarantee that the integral 
kernel is continuous. Thus, the (unique, bounded, 
uniformly convergentl ) solution of Eq. (26) is the 
Neumann series 

00 

X± = I (K'fK±t(A± + K'fA'f)' (27) 
n=O 

This solution can also be obtained from the recursion 
scheme: 

X(O) - A ± - ±, 

X(n+O - A + K X(n) 
± - ± 'f'f, 

n-+ 00 

(28) 

(29) 

(30) 

In a problem of practical interest, k! is likely to have 
at least one zero or point of nondifferentiability. The 
presence of such a trouble point (henceforth called a 
"pond") calls for a modified procedure. Some com
monly encountered ponds are considered in the follow
ing sections. 

IV. SIMPLE TURNING POINT 

Suppose that r is pondless except at a classical 
turning point t. That is, k(t) = O. We assume that 
Vex) can be extended to an analytic function on some 
open set in the complex X plane. The corresponding 
extension of kt(x) will be analytic except at t and along 
a possible branch cut. Let r t be a smooth contour 
which coincides with r except for a small excursion to 
avoid t and the branch cut. 

Now Eq. (1) can be integrated twice to obtain 

1p(x) = [1p(p) + (x - p)1p'(p)] 

+ f'1p(Z)e(Z)(Z - x) dz. (31) 

Let 1pt and 1p be the Neumann-series solutions to 
equation (31) along r t and r, respectively. But the 
integrals in these series are path independent; thus, 
'Pt = 1p wherever r t and r coincide. 

Let 1pZ7 be the general solution to Eq. (1) which 
results from using Eq. (27) to solve Eq. (12) on r t. 
The equivalence theorems guarantee that A+ and A_ 
can be chosen so that 1p27 = 1pt. Thus, 'P = 'P27 where
ever r t and r coincide. In short, Eq. (27) is valid on 
r (except at t) if K+ and K_ are defined in terms of the 
slightly distorted contour r t • 
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V. POORLY MATCHED POTENTIALS 

One sometimes considers a potential which has a 
different analytic form on each of several segments of 
r. It is sufficient to consider the case where only two 
segments are involved. 

Let kt(x) and kt(x) be r differentiable. Suppose that 
t is an interior point of r. We define 

k!(x) = k~(x), if p S x S t, 

kf(X) = k!(x), if t < x s q. 
(32) 

If kt and k~ are poorly matched, then k! will not be a 
smooth function; t will be a pond. More precisely, t 
will be a pond if k!(t) :j!: kJ(t) and/or if 

!£ k f(x)1 !L kf(x)1 
dx 1J "'=t =/= dx IJ "'=/. 

A few preliminary remarks must precede the discus
sion of the general case. 

Suppose that k! is continuous at t but its derivative 
is not. We assign an arbitrary value to (d/dx)kf(x)I"'=t. 
The integrals of Eq. (27) are now well defined, and the 
resulting sums for x+ and x- are continuous functions. 
The functions still correspond to solutions of Eq. (1) 
on each side of t. In view of Eqs. (14) and (15), these 
solutions join smoothly at x = t. But this is the con
dition which must be satisfied by the correct solution 
of Eq. (1). Thus, Eq. (27) remains applicable if the 
pond is essentiaJly ignored. 

Now we allow the possibility that k!(x) is not con
tinuous at t. We let t < u E r and approximate kf(x) 
as follows: 

k!(x) = k~(x), if p s x S t, 

k!(x) = k!(x) + [kiu) - kit)] 

x (x - t)(u - t)-1, if t ~ x ~ u, (33) 

k!(x) = k:(x), if u ~ x ~ q. 

A Neumann-series solution to Eq. (31) is valid both 
for k(x) and for k,.(x). If the boundary conditions are 
applied at p, then the difference between the two 
solutions will satisfy 

Ll(x) = LlW\x) + i"'A(Z)k~(z)(z - x) dz, (34) 

A(x) = 'If,'/x) - 'If(x) , (35) 

Ll(O)(x) = f''If(Z)[k~(Z) - k2(z)](z - x) dz. (36) 

Notice that Eq. (34) has a Neumann-series solution 
which is continuous with respect to .1(0). It follows 

that 

= lim 'If,. 
4(01-+ 0 

= lim tpu, 
'U--tt+ 

(37) 

where the last step is justified by an inspection of Eq. 
(36). But it was shown in the previous paragraph that 
'Pu can also be obtained from Eq. (27). Thus, to 
determine tp, one may approximate k! as in Eq. 
(33), apply Eq. (27), and then take the limit as in 
Eq. (37). 

This limit is just the term-by-term limit of Eq. (27). 
It corresponds to modifying the integral kernel of K± 
as follows: 

e±2iS("')k'(x)/2k(x) 

__ b(x - t)e±2iS(t) log [kq{t)/kim t 

+ lim !=2iS(V) k'(v)/2k(v), (38) 

where multiple integrals of the b function are to be 
evaluated according to the formula 

1 iQiz1J.Z

2 izn

-

1 

- = . . . b(Zl - t) ... o(zn - t) 
n! l>" l> 1J 

X dZl ••• dz n . (39) 

The procedure just developed is simple to apply and 
completely in keeping with the general intent of this 
paper; but there is an alternative procedure which may 
occasionally prove useful. Equation (27) allows the 
general solution of Eq. (1) to be obtained to any 
desired accuracy on [p, t) and on (t, q]. The arbitrary 
constants on the second segment can be chosen so that 
the two solutions and their derivatives are equal at t. 
An approximate over-all solution is obtained by com
bining these two partial solutions. 

VI. THE RADIAL EQUATION 

The domain of the ra~ial equation (40) is usually 
taken to be the entire positive axis: r = (0, (0). For 
simplicity, we assume that r has been slightly dis
torted to avoid classical turning points and that no 
other ponds are present. Also, we assume that the real 
part of I exceeds -l: 

o = tp"(r) + k 2(r)tp(r), (40) 

k 2(r) = [E - V(r)]2mli- 2 - 1(1 + 1)r-2 , (41) 

Boundary Conditions at Infinity 

If the boundary conditions are to be applied at 00, 

one is tempted to set p = 00 and apply Eq. (27). This 
procedure can often be justified. For example, suppose 
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that k( 00) is positive and that 

i<Xl[k(Z) - k(oo)] dz 

is finite. Then the indicated procedure is readily 
validated if the phase integral is redefined2 as follows: 

S(r) = rk(oo) + {[k(Z) - k(oo)] dz. (42) 

Boundary Conditions at the Origin 

More commonly, one wishes to let the boundary 
condition be "regularity" at the origin: 

0= lim 'IfJ(r). (43) 
r-+O 

Two fundamentally different solution schemes are 
developed to satisfy this condition. 

Scheme 1 

The first scheme involves removing the centrifugal 
singularity with the transformation3 

r = e"', 

The result is a Schrodinger-type equation 

o = rp"(x) + k2(x)rp(x), 

(44) 

(45) 

(46) 

k2(x) = 2mli-2 [E - V(e"')]e2'" - (l +!)2. (47) 

Now suppose that ike - 00) is negative and that 

1-00 

[k(z) - k( - (0)] dz 

is finite. We redefine the phase integral as 

Sex) = l"'k(Z) dz. (48) 

It is easy to show that Eq. (27) leads to the desired 
solution of Eq. (46) if one sets A+ = 0 and p = - 00. 

Scheme 2 

Equation (12) was originally solved by iteration. 
The zeroth-order approximations for x+ and x- were 
taken to be A+ and A_, respectively. Actually, any 
pair of bounded functions could have been used for the 
zeroth-order approximations. It turns out that itera
tion of Eq. (12) is also possible when one is seeking 
the regular solution of Eq. (40). But the zeroth-order 
approximations have to satisfy more stringent require
ments. The exact form of these requirements is ob
tained in the following paragraphs. 

We assume that 

converges and redeftne2 the phase integral as 

S(r) = i[l(l + I)]! log (r) 

+ f (k(Z) - i[l(l : I)]!) dz. (49) 

Also, we let p = O. The equivalence theorems now 
assume the following form: 

Theorem 3: Equation (4) provides a one-to-one 
correspondence between regular solutions of Eq. (40) 
and regular solutions of 

X± =K=r-X=r-' (50) 

Proof: Proceed as in Theorems 1 and 2 to show the 
equivalence of Eq. (40) and the differential form of 
Eq. (50). Direct examination of these differential 
equations reveals that their regular solutions 'IfJ and X± 
behave near the origin as r/+1 and r l+!±VI(I+1), respec
tively. Application of this result to Eqs. (14), (19), 
(21), and (24) shows that regular solutions of (40) 
correspond to regular solutions of (50). 

Theorem 4: Let arc length along r be denoted by 

!X(r) = fldZI. (51) 

Suppose: 

(i) r is sufficiently close to (0, 00) to satisfy 

(52) 

(ii) there is a point ro. such that for 0 ~ r ~ ro the 
following function has a bounded derivative: 

per) = {k(r) - i[l(/ + l)]!/r}/r; (53) 

(iii) '±(r) is any bounded function such that the 
following function has a bounded second derivative 
for 0 ~ r ~ ro: 

1J±(r) = r'±(r)r-1-/:FVH!+1) - 1]/r. (54) 

Then a regular nontrivial solution of Eq. (50) is given 
by 

(55) 
n-+oo 

Furthermore, aU other regular solutions of Eq. (50) 
are multiples of this solution. 
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Proof" We define 

Q± = k'k-1e±2iSr1±2V !(!+1), 

w± = W±r-!±V!(!+l){i[l(l + l)]!}!, 

and choose y E r such that 

(56) 

(57) 

If r ~ y, then Eq. (58) reduces Eq. (63) to 

I T±f(r) I ~ Hl.1)8[1 + NN('j.,N(r)r1 

X [1 + (1 + N)-2NN('j.,N(r)] 

< !(1.1)8 

<1. (64) 

1.1 ~ Ilw±lllI + IIQ±IIY + Ilw;;;llll1' 

where for any function h 

(58) If r > y, then Eq. (60) reduces Eq. (63) to 

Ilhll t = sup Ih(r)l. (59) 

Let R E r. We choose N> 0 such that 

1 + NN('j.,N(y) ~ Ilw±IIR IIQ±II R IIQ'FIIR Ilw;;;lllR 

X [1 + (1 + N)-2NN('j.,N(y)]. (60) 
We define 

b _ W± 
± - r!+2(1 + NN('j.,N) 

X [,± - (k'~:2iS):r(k'~:2iS'~)l ifr < ro, 

if r ~ ro. (61) 

It follows f!'Om (ii) and (iii) that b±(r) is bounded. 
Let T± be the operator defined by 

T±h = W±r-I-
2(1 + NN('j.,Nr1 

X K'FK±W;;;lr!+2(1 + NN('j.,N)h, (62) 

where her) is again arbitrary. 
It is now shown that T± is a contraction on (0, R). 

Let llhllR = 1. Then 

I T±f(r) I = If: f: 1w
±(r)Q'F(r1)Q±(r2) 

x w;;;1(r2)(('j.,~») (('j.,~1») 

X (~rt±V/(!+l) (~r!+V!(!+l) 

X t('j.,-1(r)[1 + NN('j.,N(r)r1 

X ('j.,-1(r1)[1 + NN('j.,N(r2)]h(r2) dr2 dr11 

~ IIw±llr IIQ'Flir IIQ±lIr Ilw;;;lllr 

x (l.1liO(-\r)/[l + NNO(N(r)] 

x 1:5:1
('j.,-1(r1)[1 + NN('j.,N(r2)] Idr211dr11 

= Ilw±llr IIQ'Fllr IIQ±lIr Ilw;;;lllr 

X (ut! [1 + (l + N)-2N N('j.,N(r)]. (63) 
[1 + NN('j.,N(r)] 

I T±f(r) I ~ !(1.1)4 

<1. (65) 

Thus, T± is a contraction. Now we write Eq. (50) in 
the form 

We now define 

'~)(r) = '±(r), if , < '0' 

,~)(,) = 0, if, ~ '0' 

Q± = W±,-1-2(X± - '~»/(1 + NN('j.,N). 

Equation (68) transforms Eq. (66) to 

(66) 

(67) 

(68) 

Q± = (T± - 1)W±,-1-2'~0)/(1 + NN('j.,f.) + T±Q± 

=~~+~~. ~~ 

Since T± is a contraction and o± is bounded, Eq. (68) 
has the following solution on (0, R): 

00 

Q± = L T~(T±b±) 
n~O 

00 

= L T~(T± - 1)W±,-1-2(1 + NN('j.,N)-l,~) 
n~O 

= W±,-1-2 

Thus, 

X (-,~) + !~~(K'FK±t'~») /(1 + NN('j.,N). 

(70) 

X± = ,~) + ,1+2(1 + NNocN)W;;;lQ± 

= lim (K'FK±)n,~) 

n-+oo 

where the last step is justified by the fact that, on 
[ro, R], the operator K'fK± is Voltera with a bounded 
kernel. 

Assume that Eq. (55) fails to be a regular nontrivial 
solution of Eq. (50). Then Eq. (68) implies that Q± is 
unbounded. But Eq. (70) gives Q± as a bounded 
function. The contradiction implies that Eq. (55) is 
indeed a regular nontrivial solution. The essential 
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uniqueness of Eq. (55) follows from the fact that Eq. turning point 
(70) is the unique regular solution of Eq. (69). y = x + (E - b)/a. (73) 

VII. RATE OF CONVERGENCE 

In each case, x+ and x- have been given in terms of 
a limiting procedure. Sequences of approximate solu
tions for x± were shown to converge to the exact 
solutions. It is not difficult to generate estimates for 
the rates of convergence, but the estimates typically 
admit the possibility of slow convergence. Thus, one 
must have a certain amount of blind (or at least near
sighted) faith in the accuracy oflow-order calculations. 
The following comments are offered to support this 
faith. 

Consider the problem of solving Eq. (1) when Vex) 
is a small potential step at x = I. Let the boundary 
conditions be X+(p) = 1 and X-(q) = O. That is, there 
is an incident wave from the left. If connection formu
las are not used, the WKB approximation gives 
X+(x) = 1 and X_ex) = 0 for x E [p, q]. An exact cal
culation shows that, in the region x E [p, I), the 
WKB approximation errs by the omission of a re
flected wave which is first order in the magnitude of the 
potential step. But, for x E (I, q], the error is second 
order. 

Thus, when there is an interface between two very 
slightly dissimilar media, the WKB approximation 
essentially consists of ignoring reflections from the 
interface. A continuous medium has infinitely many 
such interfaces. The WKB approximation ignores all of 
the resulting reflections. The integral in Eq. (12) is 
simply the summation of the omitted reflections. 

If k(x) is large and slowly varying, one expects 
these reflections to be weak and incoherent. For such 
k(x), the integral kernel in Eq. (12) is indeed found to 
be small and highly oscillatory. Consequently, the 
integral itself tends to be small. 

The multiple integrals of Eq. (27) correspond to 
multiple reflections. If k(x) is large and slowly varying, 
the above line of thought suggests that these multiple 
integrals should be quite insignificant. That is, low
order calculations should be very accurate. 

The rapid convergence argument is less convincing 
when the "large and slowly varying" condition fails. 
The examples illustrate what may be expected in such 
cases. 

VIII. EXAMPLE: LINEAR POTENTIAL 

Suppose a and b are positive constants such that 

Vex) = -ax + b. (72) 

It is convenient to translate the origin to the classical 

Then, 
k2(y) = O'Y, (74) 

0' = 2ma/1i2, (75) 

o = ?p"(y) + k 2(y)?p(Y). (76) 

Suppose E is real, y is real, and 0' > O. We choose the 
phase of kl(y) to be t1T for y < 0 and 0 for y > O. 

The classically forbidden region is now to the left of 
the origin. The boundary condition ?p( - (0) = 0 is of 
particular interest. It is easy. to show that Eq. (27) 
holds if one takes r = (- 00, (0), A+ = 0, and 
A_ = 1 and that 

S(y) = f k(z) dz. (77) 

The first-order reflection amplitude is 

But 

so 

and 

X~)(oo) = L:tk'(Z)k-l(z)e-2iS(Z) dz. (78) 

S(y) = 20'l!y~; 

y = (3StO'-l)i 

x~)( (0) = J e-2iSd log [0'(3StO'-l)i]t 

(79) 

(80) 

= J e-2iS(i)d log (S), (81) 

where Fig. 1 indicatcs the path of integration in the 
complex S plane. The residue at the origin gives 

X~)(oo) = -i!1T 

= -il.047. (82) 

1m 

(S) 

--------~ 

Re 

FIG. I. Path of integration for Eq. (81). The contour may be closed 
in the fourth quadrant. 
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This is to be compared with the known value 

(83) 

Residue calculations are prohibitively difficult with 
many potentials. Suppose that this had been the case 
with the linear potential. Then the integral of Eq. (78) 
could have been truncated and evaluated numerically. 
For example, if the integral is restricted to the region 
such that I S(x) I ~ 17T, then the numerical result is 

X~)( (0) "" 0.063 - i1.107. (84) 

The close agreement between Eqs. (82)-(84) serves 
to substantiate the earlier comments on the rate of 
convergence of Eq. (27). It is easy to believe that, for a 
large class of smooth potentials, the main error in 
zeroth-order WKB is the omission of the first-order 
contribution from the immediate vicinity of the classi
cal turning point. This conclusion is, of course, basic 
to the "derivation" of the usual WKB connection 
formulas. 

X. EXAMPLE: PLATEAUED POTENTIAL 

Suppose Vex) rises rapidly from one level region to 
another as illustrated in Fig. 2. Let x, E, and m be 
real. We choose the phase of kt(x) to be 0 for x < 0 
and either 0 or t7T [depending upon the sign of E -
V(Q)] for x> Q. Take r = (- 00, (0) and let Sex) be 
as in Eq. (77). 

The condition "rises rapidly" means that S~ k(z) dz 
is negligible. Thus, Eq. (12) reduces to 

X±(x(,u» = A± + f X=t{x(z» dz, (92) 

,u(x) = log [k(x)/k(O)]t; (93) 

Iteration of Eq. (92) involves simple integrations 
which eventually yield 

o:J ,u2n o:J ,u2n+l 

X±(x) = A\~o(2n)! + A=Fn~o(2n + I)! (94) 

= A± cosh,u + A:;: sinh ,u (95) 

= A±H[k(x)/k(O)]l + [k(O)/k(x)]*} IX. EXAMPLE: PARABOLIC BARRIER 

Suppose a is a positive constant such that 

Vex) = -ax2
• 

The zero-energy problem is then 

+ A=F!{[k(x)/k(O)]l - [k(O)/k(x)]*}. (96) 

(85) This is recognized as the exact solution for a potential 
step (i.e., 15 = 0). 

o = 1p"(X) + k2(x)1p(x), 

k 2(x) = ax2 , 

a = 2maJ1i2. 

(86) 

(87) 

(88) 

Suppose r is the real axis and a > O. We choose the 
phase of kl(x) so that kl ~ O. 

The boundary condition X+( - (0) = 0 is of partic
ular interest. It is easy to show that Eq. (27) holds if 
one takes r = (- 00, (0), A+ = 0, A_ = 1, and Sex) 
as in Eq. (77). The calculus of residues can be em
ployed as before to obtain the first-order reflection 
amplitude 

X~)( (0) = - it7T = - iO.785. (89) 

This is to be compared with the known value 

X+(oo) = _i2-1 = -iO.710. (90) 

A naive4 application of connection formulas would 
have led to the ambiguous value 

x+(oo)=O or -i, (91) 

depending upon whether the energy is taken to be 
slightly positive or slightly negative. Thus, the first
order calculation can be a considerable improvement 
over connection formula techniques. 

Now suppose, for example, that 

k(Q){k(O) = e2 = 7.4. (97) 

Truncating the sums of Eq. (94) at n = 1 gives 

X~)(x) = A±, if x ~ 0, (98) 

X~)(x) = 1.500A± + 1.167A:;:, if x ~ Q. (99) 

Inclusion of all orders gives 

X±(x) = A±, if x ~ 0, (tOO) 

X±(x) = 1.545A± + 1.175A"" if x ~ o. (101) 

The first-order wavefunction is 

1p(1)(x) = (1.500A+ + 1.167A_)eixkW 

if x ~ 0, 

(t02) 

+ (1.500A_ + 1.167A+)e-i "'kW, if x ~ 0. 

(103) 

V(xr= V(O) / V(x)=V(o) 

--------------~. . . . 
o 

, 
6 

FIG. 2. Shape of "plateaued potential." 
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Inclusion of alI orders gives 

V'(x) = A+e'o:k(O) + A_e-io:k(O), 

V'(x) = (1.545A+ + 1.175A_)ei
",W) 

if x:::;; 0, 
(104) 

+ (1.545A_ + 1.175A+)e-''''k(M, if x ~ 15. 

(105) 
These results are slightly modified if the exact phase 
integral is used, but it is easy to believe that the low
order calculations retain their accuracy. On the other 
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hand, this potential presents severe problems if one 
attempts to apply WKB in the usual way. 

• Work supported by National Defense Education Act Title IV 
Fellowship. 

1 The uniform norm is used throughout this paper. 
2 This is equivalent to 

S(r) = S(I) + f k(z) dz. 

3 R. E. Langer, Phys. Rev. 51, 669 (1937). 
• A fairly sophisticated approach to the problem is found in K. W. 

Ford et al., Ann. Phys. (N.Y.) 7,239 (1959). 
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1. INTRODUCTION 

A great deal of effort has been expended in the 
study of canonical commutation relations and the as
sociated uncertainty principle. In particular, the 
question of the existence of a phase operator canoni
cally conjugate to the number operator has excited 
considerable interest and also generated a certain 
amount of confusion. This situation was greatly 
clarified by the work of Susskind and Glogower1 and 
others.2 In this paper, we first present some general 
considerations which are based on the important 
distinction between the Weyl and Heisenberg repre
sentations of the canonical commutation relations. 
We show, by means of examples, how various apparent 
difficulties can be eliminated by paying attention to 
this distinction. We then discuss the general relation 
between the uncertainty principle and the canonical 
commutation relations and, again by way of examples, 
we show that the former need not follow from the 
latter. 

In addition to these general remarks, we explicitly 
construct an operator which is canonically conjugate, 
in the Heisenberg sense, to the number operator. As 
an interesting application, we use this "phase" oper
ator to define a quantum time operator in the context 
of an idealized oscillator clock. 

2. CANONICAL COMMUTATION RELATIONS 

The observables Q and P are said to be canonically 
conjugate if they satisfy the (abstract) canonical 
commutation relation (CCR) 

[Q, P] = i. (2.1) 

In this section, we very briefly review the types of 
representations of the CCR's which may be defined on 
a separable Hilbert space Je. This is an important 
question because the apparent difficulties which occur 
for certain pairs (Q, P) can be eliminated by a more 
precise specification of the representation involved. 

The most commonly used representation employs 
the idea ofa Weyl pair3 : A Weylpair (orWeylsystem) 
consists of two strongly continuous, I-parameter 
groups of unitary operators (U(cx), V(f3» satisfying the 
relation 

U(cx)V(f3) = e(ilZ/J) VC(3) U(cx). (2.2) 

Such unitary groups can always be represented in the 
exponential form 

U(cx) = e(iIZP), 

V({3) = eCiPQ ), 
(2.3) 

where the generators Q and P are densely defined, 
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We show, by means of examples, how various apparent 
difficulties can be eliminated by paying attention to 
this distinction. We then discuss the general relation 
between the uncertainty principle and the canonical 
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we show that the former need not follow from the 
latter. 

In addition to these general remarks, we explicitly 
construct an operator which is canonically conjugate, 
in the Heisenberg sense, to the number operator. As 
an interesting application, we use this "phase" oper
ator to define a quantum time operator in the context 
of an idealized oscillator clock. 

2. CANONICAL COMMUTATION RELATIONS 

The observables Q and P are said to be canonically 
conjugate if they satisfy the (abstract) canonical 
commutation relation (CCR) 

[Q, P] = i. (2.1) 

In this section, we very briefly review the types of 
representations of the CCR's which may be defined on 
a separable Hilbert space Je. This is an important 
question because the apparent difficulties which occur 
for certain pairs (Q, P) can be eliminated by a more 
precise specification of the representation involved. 

The most commonly used representation employs 
the idea ofa Weyl pair3 : A Weylpair (orWeylsystem) 
consists of two strongly continuous, I-parameter 
groups of unitary operators (U(cx), V(f3» satisfying the 
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unbounded self-adjoint operators. A formal power
series expansion of (2.2) using (2.3) yields (2.1); 
therefore, Q and P are (formally) canonically conju
gate. In fact, this procedure is rigorously correct if both 
sides of (2.2) are allowed to act on any vector chosen 
from a suitable dense subspace.4 The standard ex
ample of a Weyl pair is given by choosing as genera
tors the position and momentum operators for a free 
particle in one dimension. Furthermore, von Neu
mann's theorem3 states that every Weyl pair is unitarily 
equivalent to the standard example. An immediate 
consequence of this theorem is that any generator for 
a Weyl pair has a continuous spectrum comprising the 
entire real line. This fact is the source of many re
marks to the effect that certain operators, e.g., those 
with discrete or bounded spectra, could not have 
canonical conjugates. 

The strong conditions imposed by von Neumann's 
theorem on the spectra of canonically conjugate pairs 
can be avoided by using a weaker definition of canoni
cal conjugacy: A Heisenberg pair (Q, P) consists of 
two densely defined, self-adjoint operators together 
with a dense subspace C on which their commutator 
is defined and satisfies 

[Q, P]tp = itp, tp E C. (2.4) 

It is clear that the generators of any Weyl pair form a 
Heisenberg pair, but the converse statement is false. 
That is, there are Heisenberg pairs which cannot be 
exponentiated to form a Weyl pair, and von Neu
mann's theorem is false for such pairs. The problem 
of determining sufficient conditions for the truth of 
the converse has been studied by several authors. 5 

Roughly speaking, the commutator domain C must be 
invariant under Q and P, and the operator p2 + Q2 
must be essentially self-adjoint on C. 

A simple example of a Heisenberg pair is provided 
by the problem of a particle in a I-dimensional box of 
unitlength.6 The relevant Hilbert spaceisJe = L2(0, 1), 
and the canonical operators (Q, P) are defined by 

Qtp(x) = xtp(x), 

Ptp(x) = -i dtp (x), 
dx 

where the domain of Q is the whole space and the 
domain of P is 

'D(P) = {tp E Je: tp is absolutely continuous, 

tp' E Je, tp(O) = tp(1)}. (2.5) 

The domains have been chosen so that both operators 
are densely defined and self-adjoint. To complete the 
definition of (Q, P) as a Heisenberg pair, we must 

specify the commutator domain C. Since Q is defined 
everywhere on Je, we need only ensure that Qtp E 'D(P) 
whenever tp E C; this condition guarantees that [Q, P]tp 
is well defined. The function Qtp cannot satisfy the 
periodicity condition in (2.5) unless tp(O) = tp(l) = 0; 
therefore, the commutator domain must be 

C = {tp E 'D(P):tp(O) = tp(l) = O}. 

We omit the proof that C is dense. The CCR of (2.1) 
is obtained by a simple formal calculation which is 
rigorously justified for any element of C. Although 
(Q, P) is a Heisenberg pair, it certainly cannot be a 
Weyl pair7 since the spectrum of Q is bounded and 
the spectrum of P is discrete. The difficulties which 
prevent the formation of a Weyl pair from (Q, P) can 
be understood in terms of the sufficient conditions 
mentioned above. The domain C is not invariant under 
P and, if one attempts to remedy this by a further 
restriction of C, it is found that p2 + Q2 will not be 
self-adjoint on the reduced domain. 

3. CCR's AND UNCERTAINTY RELATIONS 

It is usually assumed that a canonically conjugate 
pair of observables represented by self-adjoint oper
ators will satisfy an uncertainty relation. We now 
show that the truth of this assumption depends criti
cally on the properties of the commutator domain C 
associated with the relevant representation of the CCR. 
For any normalized tp E C, we have 

i = (tp, [Q, P]tp) 

= (Qtp, Ptp) - (Ptp, Qtp), 

and an application of the Schwartz inequality gives 

1 ~ 211Qtp1111Ptpll. 

The number II Qtpll is just the root-me an-square average 
of Q, since 

II Qtpl12 = (Qtp, Qtp) = ('P, Q2'P), 

and the same holds for !,. The familiar form of the 
uncertainty relation is obtained by the replacements 
Q --+ Q - (Q), P --+ P - (P) and the definitions 
r5Q = IIQ - (Q)/I, r5P = /lP - (P)/I: 

(3.1) 

We wish to emphasize the elementary but important 
point that this derivation is only valid for tp E C. If all 
relevant physical states are in C, this remark imposes 
no real restriction, but if there are physical states not 
in C, the derivation fails and we may expect (3.1) to be 
violated. The former situation exists for any Weyl 
pair, but the examples given below show that either 
situation is possible for Heisenberg pairs. 
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An example for which (3.1) is satisfied is provided 
by the particle in a I-dimensional box. The physically 
admissible wavefunctions for this problem must vanish 
at the boundaries; therefore, according to the dis
cussion in Sec. 2, they all lie in the commutator domain 
and consequently satisfy the uncertainty relation. A 
contrary example is given by the pair (0, L z), where 
L. is the z component of angular momentum and 

L 1JJ(O) = -i d1p(O) 
ZT d() , 

01p(O) = ()1p«(). 

Except for obvious changes in notation, the domains 
of L. and 0 and the commutator domain C are defined 
just as in the previous example. The difference is that 
there is no requirement that the physical wavefunctions 
vanish at the end points of the interval (0, 27T). In 
particular, the eigenfunctions of L z do not belong to 
C and they clearly violate (3.1), since bL. = ° while 
b0 S 27T. This difficulty is, of course, well known,2 
and satisfactory replacements for (3.1) have been 
formulated by considering trigonometric functions 
of 0. 

4. PHASE OPERATOR 

It has often been assumed that the annihilation 
operator a for a harmonic oscillator has the repre
sentation 

(4.1) 

in which the number operator N and the phase oper
ator 0 are self-adjoint. A formal calculation based on 
this representation shows that (0, N) is a canonically 
conjugate pair. This simple picture was destroyed by 
Susskind and Glogower,l who proved that no unitary 
operator exp (-i0) could satisfy (4.1). They replaced 
this incorrect representation by the rigorous polar 
decomposition 

a = (N + 1)iE, 

where E is defined by 

Erpo = 0, 

Erp", = rp"'-I' n ~ 1, (4.2) 

and {rp",} is the complete orthonormal set of eigen
functions of N. Although the relations (4.2) show that 
E is not unitary, one can introduce useful self-adjoint 
operators C and S by 

E = C + is. (4.3) 

These are the cosine and sine operators introduced by 
Susskind and Glogower.1 

The results outlined above apparently make it im
possible to define an operator canonically conjugate 

to N; nevertheless, we will construct an operator F 
which does have this property. The contradiction 
is resolved by the distinction between the Weyl and 
Heisenberg forms of the CCR's. Indeed, if F and N 
were the generators for a Weyl pair, we could use (2.2) 
to derive the incorrect representation (4.1); but we 
will find that (F, N) is a Heisenberg pair for which 
(2.2) is false. 

The construction of F is most conveniently carried 
out in the representation defined by choosing Je = H2, 
where H2 is the Hilbert space of functions analytic in 
the unit disk. The inner product in H2 is defined by 

]
" d() *'0 '0 (f, g) = - f (e' )g(e' ), 

-11 27T 

and the eigenfunctions of N are given by rp", = z"'. 
Thus, we have 

N = z~ = -i~ 
dz de' 

where e = arg (z) and 

'.D(N) = {fEH2:z iz EH2}. 

By analogy with the discussion of L. in Sec. 3, we 
might expect the canonical conjugate to N to be given 
by 

0/(z) = 8[(z), (4.4) 

but 0 does not define an operator in H2, since () = 
arg (z) is not an analytic function of z. A more useful 
way to view this difficulty is to note that the boundary 
value of I is given by a convergent Fourier series con
taining no Fourier coefficients I", with negative n, 

'" f(e io) = 'i f",e inO
• 

n=O 

This simply reflects the fact that N has no negative 
eigenvalues. From this point of view, the problem is 
that the Fourier expansion of 01 will contain coeffi
cients (0/)", for negative values of n. This suggests that 
one modify (4.4) by following 0 with a projection 
operator which deletes the negative-n components. It 
is not necessary to introduce the projection operator 
explicitly, since an equivalent definition is given by 

(g, Fh) =1" dO g*(eiO)eh(ei6
) (4.5) 

-" 27T 
for any g, hE H2. The operator defined by (4.5) is 
obviously bounded and symmetric; consequently, it is 
self-adjoint. 

To show that (F, N) is a Heisenberg pair, we must 
specify a dense commutator domain C. Just as in the 
angular-momentum case, the only problem is to 
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ensure that Fh E 1>(N) whenever h E e. The definition 
of 1>(N) can be rephrased as 

1>(N) = {fE HZ: ~on2lfnlz < IXl (4.6) 

from which it follows that each IE 'J)(N) is strictly 
periodic on the unit circle. Let us consider those 
elements I E 'J)(N) which satisfy 

1(-1)=0; 

then the function 01(ei8
) will also be periodic, since I 

vanishes at the point of discontinuity for O. Further
more, the result of projecting this function onto H2 
will satisfy (4.6); i.e., it will lie in 1>(N). We are thus 
led to define e by 

e = {f E 1>(N):O =f(-I) =Jo(-I)"fn}. 

To show that e is dense in H2, we introduce the 
functions 

hm(z) = 1 + (_l)m+lzm, 

which are elements of e for m ~ 1. Next, suppose that 
I is orthogonal to each hm ; then 

(hm,f) = 10 + (_l)m-'-Ym = 0, m ~ 1, 

which yields 
Im=(-l)"1o, m~l. 

This is impossible for a normalizable function unless 
10 = 0, which implies I == O. Therefore, any function 
orthogonal to every element of e vanishes identically 
and e is dense in HZ. It remains to be shown that the 
CCR is satisfied on e. Let h E e and g E 1>(N); then 

(g, [F, N]h) = (g, FNh) - (g, NFh), 

= (g, FNh) - (Ng, Fh). 

Now we can use the definition (4.5) to obtain 

( [F N]h) =f dO *O! dh -f dO(! dg)* ()h. 
g" 27T g i d() 27T i dO 

After integrating by parts in the second term (the 
integrated term vanishes since h E e), we find 

(g, [F, N]h) = i(g, h). (4.7) 

Since 1>(N) is dense in H2, we can conclude that 

[F, N1h = ih (4.8) 

for any hE e. Thus, (F, N) is a Heisenberg pair. 
The operator F, so far defined implicitly by (4.5), 

can be exhibited more explicitly by means of its 
spectral resolution; equivalently, we can search for a 
new representation in which F acts multiplicatively. A 
technique for finding this representation has been 

developed by Rosenblum8 in connection with the 
spectral analysis of self-adjoint Toeplitz operators. 
An operator Ton H2 is said to be a Toeplitz operator 
if there is a function Wee) such that 

(g, Th) =f" dO g*(ei6)W(fJ)h(ei6
). 

-" 27T 

In our case, F is defined by the choice W(O) = 0; we 
remark in passing that the operators C and S discussed 
earlier correspond respectively to W(fJ) = cos () and 
W(fJ) = sin fJ. The application of Rosenblum's method 
to our problem yields as the new representation space 
Lz(dp), where dp is a measure on the real line given by 

dp(A) = t cos:P dA, for IAI ~ 7T, 

= 0, for IAI > 7T. 

The concentration of the measure in [-7T, 7T] is simply 
due to the boundedness of F. The isomorphism be
tween H2 and L2(dp) is given by the unitary mapping 

fE H2 -7 tp E L2(dp) 
with 

tp(A) = lim ~ r dz f(z*)<l>(z; A) 
0--1211'1 J/z/=o z 

f" dfJ '8 '8 = lim - f(be-' )<l>(be' ; A), 
b-+1 -1f 27T 

(4.9) 

where 
<l>(z; A) = [(1 + z)(l - zei).Wie-(l<z;.H, 

n(Z;A) =f" dfJ log IfJ _ AI (1 + ze::). (4.10) 
-1f 47T 1 - ze 

In particular, we denote the image of zn by q;n(A); 
these are the eigenfunctions of N and they necessarily 
form a complete orthonormal set for the measure 
dp. It is easy to see that 

OCJ 

<l>(z; A) = I znq;n(A); 
n=O 

i.e., <l> serves as the generating function for {q;n}' In 
the new representation, we have 

(Ftp)(A) = Atp(A), 

(Ntp)(A) = J dp(A')N(A, A')tp(A') 

with 

N(A, A') = lim IdfJ ! 0<l>(be
i9

; A) <l>*(bei9 ; A'). 
b-+1 27T i 00 

Unfortunately, we have not been able to carry out the 
last integral above; consequently, we have no explicit 
representation for N(A, A'). 

We have exploited the properties of the generating 
function $ to derive a recursion relation for the func
tions 1>n which was used in a numerical calculation of 
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the first 20 functions. An outline of the calculation 
is given in Appendix A. Qualitatively, rp" resembles a 
distorted version of ei ").; for example, it has the same 
symmetry under complex conjugation 

rp=(A) = rp,,( -A). 

To each rp", there corresponds a probability distri
bution TI,,().) in A, given by 

TI,,(A) dA = Irp,,().)1 2 dp(A) 

= i Irp,,(A)1 2 cos lA dA. 

These functions exhibit strong oscillations with n + 1 
maxima for II,,; several examples are shown in Fig. 1. 
It is interesting to compare this behavior of TI" to that 
of the analogous function in the angular-momentum 
case. The probability distribution corresponding to a 
given eigenfunction of L. is a constant; it does not 
even depend on the eigenvalue. The source of the 
difference is the fact that the spectrum of N is bounded 
below while that of L. is not. 

To gain some insight into the physical significance of 
F, we will briefly consider the questions of the un
certainty relation for (F, N) and the classical limit for 
F. As far as the uncertainty relation is concerned, the 
situation is similar to that found for (O, L.). The 
operator F is bounded and there are physical states, 
namely the {</In}' which have dN = 0; consequently, 
the conventional uncertainty relation is violated. We 
have not yet considered the problem of formulating 
modified uncertainty relations similar to those obtained 
for (O, L.). 

1.0 

The behavior of F in the classical limit can be 
obtained by using the well-known coherent Glauber 
states 

00 oc" 
0/", == exp (-i locl 2

) I -! </I", 
n=O (n!) 

(4.11) 

where oc = loci e-i9• Since 0/", is an eigenstate of a, it is 
easy to show that 

(an) = ocn
, (N) = locl 2 , tJN = loci, 

where (D) == (0/"" Do/",) and dN == [(N2) - (N)2J!. In 
the limit of large loci we have dN/(N) -+ 0; therefore, 
the state described by'f", is characterized by a well
defined intensity and phase given by loc/ 2 and 0, 
respectively. The C and S operators defined in (4.3) 
satisfy2 

lim (0/"" {Cn}'f",) = {(COS O)"}. 
1"'1->00 sn (sin o)n 

Thus, in the classical limit, C and S approach the 
corresponding functions of the classical phase with a 
dispersion which can be made arbitrarily small by 
choosing loci sufficiently large. This behavior is shared 
by F; i.e., one can show that 

lim (0/,., Fn'f.J = (r. 
1"1->00 

(4.12) 

The proof of (4.12) is given in Appendix B. Since 
neither C nor S commutes with F, they certainly 
cannot be expressed as functions of F; nevertheless, in 
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the classical limit, we have 

(C) = cos (F), 

(S) = sin (F). 

Another interesting fact is that F and N satisfy the 
conventional uncertainty relation in the classical limit. 
To obtain this result, we employ the so-called weak 
CCR; i.e., we form the expression 

r = (Ftp, Ntp) - (Ntp, Ftp). 

For tp E e, this is just the expectation value of the 
commutator, but r is actually well defined for any 
tp E 'D(N). A calculation like that leading to (4.7) gives 

r = i[l - 11JI(-l)!2]. 

The combination of this result with the definition of 
r and the Schwartz inequality yields 

11 -ltp(-1)1 21::;;; 211Ftp1111Ntpll. (4.13) 

The same result is obtained if we replace F by F - (F) 
and N by N - (N). Again, we see that the conven
tional uncertainty relation can be obtained only if 
tp( -1) = 0, which is the condition for membership in 
e. The advantage of (4.13) is that it holds for all 
1JI E 'D(N); therefore, it is valid for all relevant physical 
states. Now let us choose 1JI to be a Glauber state with 
oc = loci e- i9 • Inserting in (4.13) the asymptotic form 
(B2) obtained in Appendix B, we have 

11 - 2(21T)! loci exp [-2IocI2 (1T ± 0)2]1 ::;;; 2tJF tJN. 

When loci ~ 00, this yields 

i ::;;; dF tJN, for 1T ± () :F 0, 

(21T)! ::;;; bF, for 1T ± () = O. 
(4.14) 

The second inequality follows from the fact that 
dN = loci. Note the curious fact that a state centered 
on a phase value in the interior of [-1T, 1T] can have 
an arbitrarily small dispersion in F, whereas a state 
concentrated at () = ±1T has a minimum phase dis
persion given by (4.14). It should be emphasized that 
(4.14) is not a general statement; it depends on the 
special properties of the Glauber states in the classical 
limit. 

5. THE OSCILLATOR CLOCK 

The harmonic oscillator Hamiltonian is given by 
H = wN, where w is the oscillator frequency. In view 
of the commutation relation (4.8) for (F, N), we are 
naturally led to define a canonical conjugate to H by 
T == w-1F. One might then think that T is some sort 
of quantum time operator. We now investigate this 
possibility, as was done in Ref. 1, by using T in the 
construction of an idealized clock. 

The basic elements in the oscillator clock are a 1-
parameter family of states {AT}' with the property 

-iIHA A (51) e T = T+I, • 

and an observable T, whose measurement on AT yields 
T with negligible dispersion. If we write AT as 

AT = .2 bn(T)4>n, 

then the condition (5.1) requires 

bn(T) = bne-inwT. 

The coefficients bn must be chosen so as to minimize 
the dispersion in the measurement of T. The particular 
choice made in Ref. 1 corresponds to 

bn = (1 - b2)!bn, 

where b is a real number in (0, 1). In the limit b ~ 1, 
one does find (C) = cos (WT) with vanishing dis
persion, but one also finds dN/ (N) ~ 1. In other 
words, the limiting state does not correspond to a 
well-defined classical intensity. In view of this fact, we 
will choose instead a special family of Glauber states 

with oc = IIXI e-iWT
• Note that the states labeled by T 

and T + 21T/W are identical. 
To operate the clock, we prepare the oscillator in 

the T = 0 state and, subsequently, measure T. Accord
ing to (4.12), we will find 

lim (An TnA
T

) = Tn; 
1"'1"''''' 

i.e., the measurement of T yields T with a dispersion 
which vanishes as \0(1 ~ co. Furthermore, the con
dition (5.1) guarantees 

T = t, mod 21T/W. 

Thus, the oscillator clock only allows us to measure 
time intervals within one oscillator period. This 
limitation is not fundamental; one can avoid it by 
using two oscillators with incommensurable periods. 
Therefore, T seems to be a suitable time operator. 

6. DISCUSSION 

In this work, we have been concerned with three 
related problems: the types of possible representations 
for the CCR's, the connection between the CCR's and 
the uncertainty principle, and finally the construction 
of a "phase" operator for the harmonic oscillator. With 
regard to the first problem, we hope to have made it 
clear that it is essential to specify precisely the repre
sentation of the CCR that is relevant to a given prob
lem. In particular, the apparent difficulties associated 
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with the definition of canonical conjugates for 
operators with discrete or bounded spectra can be 
eliminated by recognizing that the appropriate rep
resentation is of the Heisenberg type instead of the 
more familiar Weyl type. The question of uncertainty 
relations is also intimately related to the type of rep
resentation used. For representations of the Weyl type, 
the commutator domain automatically includes all 
relevant physical states, and the conventional un
certainty relation follows. However, for representa
tions of the Heisenberg type, the commutator domain 
mayor may not contain all of the relevant physical 
states. In the latter case, the derivation of the 
uncertainty relation breaks down and, in the examples 
studied in Sec. 3, the uncertainty relation is violated 
by some physical states. 

It has often been asserted that an operator which 
has a spectrum that is bounded below could not have 
a canonical conjugate. The counterexample produced 
in Sec. 4 provides an illustration of the general ideas 
discussed above, since its existence is based on the fact 
that (F, N) is a Heisenberg rather than a Weyl pair. 

Finally, in order to avoid misunderstanding, we 
wish to emphasize that the existence of the time 
operator T defined in Sec. 5 does not provide an 
explanation for the familiar relation bE bT ~ i. The 
only general inequality that can be derived for the 
Heisenberg pair (T, If) is the weak uncertainty rela
tion (4.13), and there are many physically acceptable 
states for which the left-hand side vanishes. On the 
other hand, it is true that an oscillator state useful in 
the construction of a clock will necessarily have a large 
dispersion in energy. This follows from the properties 
of the complete set {rfo,,} studied in Sec. 4; any function 
strongly peaked, say at A = Ao, will have a very large 
number of components cp,,{l) with nearly equal coeffi
cients. Thus, one cannot make an accurate energy 
measurement on an oscillator clock, since the corre
sponding wavefunction is strongly peaked. This would 
seem to imply some kind of uncertainty relation 
despite the lack of a formal derivation starting from 
the CCR's, but this conclusion is misleading. Con
sider a system described by the total Hamiltonian 
H = He + He' where He is the clock Hamiltonian 
and Hs describes some other physical system. We 
assume that there is no interaction between the two 
subsystems. If the clock is prepared in a state suitable 
for accurate measurements of T, then there will be a 
large dispersion dEc and, consequently, a large dis
persion in the total energy. However, there is no 
apparent relation between bEe and bTsince [Hs, 11 = 
O. In other words, the function of the quantum clock is 
simply to provide the value of the time parameter t 

occurring in the usual description of S. In our opinion, 
any relation between bE. and oT must arise from a 
detailed analysis of the interaction between S and the 
apparatus used to measure its energy. 

APPENDIX A 

We can obtain a recursion relation for the functions 
rfo" by writing the generating function in the form 

<I>(z; A) = e-nZ:A), 

which yields the identity 

o<I> = _ or <I>. 
oz OZ 

(Al) 

(A2) 

If we substitute in (A2) the power series for <I> and r, 

<I>(z; A) = ! Z"rfon(A), 

r(z; l) = ! znyn(J.), 

then we find the recursion relation 

,,-I 
nCPn = -ncpoYn - ! (n - m)Yn-mCPm, n ~ 1. 

m=l 

Comparing (AI) to (4.10) gives 

r(z; A) = O(z; A) + t Jog (1 + z) + ! log (1 - zev,), 

so that 

YO(A) = 0(0; A) = -! + (41Tr1 

x [(1T + A) log (1T + A) 

+ (1T - l) log (1T - J.)], 

y,.(A) = (2nrl[( -it+l - e,n"} 

1" dO + - log 10 - AI ei"o, 
-7T 21T 

The function CPo is given explicitly by 

CPo{l) = e-10W 

n ~ 1. 

= (e/1T)! exp {-H(! + A/1T) log (1 + A/1T) 

+ (1 - J./1T) log (1 - A/1T)]). 

Thus, the function rfon can be computed from the 
CPm' m < n, and the given functions y". The latter 
were computed by first finding an expression for them 
in terms of the known functions9 Si(x) and Ci(x). 

APPENDIX B 

In the representation that diagonalizes F, we have 

where 'Y" is a Glauber state with IX = Re- iO
• Since we 

want to prove (4.12), we replace An by (l - 6 + 6)n 
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and write 

('¥o;, Fn'¥a) = (r +/~ C)fr-II/, 

II = J dp()')(A - O)II'¥aCAW· 

Our task now is to show that 

lim I z = 0, 1 ~ l. (BI) 
R~oo 

The asymptotic form for '¥ a is most readily obtained in 
the H2 representation; therefore, we use (4.9) to 
write I, as 

II = lim f dcp f dcp' O/:(be-i<P)O/,.{be-i<P)H1(cp', cp), 
b~l 271 271 

with 

H/(cp', cp) == J dp(A)<fI*(beW ; ).)(.1. - OY<fI(bei<P; A). 

The function o/,,(z) is the representative of the Glauber 
state in H2; according to (4.11), it is 

'¥aCz) = exp (-tR2)g(O(z), 

00 wn 
g(w) ==Z -!' 

,,=0 (n!) 

The function g(w) is entire and has power series co
efficients that are analytic functions of the index; 
consequently, we can find its asymptotic form by the 
following standard method1o : 

(1) For fixed w we find the maximum term; 
(2) We approximate the sum in the vicinity of the 

maximum term by an integral and compute the inte
gral by the saddle-point method. 

In the present case, one finds, with w = reiv and 
r.-,. 00, 

In the case of interest, we have w = (J.Z, with z = be-i<p 
and b .-,. 1, so that 

'¥aCz) -- (271)t(2R)t 

Thus, 

x exp [-R2(e + cp)2 - i(R2 - we + cp)]. 

(B2) 

II ~ (271)i(2R)f dcp f dcp' 
271 211" 

X exp [i(R! - l)( cp' - cp)] 

x exp {_R 2[(cp + W + (cp' + 0)2]}Hz(cp', cp). 

The Gaussian factors effectively limit the integrals to 
a small region around cp' = cp = - 0; consequently, if 
IHI(CP', cp)1 ~ M, < 00 in this region, we obtain the 
following bound on II: 

I III ~ (271)t(2R)MI lioo 

dcp exp (_ R2cp2)/2, 
-00 271 

~ (271)-f M,R-1 .- O. 

Thus, (BI) is established as soon as we show that 
H, == H,( -0, -0) is finite. We have 

HI = lim fdp(A)(A - 0)1 I <fI(be-i6
; AW, 

b~l 

where by (4.10) 

1<fI(z; ).)1 2 = (11 + zlll - zei'\l)-le-2ReOlz;,\), 

Re Q(be-iB
; A) 

= (1 _ b2)f dcp log Icp - ).1 . 
471 1 + b2 

- 2b cos (cp - 0) 

(B3) 

As b .-,. 1, the integrand in (B3) develops a singularity 
at cp = (J, and this is the only part of the integration 
region that can cancel the (1 - b2) factor. If we restrict 
the cp integral to a small interval centered on 0 and 
make appropriate expansions in the integrand, we find 
that 

Re Q(be-iB
; .1.).- t log 10 - AI. 

Thus, we have 

HI = 1(1 + cos (J)-t 

X dA(cos tA) (1 - cos (A - O»-t, 1" (). -0)1 

-" I). - 01 
which is clearly finite for I ~ 1 and 0 =F ±11". This 
completes the proof of (4.12) for all 0 E (-71,71). 
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A discussion is given for the general solution of a secular equation with all other matrix elements 
equal to zero except Hu , H, 'H, and H'+h , . Both the eigenvalue and the amplitudes of the corresponding 
eigenfunction are expressed in terms of continued fractions of the matrix elements. A solution of Mathieu 
equation is used as an example to compare the present method with other methods. 

I. INTRODUCTION 

The secular equation is an equation formed by 
equating to zero the determinant of the coefficients of a 
set of linear homogeneous equations which arise in 
the course of solving an eigenvalue equation using a 
linear combination of vectors or operators. A secular 
equation with all its nondiagonal matrix elements 
equal to zero is in its simplest form, the solution of 
which is obviously trivial. In the nontrivial case, the 
simplest form may be the one in which only the non· 
diagonal matrix elements of a particular column i and 
the corresponding row i are not necessarily all equal 
to zero. Since this special kind of equation is largely of 
academic interest, its solution is given as an example. 
In this paper, our main concern is the solution of an
other simple form of secular equation in which all 
matrix elements are always zero except Hii , Hi i+h' 

and Hi+k i, where i represents any state and h is a fixed 
integer. Although this kind of equation is simple, it has 
been found in various fields of physics, e.g., the 
Mathieu equation solved by the perturbation method, 
the hyperfine interaction expressed in the (F, m) 
representation, the I-dimensional coupled oscillation, 
etc. Therefore, a general solution of this kind of simple 
equation may be of interest and useful. It has been 
shown l that the eigenvalue for the lowest state of the 
Mathieu equation can be expressed in terms of a 
simple continued fraction by means of which the 
calculation is much simplified. Hence, a similar kind 
of solution could be obtained even for the general 
case. We must point out that the equation discussed 
here is one of the very special cases of the general 
secular equation studied in Ref. 1. Accordingly, all 
symbols and definitions used here should be referred to 
Ref. 1. 

II. SOLUTION 

We start with the eigenvalue expansion of a general 
secular equation. For any eigenvalue E;, we have 

Ei = Hi; - R;(Ei)' (1) 
where 

(2) 

with 

it = n~l .(ij ) _ (ijk) + (ijkl) - (ij)(kl) _ ... ) 
• fiP (j) (j)(k) (j)(k)(l) 

and 

_.. n-1 ( (jk) (jkl) ) 
M:: = ~P 1 - (j)(k) + (j)(k)(l) - . .. . 

Here, 

(j) == (j,j) == Hjj - Ei == Hij - Hii + R i • 

(i1' i2, ... , ir) == (i1' i2)(i2, i3) ... (ir' i1), 

(3) 

(4) 

i.e., the cyclic product of any r elements with (oc, f3) == 
HaP for oc:;E:. f3; and lp == a summation over all 

,pi 
possible nonequivalent cyclic permutations among all 
indices except i. We note that Ri represents a correction 
for the first-order perturbation. The amplitude of the 
corresponding eigenfunction is given by 

where 

.7ii(j) .7ii 
aii/aii = -lV1ii /lVli;, (5) 

l\1!!(j) =}:,2 ((j, i) _ (j, k)(k, i) 
.. "i.~ (j) (j)(k) 

(j, k)(k, l)(l, i) - (j, i)(k, 1)(1, k) ) 
+ (j)(k)(l) - ... 

(6) 

for j :;E:. i. For the secular equ~tion specified in Sec. I, 
its matrix element is expressed, in general, as 

(oc, f3) = Hap(bap + baP_h + 6"P+h) (7) 

for all oc and p, it follows that any cyclic product with 
more than two indices vanishes. Thus, Eqs. (3) and 
(4) become 

_ n-l (ij ) (ij)(kl) (ij)(kl)(ms) ) 
Ni = ~P (j) - (j)(k)(l) + (j)(k)(l)(m)(s) - ... 

(8) 
and 

at: = n~~ (1 - (j~~~) + (j~~~i~~~) -.. -). (9) 

2250 
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To simplify our discussion, we define 

Mn-r[i1 , i2, ... , ir] 

n-r ( (jk) (jk)(lm) ) (10) 
== ,J:r 1 - (j)(k) + (j)(k)(l)(m) - ... , 

a specific determinant of order n - r. A recursion 
relation can be obtained as follows: 

Mn-r[i1 , ••• , ir] 

= Mn-r-l[i1 , ••• , ir+1 ] 

- [(ir+lir+2)/(ir+l)(ir+2)]Mn-r-2[il, ... ,ir+2] (11) 

As for the amplitudes of the eigenfunction corre
sponding to E;, Eq. (6) is expanded in terms of M n-r . 
We have 

M~i(jl = (j, i) M [j. i] 
.. (j) n-2, 

_ (j, k1)(k1, i) M [. k i] 
(j)(k

1
) '11-3 j, 1, 

+ ... +(_1r(j,k1)···(kr ,i) 
(j)(k1) ••• (kr) 

x Mn- r- 2[j, k1 ,···, kr' i] + .... (17) 

For a given value of j, only one of the terms on the or 

(
12) right-hand side of Eq. (17) can survive under the con-

F(ir+l) = 1 - [(ir+1ir+2)/(ir+1)(ir+2)]/F(ir+2), ditions given by Eq. (7). Forj = i + th + h, 

where F(ir+1) == Mn-r/ M n-r-l. By successive applica
tion ofEq. (12), Fcan be transformed into a continued 
fraction of the matrix elements. There are a number of 
different ways in which Ni and Mii can be expanded in 
terms of M n-r or F(ir). The simplest and most direct 
way is as follows: 

N-. -_ (i i-h) M- [ .. _ h] 
• '11-2 I, 1 

(i - h) 

+ (i i + h) Mn_
2
[i, i + h] (13) 

(i + h) 

and 

(14) 

Therefore, from Eqs. (2) and (12), we obtain 

R. = (i i - h)/F(i _ h) + (i i + h)/F(i + h). 
• (i - h)' (i + h) • 

(15) 
Now 

F(i _ h) = 1 _ (i - h i - 2h)/(i - h)(i - 2h) 

, 1 _ (i - 2h i - 3h)/(i - 2h)(i - 3h) 

1-· 

(16a) 
and 

F (i + h) = 1 _ (i + h i + 2h)/(i + h)(i + 2h) 

• 1 _ (i + 2h i + 3h)/(i + 2h)(i + 3h) 

1-· 

(16b) 

It is interesting to note that the only matrix elements 
involved in the calculation are those having indices 
i ± th, where t = 0, 1, .... 

-ii(Hth+hl_(_l)t(i + th + h, i + th)··· (i + h, i) 
M·· -

.. (i + th + h) ... (i + h) 

X Mn_t[i + th + h, ... ,i], (18) 

which is valid for both ±h. Since the expansion of Eq. 
(5) is rather complicated, it is much simpler to expand, 
instead, the ratio of two amplitudes of neighboring 
states. From Eq. (5), 

= -rei + th + h, i + th)/(i + th + h)]/Fli + th + h). 

(19) 

Note that Fi(i + th + h) is part of Fi(i ± h). By using 
the normalization condition I~ laii l2 = 1, the nor
malized value of each aii is obtained. 

Alternatively, Eqs. (15) and (19) may be written as 

Ri = (i i - h)/Gi(i - h) + (i i + h)/G;(i + h) (20) 

and 

= -(i + th + h, i + th)/Gi(i + th + h), (21) 

respectively, where 

G.( i + h) = (i + h) _ (i + h i + 2h) 

• (i + 2h) _ (i + 2h i + 3h) 
(i + 3h) - . 

(22) 

The continued fraction solution is an interesting 
example of a perturbation process taking place through 
intermediate states. In this case, there is no matrix 
element connecting state i with any other states except 
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its neighboring states i ± h. The perturbation on state 
j from any nonneighboring state has to be relayed 
through all the states in between. We may say that the 
perturbation received by a given state depends not only 
on its neighbor but also on the perturbation that its 
neighbor has received. Therefore, Eq. (15) or Eq. (20) 
represents a perturbation such that the state i is 
affected directly or indirectly by two different groups 
of its neighbors, one group on one side and the other 
on another side. 

III. EXAMPLES 

A. Application to the Mathieu Equation 

To illustrate the application of Eqs. (15) and (19), 
we try to solve the Mathieu equation 

d2"P. 2 
d()2' + (bi - S cos ()"Pi = 0, "Pi(O) = "Pi21T) (23) 

by the perturbation method.2 When s cos2 () is taken 
as perturbation, the unperturbed eigenfunctions for 
the even case are 

Uo = (21T)-l and U; = (1T)-l cosj(), j = 1,2, ... , 

with the associated eigenvalues j2. The perturbed 

eigenfunction is given by 
00 

"Pi = 2,aiPi' 
i=O 

(24) 

All the matrix elements except the following are zero: 

Hii = i 2 + !S, H02 = H2o = 8-l s, 
and 

Hi i+2 = Hi+2 i = is, for all i =;6 O. (25) 

Now h = 2. The calculation of Ro with s = 4, using 
a continued fraction, has been given in Ref. 1. By 
using Eqs. (1) and (15), the eigenvalue b6 is given by 

and 
bs = 36 + 2s - R6 (26) 

R6 = [(64)/(4)]/Fs(4) = [(68)/(8)]/Fs(8), (27) 

with 

F8(4) = 1 _ (4 2)/(4)(2) ,Fs(8) = 1 _ (810)/(8)(10). 
1 -' 1 -' 

(28) 

For s = 30, the explicit form of R6 with an approxi
mation up to n = 12 (fourth-order approximation) is 

R~4) = _________ A.!...:/('--_2_0_+'---R~s)~ ______ _ 

1 - A/( -20 + Rs)( -32 + Rs)/[l - 2A/( -32 + Rs)( -36 + R6)] 

+ A/(28 + Rs) 
1 - A/( -28 + Rs)(64 + Rs)/[l - A/(64 + Rs)(108 + R6)] , 

(29) 

where A = 56.25. Now Rs can be solved by the itera
tion method. l For the lowest order of approximation 
of Rs, we may take F6(4) = F6(8) = l. Consequently, 
we have 

R~2) = A/( - 20 + Rs) + A/(28 + Rs). (30) 

Using (0)R6 = 0, we obtain (1)R~2) = -0.8036, which 
yields (1)b~2) = 51.8036. This value is the same as that 
obtained by the second-order approximation given by 
the Rayleigh-Schrodinger perturbation. For a better 
approximation, Eq. (29) is used. The values of (,,)R~4) 
corresponding to each successive iteration p are given 
in column (4) in Table I, which also includes the 
results obtained by three other methods. 

Two more points in Table I need explanation: 
(i) In principle, the final limit of the solution 

obtained by the iteration method does not depend on 
the initially chosen value. Therefore, to simplify and 
speed up the calculation, some other mathematical 
tricks may be employed. For example, after every two 
consecutive iterations, the next value may be estimated 

by extrapolation from these three numbers.2 Assuming 
that 

[(l)R - R.l/[(2)R - R.] = [(2)R - R.]J[(s)R - R.], 

(31) 

we get 

R. = (s)R - [(3)R - (2)R]2f{[(s)R - (2)R] 

- [(2)R - (l)R]). (32) 

Results computed by this iteration-extrapolation 
method are shown in column (5). Values calculated 
with use of Eq. (32) are indicated by ( ) •. 

(ii) By continuing the process of iteration indef
initely, we may have as many significant figures as 
we want for the limit of h6 • However, the accuracy of 
b6 calculated depends not only on the number of 
iterations performed but also on the order of approxi
mation used. Since F6(4) is exact, the inaccuracy is due 
to F6(8) only. The possible error of R~4) can be 
estimated by calculating how large a correction would 
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TABLE I. Eigenvalues E. of the Mathieu equation for s = 30 obtained by different methods. Broken lines indicate convergence. 

(1 )2.3 (2)2.3 (3)3 
Eq. (26) 

Method: Order of itera- (4) (5) 
tion or approximation Brillouin-Wigner Feenberg Sasakawa Simple iteration Iteration-extrapola-

b. b. b. tion 

0 51.00000 51.00000 51.00000 51.00000000 51.00000000 
1 48.27998 51.80358 51.75061 52.04142419 52.04142419 
2 53.28531 51.63557 51.75116 51.77609995 51.77609995 
3 51.67029 51.84222168 51.84222168 
4 51.66310 51.82565734 (51.82903074), 
5 51.66459 51.82980141 51.82895716 
6 51.66428 51.82876169 51.82897557 
7 51.66434 51.82902449 (51.82897189), 
8 51.66433 51.82895871 51.82897188 
9 51.82897518 - -- ----

10 51.82897106 
11 51.82897209 
12 51.82897183 
13 51.82897189 
14 51.82897188 

- ------
b~" = 51.82897188 

Possible error ±0.00000200 

Exact solution 51.82897" 

be if the next higher-order approximation were m- j = 1, ... , n :F- i, for all other states. It follows from 
eluded. We have Eqs. (1)-(6) that, for state i, 

n 

~R~4) ~ (56.25)4/[(28 + R6)2(64 + R6)2 E; = Hii - R i , Ri = I [(ij)/(j)] (33a) 

X (108 + R6)2(160 + R6)] and 
;*i 

~ + 1.86 X 10-6
• 

Therefore, we may write h6 = 5l.828972(2). 
To obtain the eigenfunction associated with h6 and 

"P6 (the Mathieu function), we use Eqs. (19) and (24). 
The results of a6; are shown in Table II with values of 
j up to 18. 

TABLE II. Amplitudes of the Mathieu function 1j!. for s = 30. 

j th + h a. 6+th+h/ a, 6+ th a'i/a" 
a,; 

(normalized) 

0 -6 0.2879961 0.0287272 0.0256918 
2 -4 0.2518950 0.0997485 0.0892089 
4 -2 0.3959924 0.3959924 0.3541512 
6 1.0000000 0.8943385 
8 2 -0.2854630 -0.2854630 -0.2553006 

10 4 -0.1197233 0.0341766 0.0305654 
12 6 -0.0702135 -0.0023997 -0.0021461 
14 8 -0.0471953 0.0001133 0.0001013 
16 10 -0.0342505 -0.0000038 -0.0000034 
18 12 -0.0261168 0.0000001 0.0000001 

B. Secular Equation with Hii , H jj , Hi;' and Hi, 
Nonzero Matrix Elements 

A solution is given for a secular equation with all 
its matrix elements equal to zero except H ii , H;; , Hi; , 
and H j ;, where i represents a particular state and 

aii/Pii = -(j, i)/(j); 

and, for all other states j, 

E;=Hjj-R;, 

and 

R; = [(ji)/(i)]/k~.P - (ik)/(i)(k)] 

a;i = _ [(i,.j)]/ i [1 - ~ik)], 
afi (I) Hi.; (/)(k) 

a;k = [(k, i)(i,j)]/ i [1 -~]. 
ajj (k)(i) Hi.; (i)(k) 

(33b) 

We note that the result of (33a) is simpler than that of 
(33b) because there is no direct perturbation between 
any two states of j. They are related to each other only 
indirectly through state i. 
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~ diffraction th~ory of side-b~nd. holography for transmission objects is formulated. Conditions are 
denved unde~ which goo~ qualIty I~ages are formed. A simple geometrical construction is found by 
means of which the location of the Images may be determined. It is also shown that under conditions 
that are ofte~ satis~ed in practi~e, one of the two images will b~ completely absent. This effect is entirely 
caused by diffractIOn (con~erslOn of ~ homog~neous w~ve Into evanescent waves on diffraction by 
the h~logram) and ha~ nothing to d? with t~e fim.te resolVing power or the finite thickness of the photo
graphiC plate. Numencal examples Illustrating this phenomenon are given. 

INTRODUCTION 

Since the publication of Gabor's pioneering papers 
on holography,1.2 numerous investigations dealing 
with many aspects of this subject have been carried out. 
These investigations lead to the elucidation of the 
basic principles of holography and to the development 
of many holographic schemes suitable for different 
applications. In spite of the great activity in this field, 
no completely satisfactory theory of some of the 
holographic schemes has been developed up to now. 
Much of the theoretical work is based on geometrical 
optics, sometimes utilizing useful but not quite com
plete analogies with the theory of communication 
systems. In those treatments where physical optics 
has been used, the numerous approximations, 
appropriate to the many different holographic 
schemes (e.g., Fresnel, Fraunhofer, Fourier transform) 
disguise the basic physical requirements and the 
limitations of this technique. 

In the present paper we formulate a diffraction 
theory of the holographic scheme due to Leith and 
Upatnieks,3 known often as side-band holography. 
Our treatment is based on the systematic use of the 
angular spectrum representation of wavefields.4 Our 
analysis shows that basic for a clear understanding of 
side-band holography are two new theorems on 
diffraction. One is the diffraction reciprocity theorem 
that we discussed recently in another paper.s This 
theorem relates two fields whose boundary values in 
some planes are complex conjugates of each other. 
The second theorem (Theorem 3 of the Appendix of 
the present paper) connects two fields whose bound-
ary values differ by a multiplicative space-periodic ex
ponential factor. With the help of these two theorems, 

conditions are derived under which good quality 
holographic images are formed. These conditions 
involve no restriction on the distances of the images 
from the hologram. A simple geometrical construc
tion is found by means of which the location of the 
images may be determined. 

We also show that, under conditions that are often 
satisfied in practice, one of the two images will be 
completely absent. This disappearance of one of the 
images is a pure diffraction effect, caused by the 
conversion of a homogeneous wave into evanescent 
waves on diffraction by the hologram. It has nothing 
to do with the finite resolving power of the photo
graphic plate or its finite thickness. We give some 
numerical examples that illustrate this interesting 
phenomenon. In particular, we find that, when the 
images are viewed visually, one of them will disappear 
if the reference and the reconstruction beams make 
angles greater than about 30° with the axis. 

In order to bring out the essential features of the 
holographic process, we ignore in the present paper 
several complications. More specifically, we do not 
consider the imperfect resolution arising from the 
finite size of the photographic plate, nor do we con
sider effects arising from its finite thickness. Also, we 
assume that the incident beam, the reference beam, 
and the reconstruction beam are all of the same wave
length, and we restrict ourselves to holography with 
transmission objects. 

1. BASIC EQUATIONS OF HOLOGRAPHY 
WITH TRANSMISSION OBJECTS 

Consider a monochromatic light wave 

cu,(x, y, z, t) = UCO) (x, y, z) exp (-iwt), (1.1) 

2254 



                                                                                                                                    

DIFFRACTION THEORY OF HOLOGRAPHY 2255 

incident upon a semitransparent object which covers 
a portion A of the plane z = Zo (see Fig. 1). The wave 
emerging from the object may be represented in the 
form (omitting the time periodic factor) 

U(x, y, zo) = U(O) (x, y, zo)T(O) (x, y), (1.2) 

where T(O) (x, y) is a transmission function that 
characterizes the effect of the object on the incident 
light. T(O) depends, of course, on the nature of the 
incident field U(O). We will rewrite Eq. (1.2) in a 
more compact notation as 

Uo(r) = U~O)(r)T(O)(r), (1.3) 

where r denotes the 2-dimensional vector (x, y) and 
the subscript zero indicates that the field point is 
situated in the plane z = zo. We wi]] employ a similar 
abbreviated notation when referring to field points in 
other planes perpendicular to the z axis. 

Suppose that the light emerging from the object 
is incident on a photographic plate that is situated in 
the plane z = Zl > zo, whereas the light that does not 
pass through the object is obstructed by a stop 
situated in the plane z = Zo' Then the field at a 
typical point rl(xl , Yt) in the plane containing the 
photographic plate is given by 

U1(r1) = L UO(rO)K10(rl - ro)d
2ro, (1.4) 

where K10(rl - ro) is the wave propagator that 
characterizes propagation from the plane z = Zo to 

SEMI- TRANSPARENT 
OB.JECT 

the plane Z = Zl (cf. Ref. 5). On substituting from 
(1.3) into (1.4) and on setting 

T(r) = T(O)(r), when rEA, 

=0, when r ¢:A, 
(1.5) 

we obtain the following expression for the field 
distribution in the plane of the photographic plate: 

U l(rl ) = r U~O)(ro)T(ro)KlO(rl - ro)d2ro, (1.6) 
1<00) 

where the integration extends formally over the whole 
plane6 Z = Zo' 

Suppose now that in addition to the wavefield U a 
second field u(r), the reference field, assumed also to 
be. monochromatic and of the same frequency, is 
incident on the plane containing the photographic 
plate. The total field U(t)(rl ) at a point r1 in this plane 
is then given by 

Ult )(rl ) = Ulrl ) + u~r)(rl)' (1.7) 

Hence, the intensity distribution in the plane of the 
photographic plate is given by 

Here 

J~t)(rl) = Ult)*(r1)Ult)(r1) (1.8) 

= 11(r1) + lir )(r1} + U1r)*(r1)U1(r1} 

+ Ulr)(r1)Ut(r1). (1.9) 

11(r1) = Ut(rl)U1(r j ), 

fir )(rl) = Ulr )*(rl)Uir )(r1) 

(1.10a) 

(1.10b) 

PHOTOGRAPHIC 
PLATE 

-----~----------4~~------~----------------------~~-------..z 

(INCIDENT WAVE) ~(rl 

(REFERENCE WAVE) 
FIG. I. Notation relating to the formation of a hologram. 
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are the intensity distributions in the plane Z = zlofthe 
wave that was transmitted by the object and of the 
reference wave, respectively. 

The photographic plate responds to the intensity 
distribution I?)(r1) of the total field. We will, for the 
present, somewhat idealize the photographic plate by 
assuming it to be a 2-dimensional storage medium. 
We also assume that, after the plate is processed, it 
will have an amplitude transmission function that is 
a linear function of the intensity I~t). We thus obtain 
a hologram whose amplitude transmission function 
is given by 

TH(r) = Co + cllit)(r), (1.11) 

where Co and C1 are real constants. Under usual 
circumstances, Co is positive and Cl is negative. On 
substituting from (1.9) into (1.11), we obtain the 
following expression for the transmission function of 
the hologram: 

TH(r) = T~)(r) + T~I)(r) + TglI) (r), (1.12) 
where 

T~)(r) = C1 uirl *(r) U1(r), (1.13a) 

Tgll(r) = C1 Ulr)(r)ut(r), (1.13b) 

T~III)(r) = Co + cIll
r )(r) + cIll(r). (1.13c) 

Suppose now that the processed hologram is placed 
in the plane Z = Zl and is illuminated by a mono
chromatic wave of the same frequency (see Fig. 2), 

'lJ(h)(X,y, z, t) = V(h)(X,y, z) exp (-iwt). (1.14) 

The space-dependent part of the distribution in the 
plane Z = Zl of the field emerging from the hologram 
is then given by 

VI(r) = V~h)(r)TH(r) (1.15) 

or, by using (1.l2) and (1.13), 

VI(r) = Vil)(r) + VpIl(r) + ViIII'(r), (1.16) 

Z=ZI 

(RECONSTRUCTION WAVE) 

HOLOGRAM 

FIG. 2. Notation relating to reconstruction. 

where 

Vlll(r) = C1 vlh)(r)Uir) *(r) U1(r) , (1.17a) 

ViIl)(r) = cIVih)(r)Uir)(r)vtCr), (1.17b) 

ViIII)(r) = Vih'(r)[co + cllir)(r) + cIII(r)]. (1.17c) 

Equation (1.16), together with (1.17a, b, c), (1.6), 
and (1.10a, b), are the basic equations of holography 
for transmission objects. They represent, under fairly 
general conditions, the boundary values in the plane 
Z = Zl of the wave emerging from the hologram. 

2. THE BOUNDARY VALUES OF 
SIDE-BAND HOLOGRAPHY 

We will now specialize the main equations that we 
just derived to the arrangement due to Leith and 
Upatnieks,3 sometimes called side-band holography, 
and we will derive some conditions under which the 
partial fields V(I) and VeIl) give reasonably faithful 
images of the original object. 

The reference wave ucr) and the reconstructing 
wave VChl are now plane waves, which we may repre
sent in the form7 

UCr) = Acr) exp {ik[prX + qrY + mr(z - Zl)]}, (2.1) 

VChl = BCh) exp {ik[PhX + qhY + mh(z - Zl)]}' (2.2) 

Here (Pr, qr' mr) and (Ph, qh, mh) are components 
of unit vectors Sr and Sh, respectively, in the direction 
of propagation of the two waves. 

On substituting from (2.1) and (2.2) into (1.17 a, b, c) 
and using (1.10b), we obtain the following expressions 
for the three contributions to VI(r): 

Vlll(r) = e(I)u1(r) exp (ika(I) • r), 

ViIIl(r) = eUIIut(r) exp (ikaClI). r), 

viIII\r) = B(h)[co + cIACr)*ACrl + clll(r)] 

(2.3a) 

(2.3b) 

x exp [ik(PhX + qhY)], (2.3c) 

where a Cl ) and am) are the 2-dimensional vectors 

am == Ph - P.. qh - q., 

am) == Ph + Pr' qh + qr' 

and ell) and e(II) are the constants 

(2.4a) 

(2.4b) 

eUl = c1ACr)*B(hl, em) = cIACr)BCh). (2.5) 

There are several cases of special interest, which 
for convenience we will refer to as arrangements 
A, B, and C. These are (see Fig. 3): 

Arrangement A: Reconstruction wave propagates 
in the same direction as the reference wave: Ph = Pr, 
qh = qr' mh = mr • Hence, according to Eqs. (2.4), 
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s~ 
-0 

PHOTOGRAPHIC 
.J PLATE 

ARRANGEMENT B (p =-p q =-q m = m ) 
hr' h r' h r 

s~ 
-0 

ARRANGEMENT C 

s .---. _0 

we have in this case 

PHOTOGRAPHIC 
.J PLATE 

(n=q=om=l) 
"h h • h 

PHOTOGRAPHIC 
.J PLATE 

am == 0, (2.6a) 

(2.6b) a(II) == 2pr> 2qr. 

Arrangement B: Reconstruction wave is propagated 
in the direction "conjugate" to that of the reference 
wave, in the sense that Ph = -Pr' qr = -qh, mh = 
mr • In this case, we have 

(
0

) == -2pr> -2qr> 

a(II) == 0. 

(2.7a) 

(2.7b) 

Arrangement C: Reconstruction wave is incident 
normally in the plate: Ph = qh = 0, mh = 1. We now 
have 

am == -Pro -qr' (2.8a) 

a<II) == Pro qr. (2.8b) 

It will be useful from now on to indicate explicitly 
the dependence of V(l) and V<II) on 0(1) and a<II) 

1 1 ' 
respectively, and we will therefore write V~I)(r; 0(1» 

in place of V~I)(r), etc. Equations (2.3) will now 

FIG. 3. Side-band holog
raphy. Three commonly em
ployed arrangements. 

2.h .~ ,LOGRAM 

--~r-

become 

V~I)(r; am) = emU1(r) exp (ikon). r), (2.9a) 

V~II)(r; 0( 1» = e(II)ui(r) exp (ika(Il). r). (2.9b) 

3. THE IMAGES WHEN a = 0 

We will first consider the simpler case, when the 
periodic exponential terms on the right-hand side of 
(2.9a) and (2.9b) are absent, i.e., when 0(1) and 0(11) 

vanish. As is seen from Eqs. (2.6a), (2.7b), and (2.9), 
this is so for Vll ) in the arrangement A and for V1II) in 
arrangement B. 

A. The Partial Field V(l)(r; 0) (The Virtual Image Field 
in the Arrangement A) 

We have, according to (2.9a), with 0(1) = 0, 

V~I)(r; 0) = emU1(r). (3.1) 

According to (3.1) and (1.4), Vil)(r; 0) is propor
tional to the distribution in the plane Z = Zl of the 
field emerging from the hologram that would have 
been created in that plane by the light emerging from 
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the original object in the absence of any reference 
wave.8 It follows that the partial field V(I)(X, y, z; 0), 
propagated into the half-space Z > Zl from the 
transilluminated hologram, appears to be propagated 
from a virtual image of the original object. This 
virtual image is situated in exactly the same position 
relative to the hologram, as was the original object 
relative to the photographic plate. 

In particular, if the wave incident on the object 
when the hologram was taken was a plane wave 
propagated in the direction specified by the unit 
vector9 so(Po, qo, rno), we have 

UiO)(r) = A (0) exp {ik[pox + qoY + rno(z - zo)]}, 

(3.2) 
and Eqs. (1.6) and (3.2) give 

Ul(r) = A(O) r T(ro) exp {ik[poxo + qoyoJ} 
)(00) 

X K lO(rl - ro)d~o. (3.3) 

Thus, Ul(r) now represents the field in the plane 
Z = Zl of the hologram due to the distribution 

in the object plane Z = Zo. Bearing in mind the 
significance of KlO as a propagator from the plane 
Z = Zo to the plane Z = Zl' we conclude from Eqs. 
(3.1), (3.3), and (2.5) that the reconstructed field 
distribution in the plane Z = Zo is proportional to the 
distribution which would have been obtained in that 
plane by directly transilluminating the object with the 
plane wave (3.2); i.e., 

V(I)(x, y, zo; 0) = D(I)T(x, y) exp [ik(pox + qoY)], 

(3.4) 
where 

B. The Partial Field V(lI)(r; 0) (The Real Pseudoscopic 
Image in the Arrangement B) 

We now have from (2.9b), with a(II) = 0, 

V~m(r; 0) = C(lI)Ui(r). (3.6) 

It is seen, on comparing (3.6) with (3.1) and on using 
(2.5), that 

B(h)*ViIIl(r; 0) = B(h)ViI)*(r; 0), (3.7) 

where we have made use of the fact that Cl is real. 
Let us now assume that Ul(r) is effectively band 

limited to a domain of spatial frequencies 

(3.8) 

i.e., that the Fourier transform 
00 

xexp[-i(ux+vy)]dxdy (3.9) 

effectively vanishes when u2 + v2 > k2 • We use the 
term "effectively" band limited, since Ul(r) cannot be 
strictly band limited because of our assumption (1.5). 
However, if the structural details of the object in the 
x and y directions are large compared with the wave
length, as we will now assume, the amplitude of the 
Fourier components 0l(U, v) for u2 + v2 > k2 will, 
in general, be negligible. 

Under these circumstances, it immediately follows 
from Eq. (3.7) and the diffraction reciprocity theorem 
that was recently established in Ref. 5 that, for all 
values of d, 

B(h)*V(II)(x, y, Zl + d; 0) = B(h)V(I)*(X,y,Zl - d; 0). 

(3.10) 

Thus, apart from a simple proportionality factor, 
the partial field V(II) is the complex conjugate of the 
mirror image of the partial field V(l) in the plane of 
the hologram. 

In particular, if the wave incident on the object, 
when the hologram was taken, was the plane wave 
(3.2), we immediately obtain, from (3.10) and (3.4) 
with d = Zl - Zo and from (3.5), 

V(II)(x, y, 2Zl - zo; 0) 

= DOI)T*(x, y) exp [- ik(pox + qoY)], (3.11) 

where 
(3.12) 

Equation (3.11) shows that, apart from a simple 
phase factor, the reconstructed partial field distribu
tion V(II)(X,y, z; 0) in the plane Z = Zl + d = 
2Zl - Zo is proportional to ~he complex conjugate of 
the distribution that would have been obtained in the 
plane Z = Zo by directly transiIIuminating the object 
with the plane wave (3.2). This reconstructed field 
gives rise to a real pseudoscopic image of the original 
object and is located in the region that is obtained by 
reflecting the original object in the plane of the 
hologram. 

In this section, we have considered the reconstructed 
images under conditions when either a(l) or a(II) were 
zero, i.e., when either Ph = Pro qh = qro or when 
Ph = -Pro qh = -qr (see Fig. 3). We will now con
sider the more complicated situation when a(l) or 
a(II) are different from zero. 
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4. THE IMAGES WHEN a ¢ 0 

It follows from Eqs. (2.9) that V~I)(r; a) and 
ViII)(r; a) may be expressed in the form 

Vi'd(r; a) = Vi")(r; 0) exp (ika. r), IX = I, II. 

(4.1) 

For the sake of simplicity, we have now suppressed 
the superscripts (I) and (II) on a, it being understood 
that a stands for a(I) in ViI) and for a(II) in ViII). 

In Sec. 3 we have studied the images arising from 
the two field distributions V:(r; 0), IX = I, II (the 
cases a = 0) in the plane Z = Zl' The effects of the 
additional multiplicative factor exp (ika • r) is studied 
in Appendix A. It is shown there that, in general, it 
leads to a complicated modification of the field, 
which can most readily be appreciated from the 
following considerations based on results derived in 
the Appendix. 

Let us represent the field V(")(x, y, z; 0), IX = I, II, 
which arises from the distribution Vi") (x, y; 0) in the 
plane Z = Zl' in the form of an angular spectrum of 
plane waves10- 12: 

V(")(x, y, z; 0) 
00 

= II A(")(p, q) exp {ik[px + qy + m(z - Zl)]} dp dq, 
-00 

(4.2) 
where 

m = (1 - p2 - q2i, if p2 + q2 :=:; 1, (4.3a) 

= i(p2 + q2 _ 1)*, if p2 + q2 > 1. (4.3b) 

As is well known (see, for example, Sec. 3 of Ref. 5), 
each plane wave in the representation (4.2) carries 
infonnation about one and only one spatial frequency 
component (Fourier component) of the distribution 
V~"') (x, y; 0), namely, the component 

u = kp, v = kq. (4.4) 

We may restrict ourselves to spatial frequencies 
about which the information is carried by homoge
neous waves (p2 + q2 :=:; I) only, i.e., about spatial 
frequencies such that 

(4.5) 

for the evanescent waves (p2 + q2 > 1), which carry 
information about spatial frequencies for which 
u2 + v2 > k2

, are very rapidly attenuated and donot, 
in general, contribute to the image. 

Next consider the field V(")(x, y, z; a), which 
arises from the distribution Vi") (x, y; a) exp (ika • r) 
in the plane Z = Zl' According to Eq. (A9) of the 

Appendix, V(")(x, y, z; a) may be represented in the 
form 

00 

V(,,)(X, y, z; a) =ff A(")(p, q) exp {ik[(p + O'",)x 

where 

-00 

+ (q + O'II)y + m'(z - Zl)]} dp dq, 

(4.6) 

m' = [1 - (p + 0'",)2 - (q + 0'1/)2]t, 

if (p + 0'",)2 + (q + 0'11)2 :=:; 1, (4.7a) 

= i[(p + 0'",)2 + (q + 0'11)2 - 1]t, 

if (p + 0'",)2 + (q + 0'11)2 > 1, (4.7b) 

and A(a)(p, q) in (4.6) and (4.2) are (for each IX) the 
same functions of p and q. 

We see from (4.6) that information about the 
spatial frequency component (u, v) of Via)(r; 0) is now 
carried by a wave specified by the (possibly complex) 
unit propagation vector with components p + 0'"" 

q + 0'1/' m'. It is obvious that the superposition of all 
these waves, as indicated by (4.6), will give rise to a 
field which, in general, will be very different from the 
field (4.2). In fact, information about spatial frequency 
components of Vi")(r; 0), for which 

(u + kO'",)2 + (v + kO'II)2 > k2, (4.8) 

will be now carried by evanescent waves and so will 
effectively be lost, except at field points in the immediate 
vicinity of the plane Z = Zl' 

However, under certain conditions of practical 
importance, derived in the Appendix and summarized 
by Theorem 3 of that Appendix, the effect of the 
additional term exp (ika • r) turns out to be relatively 
simple. Accordingly, we assume that: 

(i) 0 < O'! + 0': < 1; (4.9) 

(ii) The transmission function T(x, y) of the object 
is effectively band limited to the spatial frequency 
domain (u, v) such that13 

lui «kit, Ivl« kit, (4.10) 

(u + ka",)2 + (v + kO'II)2 :=:; k2, (4.11) 
where 

(4.12) 

More explicitly, the conditions (ii) imply that the 
Fourier transform 

00 

feu, v) = ~ fIT(X, y) 
(277) 

-00 

x exp [-i(ux + vy)] dx dy (4.13) 
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v 

--+-----~r-~~~~_+------~~u 

FIG. 4. Illustrating the inequalities (4.10) and (4.11). The trans
mission function T(x, y) is band limited to the interior of the circle D 
centered at the origin. D' denotes the circle of the same radius but 
displaced by amounts kax and ka. in the negative x and y directions, 
respectively. 

of the transmission function T(x, y) of the object 
effectively vanishes except when (u, v) satisfy the 
inequalities (4.10) and (4.11). The significance of the 
inequalities is illustrated in Fig. 4. 

It is evident from (3.4), (3.11), and the properties 
of wave fields (ef. Ref. 5, Sec. 3), that Via)(x,y; 0) 
is band limited to the same spatial frequenoy domain 
as is T(x,y). It then follows at once from Eq. (4.1) 
and from Theorem 3 of Appendix A, (bearing in 
mind that in the Appendix Z is measured from the 
plane at which the boundary values are specified) 
that, for all values of ~, 

v(a)(x, y, ZI + ~; a) 

= v(a)(x - (f1JJ~/ft, Y - (fy~/ft, ZI - ~/ft; 0) 

X exp [ikll>(x, y)], (4.14) 
with 

We will now consider separately the two cases 
<X = I and <X = II. 

A. The Case IX = I (Virtual Images in 
Arrangements B and C) 

In Eq. (4.14) let us choose 

{= -ftd, 
where 

(4.16) 

(4.17) 

is the distance between the object and the photo
graphic plate. Then, if we also use Eq. (3.4), we 

find at once from Eqs. (4.14) and (4.15) that 

v(I)(x, y, Zv; a(I) = D(I)T(x + (f;I)d, y + (f~I)d) 
x exp [ikrp(I)(x, y)], (4.18) 

where 

rp(I)(x, y) = (Po + (f~I)x + (qo + (f~I)y 

and 
+ «(f~I)2 + (f~I)2)d, (4.19) 

(4.20) 

Equations (4.18)-(4.20) show that the complex 
disturbance V(I)(X,y, zv; a) in the piane z = zv, i.e., 
in the plane at distance ftd = (1 - (f! - (f;)(Zl - zo) 
in front of the hologram is very closely related to the 
light distribution in the plane Z = Zo of the transil
luminated object. More precisely, Eq. (4.18) shows 
that in the plane Z = Zv there is a virtual image of the 
original object, displaced with respect to the object 
by amounts (f~I)d and (f~I)d in the x and the y direc
tions, respectively. Apart from a simple geometrical 
phase factor, the complex amplitude distribution at 
corresponding points of the object and of the image 
planes are proportional to each other. Figures 5 
illustrate the displacement of the virtual image 

(0 ) 01 

PI 

Z, Z 
p.d 
d 

6ANEOF PLANE OF PLANE OF 
OBJECT VIRTUAL HOLOGRAM IMAGE 

Pv 

(b) 
Po ~ 

Z 
Zo Zv IJ.d' Z, 

d' 
f':d 
d '\ 

PLANE OF 
HOLOGRAM 

FIG. 5. Construction relating to the location of the virtual image 
[Eqs. (4.18) and (4.20)). The object PoQo is parallel to the plane of the 
hologram [Fig. 5(a)] , the objectP oQ~ is perpendicular to it [Fig. 5(b)]. 
PvQv and PvQ~ are the corresponding virtual images, reconstruc
ted from the hologram. 
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relative to the original object as implied by Eqs. 
(4.18) and (4.20). 

In Fig. Sea), Po and Qo are two object points in the 
plane Z = zo, and Py and Qy are the corresponding 
virtual image points. The location of Py and Qy may 
be obtained from the following construction: Let 
PI and QI be the feet of the perpendiculars dropped 
from Po and Q 0 onto the plane Z = Zl of the hologram. 
Then Py and Qy are the points in which the two 
lines through PI and QI, with direction cosines a;l) , 
a;I>, and fl' intersect spheres of radii d = Zl - Zo 

centered on PI and QI' respectively. 
In Fig. S(b), Po and Q~ are two object points in 

planes Z = Zo and Z = z~, respectively, on a common 
perpendicular to the plane of the hologram, and Py and 
Qv are the corresponding virtual image points. The 
location of the image points Py and Qv may be 
obtained by the following construction: Let PI by 
the point in which the perpendicular PoQ~ intersects 
the plane Z = Zl of the hologram. Then PyQv are the 
two points in which the line through PI' with direction 
cosines a~I), a~l), and fl, intersects the two spheres 
centered on PI' of radii d = Zl - Zo and d' = Zl - z~, 
respectively. 

The line PyQy in Fig. Sea) is obviously parallel to 
the line PoQo. On the other hand, the line PyQv in 
Fig. S(b) is not parallel to PoQ~, so that in the image 
depth information about the object is distorted. This 
is also evident by considering the lateral and the 
longitudinal magnifications of this imaging process. 
If (xo, Yo, zo) are the coordinates of a typical object 
point and (Xy, yy, Zy) are the coordinates of the 
corresponding (virtual) image points, Eqs. (4.18), 
(4.20), and (4.17) imply that 

Hence 

Xy = Xo + a~I)(zl - zo), 

yy = Yo + a~I)(zl - zo), 

Zy = Zl - fl(ZI - zo)· 

(4.21) 

dxy = dyv = 1, dzy = fl == (1 _ a~I)2 _ a~I)2)!. 
dxo dyo dz o . 

(4.22) 
Equation (4.22) shows that the lateral magnification 
is unity, whereas the longitudinal magnification is 
{t == (1 - O~l)2 - a~I)2)! ¢ 1. 

We have seen earlier that 0(1) is nonzero for 
arrangements Band C, being given by Eqs. (2.7a) 
and (2.8a), respectively. The location of the virtual 
images in these two arrangements is indicated in Fig. 
7. Since fl = [1 - 4(p~ + q;)]! in arrangement B 
and fl = [1 - (p; + q;)]! in arrangement C, it is 
evident that for the same direction of propagation 
(Pr, qr, mr) of the reference wave, the band-limitation 

requirement (4.10) is more severe for the virtual image 
in the arrangement B than it is in the arrangement c. 

B. The Case IX = II (Real Images in 
Arrangements A and C) 

Let us choose in (4.14) 

, = fld, (4.23) 

where d, again given by (4.17), is the distance between 
the object and the photographic plate. If we also use 
Eq. (3.11), we find at once from (4.14) that 

V(II)(x, y, ZR; 0) = DOI)T*(x - a~lI)d, y - a~Il)d) 

x exp [ikrp(II)(x, y)], (4.24) 
where 

rp(II)(x, y) = (- Po + a~II)x + (-qo + a~II)y 
_ (a~II)2 + a~lI)2)d (4.25) 

and 

ZR = Zl + fld. (4.26) 

Equations (4.24)-(4.26) show that in the plane 
Z = ZR, i.e., that in the plane at the distance fld = 
(1 - a; - a;)!(zl - zo) behind the hologram one 
obtains a real pseudoscopic image of the original 
object, displaced with respect to the object by amounts 
a~lI)d and a~lI)d in the x and y directions, respectively. 
Apart from a proportionality factor and a simple 
geometrical phase factor, the complex amplitudes at 
corresponding points of the object and the image are 
complex conjugates of each other. 

Figures 6 illustrate the displacement of the real 
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Po -------~ 
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FIG. 6. Construction relating to the location of the real image 
[Eqs. (4.24)-(4.26»). The object PoQo is parallel to the plane of the 
hologram [Fig. 6(a)] , theobjectPoQ~ is perpendicular to it [Fig. 6(b»). 
PRQR and PR Q~ are the corresponding real images, reconstructed 
from the hologram. 
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FIG. 7. Location of the 
virtual and real images in 
the arrangements A, B, and 
C, illustrated in Fig. 3. 

f.!A = f.!B 
= [I - 4(p: + qmi , 

f.!c = [1 - (p~ + q~)lt. 

E. WOLF AND J. R. SHEWELL 

,..-- --
ARRANGEMENT A ~ '" 

I 
~ REAL IMAGE 

~~ 1\ (TIl 

I tt.~~,y I 
~~"jI' I \ 

b 
~/ I 

VIRTUAL / 1 

I ~~f d dR' f1-A d --l 

CoLOGRAM 

ARRANGEMENT B ---/ 
VIRTUAW'~ 

IMAGE I''-.c 
(I) ,<,,~ 

I I "' ~ 
I v.~ 
I '-<&) 
I " 

~ 

'" \ 
REAL IMAGE 

__ ~-L ______ ~~ ________ -* (li) 
~= IL d.eof.+o-- d 

V'S 

HOLOGRAM 

ARRANGEMENT C / - -- "'-

;/ '\ 

VIRTUAL f: -P, -q .~ IJ.c REAL IMAGE 
I MAGE - -'~r. ~c 1>(' ~!!¥-
(I): ----__ --- CD:'> 

~dV =}J.Cd dR=JLCd 

14--'-- d --~ 

COLOGRAM 

image relative to the mirror image of the object in the 
plane of the hologram, as implied by Eqs. (4.24) and 
(4.26). The symbols have strictly analogous meaning 
to those in Figs. 5. Corresponding points (XR, YR, zn) 
in the real image and in the original object (x 0 ,Yo, Z 0) 

are now related by the equations 

the longitudinal magnification is -p, = -(1 -
O'~Il' - O'~Il)')!, so that the depth information is again 
distorted. 

a(lI) is nonzero in arrangements A and C and is 
given by Eqs. (2.6b) and (2.8b). The location of the 
real pseudoscopic images in these two arrangements 
is also indicated in Fig. 7. Since the value of p, in the 
arrangement A is smaller than in the arrangement C, 
it follows that for the same direction of propagation 
of the reference wave, the band-limitation require
ment (4.10) is more severe for the real image in the 
arrangement A than in the arrangement C. 

(IIl( ) 
X R = Xo + a", Z1 - Zo , 

YR = Yo + a~lI)(zl - zo), 

ZR = Zl + /.tCZl - zo)· 

It follows from these equations that 

dXR = dYR = 1, 
dxo dyo 

dZR = _p, == -(1 _ a~IJ)' _ O'~II)!. 
dz o 

Thus the lateral magnification is again unity, 

(4.27) 

(4.28) 

while 

5. ELIMINATION OF ONE OF THE ROTATED 
IMAGES BY DIFFRACTION 

In the main part of the preceding section, we have 
restricted our analysis to situations where certain 
simplifying conditions [expressed by the inequalities 
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FIG. 8. Illustrating the conditions for partial [Fig. 8(a)] and total [Fig. 8(b)] disappearance of one of the images by diffraction. The 
transmission function T(x. y) is band limited to the interior of the circle D. D' denotes a circle of the same radius displaced by 
amounts ka. and kay in the negative x and .Y directions, respectively. Those spatial frequency components represented by points in 
D, for which the corresponding representative points in D' lie outside the circle uS + VS = k S, will give rise to evanescent waves and will 
not appear in the rotated image. 

(4.9)-(4.11)] were satisfied. The conditions ensure that 
the "rotated" images (images for which (J ~ 0) are 
of good quality. However, it is evident from the 
discussion given at the beginning of Sec. 4, that, in 
general, the reconstructed rotated images may be 
very different from the object. This is partly so 
because some of the spatial frequency components of 
the object may not appear in the rotated image. These 
are the components about which information is 
carried by evanescent waves, i.e., components of spatial 
frequencies (u, v) for which 

(u + ka",)2 + (v + ka,)2 > k 2
• (5.1) 

The situation is illustrated graphically in Fig. 8, 
where D represents the spatial frequency domain to 
which the transmission function T(x, y) of the object 
is effectively band limited. D' is the same domain, 
but displaced by amounts -ka"" -kay in the x and y 
directions, respectively. Those spatial frequencies 
(u, v) of the domain D, which are such that their 
corresponding representative points in the displaced 
domain D' lie outside the circle u2 + v2 = k 2 , will not 
appear in the rotated image. 

Now according to (2.4a), 

a~)1 + a!/X)2 = (Ph T Pr)2 + (qh T qr)2, 

where the negative signs on the right apply when 
IX = I (virtual image) and the positive signs apply 

when Q( = II (real image). We recall that the quan
tities (Ph, qh) and (Pr, qr) are the x and y compo
nents, respectively, of the unit vectors in the direction 
of propagation of the reconstruction wave inci
dent on the hologram and of the reference wave, 
respectively. Since in the arrangements A and B the 
quantity (Ph 1= Pr)2 + (qh 1= qr)2 may easily exceed 
unity, k2a; + k2a; may easily exceed k 2 and, hence, 
the circle D' may lie entirely outside the circle 
u2 + v2 == k 2 [see Fig. 8(b)]. Under these circum
stances the "rotated" image will completely disappear. 
We stress that this disappearance is entirely due to 
diffraction and not due to the finite limit of resolution 
or the finite thickness of the photographic plate.14 

Suppose, in particular, that the transmission func
tion T(x, y) of the object is effectively band limited 
to a small domain throughout which 

To first approximation, we may then neglect u and v 
in the inequality (5.1) and obtain the foIlowing order 
of magnitude relation for the condition under which 
the rotated image will disappear: 

a! + a; ;;.. 1. (5.3) 

In particular, we have for the real image in the 
arrangement A and the virtual image in the arrange
ment B .10'",1 = 2p .. layl = 2q .. so that if T(x,y) is 
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band limited to a domain throughout which 

lui «2kpr, Ivl« 2kqr, 

these images will disappear if 

4(p~ + q~) ;;:, 1. 

(5.4) 

(5.5) 

It is more convenient to express (5.5) as a condition 
on the angle Or, which the reference wave makes with 
the normal to the photographic plate. Since cos Or = 
mr = (1 - p; - q;)!, Eq. (5.5) is equivalent to the 
condition cos ° >( .J3/2, i.e., 

(5.6) 

Thus, we conclude that if the band limitation con
dition (5.4) is satisfied, the real image in the arrange
ment A and the virtual image in the arrangement B 
will disappear when the angle that the direction of 
propagation of the reference wave makes with the 
normal to the photographic plate exceeds about 30°. 

The two conditions (5.4) imply that u2 + v2 « 
4k2(p; + q;), i.e., that 

or, with Or obeying the inequality (5.6), 

u2 + v2« k2. 

(5.7) 

(5.8) 

Thus, roughly speaking, (5.4) imply that the trans
mission function of the object contains effectively 
only spatial periodicities ~x = 27T/U, ~y = 27T/vwhich 
are large compared with the wavelength of the light. 

When the holographic images are viewed visually, 
the eye will act as a low-pass spatial filter, with a 
cutoff at periodicities of the order of a dozen or so 
lines per millimeter, i.e., at spatial frequencies of the 
order of 102 cm-I • Since k is of the order of 105 cm-I, 
the inequality (5.8) is then satisfied and we conclude 
that for visual observations the real image in the 
arrangement A and the virtual image in the arrange
ment B disappear when Or ;;:, 30°. 

It is of interest to note that the critical condition 
(5.3) with the equality sign (a; + a; = 1) implies 
according to (4.12) that ft = 0, i,e" that the direc
tions PIPv and PIPR in Figs. 5 and 6 are perpendicular 
to the z axis. Thus, the critical condition implies that 
the image has been rotated into the plane of the 
hologram. 

As another simple example, in which, however, the 
conditions (5.4) are not necessarily satisfied, con
sider a I-dimensional amplitude grating, with (ampli
tude) transmission function 

T(x) = cos UoX, (5.9) 

where Uo is a (real) constant. Let the directions of 
propagation of the reference wave and of the recon
struction wave lie in the (x, z) plane, so that 

qh = qr = O. (5.10) 

Since cos uox = Hexp iuox + exp (-iuox)], the spec
trum of T(x) consists of two sharp lines of spatial 
frequencies 

U=Uo, v=o and U=-Uo, v=O. (5.11) 

Let us now find the condition that the virtual 
image of the grating in the arrangement B should 
disappear. Now according to Eqs. (2.7a) and (5.10), 
we have for the virtual image in arrangement B, 

aU) = - 2p a(II) - 0 
Ql l" 1/ - , (5.12) 

so that the required condition, obtained from (5.1), 
(5.11), and (5.12) is 

(±uo - 2kpr)2 > k2• (5.13) 

Let us take Pr > 0 and assume that k> IUol > 0, 
so that (5.13) implies that 

Pr > HI + JUol/k), (5.14) 
or, in terms of the spatial periodicity ~x = 2TT/uo of 
the grating and the wavelength A = 27T/k, 

Pr> HI + A/~X]. (5.15) 

Again, using the relation 

m = cos ° = (1 _ p2 _ q2)! r - r r r 

and the fact that according to (5.10) we now have' 
qr = 0, the condition (5.15) for the disappearance of 
the virtual image of the grating in the arrangement B 
is seen to be equivalent to the condition 

(5.16) 

The critical angle Or such that cos Or is equal to the 
right-hand side of (5.16), for gratings of different 
periodicities is given in Table I. It may readily be 

TABLE I. The critical angle Or = cos-1 {[l - 1(1 + uo/k)'ll} for 
the disappearance of the virtual image in the arrangement B 
or of the real image in arrangement A, when the object is a 
I-dimensional amplitude grating with transmission function 

T(x) == cos UoX. 

uolk !:t.X/A Or 

10-3 103 300 01'56H 

10-' 10' 30°19'52" 
10-1 10 33°21'56H 

0.25 4 38°40'57" 
0.50 2 48°35'25H 

0.70 1.43 58°12'43° 
0.80 1,25 64°10'30" 
0,90 1.11 71 °i2'42H 
0.99 1.01 84°16'06" 
1 1 90° 
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verified that the condition (5.15) is also the condition 
for the disappearance of the real image in the arrange
ment A. 
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APPENDIX: FIELDS WHOSE BOUNDARY 
VALUES DIFFER BY A MULTIPLICATIVE 

SPACE-PERIODIC FACTOR 

Consider two fields U(1)(x, y, z) and U(2)(X, y, z), 

each of which satisfies the Helmholtz equation 

(V2 + k2)U(i)(X, y, z) = 0, j = 1,2, (AI) 

in the half-space z > 0 and the Sommerfeld radiation 
condition at infinity in this half-space. Suppose that 
in the plane z = 0 the two fields satisfy the boundary 
conditions 

U(l)(X, y, 0) = F(x, y), 

U(2)(X, y, 0) = F(x, y) exp [ik(a",x + ayY)], (A2) 

where a", and ay are real constants. Since according to 
(A2) , the boundary values of the two fields on the 
plane z = 0 are related, the two fields in the half-space 
z > 0 are also related. In this Appendix, we will study 
the relationship between the two fields. 

Let us represent each field in the form of an angular 
spectrum of plane wave10- 12 : 

UW(x, y, z) 

= II A(j)(p, q) exp [ik(px + qy + mz)] dp dq, 
-CL) 

j = 1,2, (A3) 
where 

m = (1 -l- q2)!, when l + q2 ~ 1, (A4a) 

= i(p2 + q2 _ l)t, when p2 + q2 > 1. (A4b) 

Then, setting z = 0 in (A3) and taking the Fourier 
inverse, we obtain the following expression for the 
complex spectral amplitudes A(i)(p, q) in terms of 
the boundary values of the two fields: 

CL) 

AW(p, q) = (2:)2JJ UW(x, y, 0) 

-00 

X exp [-ik(px + qy)] dx dy. (AS) 

If we substitute from (A2) into (AS), we obtain the 

two formulas 

x exp [-ik(px + qy)] dx dy, (A6) 

00 

A(2)(p, q) = C~rII F(x, y) 
-00 

x exp {-ik[(p - a",)x + (q - ay)y]) dx dy. (A7) 

Comparison of (A6) with (A 7) shows that 

A(2)(p, q) = A(1)(p - ax, q - ay), (A8) 

a result which is nothing but the shift theorem on 
Fourier transforms. In the present context this result 
implies the following: 

Theorem 1,' Two fields U(l) and U(2), whose bound
ary values in the plane z = 0 differ only by the multi
plicative periodic factor exp [ik(a.,x + ayY)], as shown 
explicitly by (AI) and (A2), have angular spectrum 
representations such that the complex spectral ampli
tudes are related by Eq. (A8). 

The theorem that we have just established has a 
number of interesting consequences. We have from 
(A3) and (A8) 

U(2\X, y, z) = II A(l)(p - ax, q - ay) 

-00 

x exp [ik(px + qy + mz)] dp dq 

= II A(1)(p, q) exp {ik[(p + ax)x 
-00 

+ (q + ay)y + m'z]) dp dq, (A9) 
where 

m' = [1 - (p + a",)2 - (q + 9'y)2]!, 

if (p + a",)2 + (q + ay)2 ~ 1, (AI0a) 

= i[(p + ax )2 + (q + ay )2 _ l]t, 

if (p + a",)2 + (q + ay)2 > 1. (A lOb) 

Comparison of (A9) with (A3) for j = 1 shows that 
the effect of multiplying the boundary value F(x, y) 
in the plane z = 0 by the term exp [ik(axx + ayy)] is 
equivalent to transforming each plane wave 

A(l)(p, q) exp [ik(px + qy + mz)] (All) 

in the angular spectrum of U(1) into the plane wave 

A(l)(p, q) exp {ik[(p + a",)x + (q + ay)Y + m'z]), 

(AI2) 
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and the field U(2) is just the superposition of the waves 
(AI2) for all values of p and q (- 00 < p < 00, 

- 00 < q < (0). If (AlOa) applies, the wave (AI2) 
is a homogeneous wave and if (AlOb) applies, it is an 
evanescent wave. s It is evident that each wave (All) 
in the angular spectrum representation of UU), 

whether the wave is homogeneous or evanescent, 
may be transformed into either a homogeneous wave 
or an evanescent wave, depending on the exact values 
of p, q, a"" and a1/' More precisely we have 

Theorem 2: The effect of multiplying the boundary
value function F(x, y) of a field distribution in the 
plane z = 0 by exp [ik(a",x + ayY)], where a", and a1/ 
are real constants, is equivalent to transforming each 
plane wave (All) in the angular spectrum representa
tion of the field into the plane wave (AI2). A homoge
neous wave (p2 + q2 S I) will be transformed into 
a homogeneous or an evanescent wave according as 
(p + a",)2 + (q + a1/)2 5 1. An evanescent wave 
(p2 + q2 > 1) will be transformed into an evanescent 
or a homogeneous wave according as (p + a",)2 + 
(q + aj,)2 ~ 1. 

The two theorems that we just established hold 
generally. We are now going to consider their implica
tions when the boundary function F(x, y) is band 
limited to a sufficiently small domain and when 
certain constraints are also imposed on a", and a y • 

Suppose first that the boundary function F(x, y) = 
U(l)(x, y, 0) is band limited to a domain of the (u, v) 
plane, throughout which the following two conditions 
are satisfied: 

u2 + v2 S k2
, (A13) 

(u + ka",)2 + (v + kay )2 S k2. (A14) 

This means that if we represent F(x, y) as a Fourier 
integral, 

00 

F(x, y) = II F(u, v) exp [i(ux + vy)] du dv, (A15) 

-00 

F(u, v) will vanish outside the circles specified by 
(A13) and (AI4). 

From the Fourier inverse relation 
co 

F(u, v) = ~ ffF(X, y) exp [-i(ux + vy)] dx dy 
(27T) 

-co 

(A16) 
and from (A6), it follows that 

F(u, v) = (1/k2)A(1)(u/k, vlk). (A17) 

Hence, the band-limitation conditions (A 13) and 
(A14) on F(x,y) imply that A(1)(p, q) is band limited 

to a domain on the (p, q) plane, throughout which 

p2 + q2 S 1, (AI8) 

(p + a",)2 + (q + a1/)2 S 1. (AI9) 

According to (AI8), (AI9), (A4), and (AIO), we now 
have for all waves in the angular spectrum repre
sentations of U(l) and U(2) 

m = (1 - p2 _ q2)!-, (A20) 

m' = [1 - (p + a",)2 - (q + ay )2]!-, (A2l) 

i.e., the two angular spectra now consist of homoge
neous waves only. 

We rewrite (A21) in the form 

m' = [,u2 - (p2 + q2) - 2(pa", + qay )]!-, (A22) 

where 

,u = +(1 - a~ - a;)!-. (A23) 

We will now also assume that 

o < a: + a; < 1, 
so that 

O<,u<l 

(A24a) 

(A24b) 

and that throughout the domain to which F(x, y) is 
band limited, 

lui «k,u, Ivl« k,u. (A25) 

The inequality (A13) is then automatically satisfied. 
In view of (AI7), (A25) implies that throughout the 
domain to which AU)(p, q) is band limited, 

Ipl «,u, Iql«,u· (A26) 

The assumptions expressed by (A13), (AI4), (A24) , 
and (A25) are illustrated in Fig. 4. 

We now expand the right-hand side of (A22) in a 
power series and retain only the leading terms in 
powers of pl,u and ql,u. This gives 

m' ""',u - [(pa", + qa,J/,u] - (p2 + q2)J2,u. (A27) 

In view of (A26) and (A24) , we also have Ipl « 1, 
Iql « 1, so that we may expand the right-hand side of 
(A20) into a power series and retain only the leading 
terms in powers of p2 and q2. Hence, 

m ""' I - Hp2 + q2). (A2B) 

It follows from (A27) and (A28) that to a good 
approximation 

m' ""',u - [(pa", + qa,J/,u] + (m - l)J,u 

= [(,u2 - 1)/,u] + (mJ,u) - (pa", + qa,J/,u 

= -[(a; + a;)/,u] + (m/,u) - (pa", + qay)/,u 

= -[a.,(a", + p) + ay(a1l + q) + m]!,u, (A29) 

where we have made use of Eq. (A23). 



                                                                                                                                    

DIFFRACTION THEORY OF HOLOGRAPHY 2267 

We now substitute from (A29) into (A9) and 
obtain, on using also the expression (A3) for U(1), 
the following relation between the two fields U(1) and 
U(2), valid in the half-space z > 0: 

U(2)(X,y, z),-..; U(1)(x - a.,zlp.,y - aI/zip., zip.) 

X exp [ik<l>(x, y, z)] (A30) 
with 

q>(x, y, z) = a",(x - a.,z/p.) + al/(Y - al/zlp.). (A31) 

Further, as we already saw, in view of our assump
tions (A13) and (AI4), the angular spectrum repre
sentations of U(1) and U(2) contain homogeneous 
waves only. Hence, according to a theorem established 
recently by Sherman,15 both U(1) and U(2) may be 
continued into and throughout the half-space z < 0 
and, moreover, the formula (A3) is a valid repre
sentation for the continuations. Hence, the formulas 
(A30) and (A3) are also valid when z < O. We have 
thus the following: 

Theorem 3: Let U(l)(x, y, z) and U(2)(X, y, z) be two 
fields that obey the Helmholtz equation 

(V'2 + k2)U(i)(X,y, z) = 0, j = 1,2, (A32) 

in the half-space z > 0 and the Sommerfeld radiation 
condition at infinity in this half-space. Further 
assume that in the plane z = 0, U(1) and U(2) satisfy 
the boundary conditions 

U(1)(x, y, 0) = F(x, y), (A33) 

U(2)(X, y, 0) = F(x, y) exp [ik(a",x + allY)]' (A34) 

where a", and all are real constants such that 

o < a! + a~ < 1. (A35) 

If F(x, y) is band limited to a spatial frequency 
domain (u, v) throughout which 

lui «kp., Ivl« kp., 

(u + ka",)2 + (v + kal/)2 ~ k2, 

(A36) 

(A37) 

where p. = (1 - a; - a!)!, then in the half-space 

z ~ 0, the fields U(1) and U(2) are related by the 
formula 

U(2)(X, y, z) ,-..; U(1)(x - a",zlp., y - a!lzlp., zip.) 

X exp [ik<l>(x, y, z)], (A38) 
with 

Moreover, the two fields U(1) and U(2) may be con
tinued into the whole half-space z < 0 and this 
relation also remains valid throughout this half-space. 

• Preliminary results of this investigation were reported at the 
Fall meeting of the Optical Society of America, held in Pittsburgh, 
Pa., in October 1968. [Abstract WC 11, 1. Opt. Soc. Am. 58,1550 
(1968).) 

1 D. Gabor, Proc. Roy. Soc. (London) A197, 454 (1949). 
2 D. Gabor, Proc. Phys. Soc. (London) B64, 449 (1951). 
3 E. N. Leith and 1. Upatnieks, 1. Opt. Soc. Am. 53,1377 (1963). 
• The use of the angular spectrum representation in the analysis 

of the holographic process is, of course, not new. It was employed 
already in the first papers on this subject by Gabor (see Refs. 1, 2) 
and more recently, for example, by G. C. Sherman [1. Opt. Soc. 
Am. 57, 1160 (1967)) and R. Mittra and R. L. Ransom in Modern 
Optics, 1. Fox, Ed. (Polytechnic Press, Brooklyn, 1967; Wiley, New 
York, distr.), p. 619. 

The paper by Mittra and Ransom came to our attention after 
the present work was completed. Some of the results derived in the 
Appendix of the present paper are very closely related to those 
given in Sec. 5.2 of that reference. 

s 1. R. Shewell and E. Wolf, 1. Opt. Soc. Am. 58, 1596 (1968). 
• Throughout this paper the infinite symbol in brackets under an 

integral sign implies that the integration extends over a complete 
(infinite) plane. 

7 We assume here that the cross sections of the two beams U1rl 

and Vlhl are large enough to allow us to neglect the spreading of the 
beams between the plane of the object and the plane of the hologram. 

S We neglect here the effects arising from the finite size of the 
hologram. 

9 Usually the wave U IOI will be incident in the direction normal 
to the photographic plate, so that Po = qo = O. However for some 
purposes [e.g., in order to study the 3-dimensional structure of the 
object; cf. E. Wolf, Optics Comm. 1, 153 (1969)) it is necessary to 
understand the effects that arise when the object is also illuminated 
at other directions and for this reason we allow So to be an arbitrary 
unit vector. 

10 C. 1. Bouwkamp, Rept. Progr. Phys. 17,41 (1954). 
11 E. Wolf, Proc. Phys. Soc. (London) 74, 269 (1959), especially 

Appendix on p. 280. 
12 E. Lalor, 1. Opt. Soc. Am. 58, 1235 (1968). 
13 The rather restrictive assumption (4.10) is made in order to 

make it possible to apply Theorem 3 of our Appendix. 
.. That the disappearance ofthe.image is purely due to diffraction 

was suggested previously, on qualitative grounds, by Mittra and 
Ransom in Sec. 7.1 of their paper quoted in Footnote 4. 

15 G. C. Sherman (a) Phys. Rev. Letters 21, 761, 1220 (1968); 
(b) 1. Opt. Soc. Am. 59, 697 (1969). 
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A study is given of the c1ass-su~-operator approach to the ~epresentatio~ th~ory of finite gro.ups, 
the group DSh being specifically studied. The class sum approach IS shown to SimplIfy the decompositIOn 
of Kronecker products. By using the c1ass-sum-operator approach, it is shown that the "indirect" gro.up
projection operators of L6wdin can be used in finite group theory, where they lead to usef~1 factonza
tions of the finite group-projection operators. It is also shown that tensor operators of certam symmetry 
types can be constructed within the group itself, and may be used analogously to the usual operator 
equivalents of crystal field theory. 

INTRODUCTION 

In much of the traditional literature on quantum 
mechanics, there is a sharp dichotomy between 
those treatments which employ the Dirac viewpoint, 
emphasizing the commutation rules of operators, and 
those which emphasize the mathematical techniques 
of group representation theory. A partial link between 
the two approaches is provided by defining the group 
of an operator H (usually the Hamiltonian) as the 
set of operators which commute with H. It is possible, 
however, to combine the two approaches to a greater 
degree, by recasting traditional group representation 
theory itself from the Dirac viewpoint. This has the 
pedagogical advantage that it makes the group
theoretical apparatus assimilable by physicists who are 
acquainted with the standard operator approach in 
quantum mechanics, but who wish to learn the 
minimum number of new concepts. (This does not, 
of course, imply that a knowledge of group theory is 
not needed in setting up the formalism.) The operator 
approach also has some definite practical advantages, 
as this paper will illustrate. 

Several of the basic ideas and mathematical results 
employed in this paper are to be found scattered 
throughout the literature.1- 3 The present paper sets 
out the main principles of the operator approach to 
group representation theory, and also applies this 
approach to a study of projection operators. Section 
lA sets out some necessary results from the theory of 
group algebras, and suggests an alternative way of 
presenting the traditional group character tables. 
Section 1B deals with the analysis of the Kronecker 
products of irreducible representations. In order to 
render the paper more readable, much of the argu
ment proceeds by using as an illustrative example the 
particular group D ah , which is familiar to physicists 
working in crystal field theory. 

1. CLASS-SUM OPERATORS AND KRONECKER 
PRODUCT DECOMPOSITION 

A. The Class-Sum Operators 

The class-sum operators of a finite group 
defined as 

1 
CK = - IRk, 

hKkEK 

G are 

(Ll) 

where the sum runs over all group elements Rk belong
ing to the class K, which contains hK group elements. 
In abstract group theory, CK is an element of the 
group algebra, but in physical applications CK is a 
sum of transformation operators. We adopt this 
operator interpretation throughout the discussion. 
From the group property and the definition of a 
class, there follow several mathematical conse
quences,L2 of which the most important for this 
discussion is the following: Each class-sum operator 
commutes with every operator in the group, so that 
the class sums constitute a commuting set of operators. 

From this result and from Schur's lemma, it follows 
that each of the basis functions belonging to a given 
rep v of G will be an eigenfunction of a class-sum 
operator CK with some definite eigenvalue A(v>(K). 
(The abbreviation rep for a unitary irreducible rep
resentation follows Melvin.4 •5) Thus, each rep of G 
will be characterized by a set of simultaneous eigen
values of the CK ; the cK are essentially the commuting 
operators of the Dirac viewpoint, and the eigenvalues 
are the associated quantum numbers. The numerical 
values of the A,(V)(K) may be found from the standard 
character table by writing the diagonal sums as 

X1v)(K) = n(vlA,(vl(K), (1.2) 

where n(V) is the dimension of the rep v. As an 
example, we show in Table I the eigenvalues for Da,.. 
The numbers in brackets in the table serve to distin
guish between different members of the degenerate 

2268 
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TABLE I. w = eii". 

Modified character table for Dah 

(1) (2) (3) (4) (5) (6) 
E ah 2Ca 2Sa 3C~ 3a. 

A, 1 1 1 1 1 
A. 1 1 1 -1 -1 
B, -1 1 -1 1 -1 
B. -1 1 -1 -1 1 

I(~ -!(:. _!{w I 1 oL~ E1 w' 0\_1 

E. -1 {-I -1 -!{:. !{=:. o{_~ oL~ 

representations, and have been chosen by what is 
essentially a method of descent in symmetry.6 They 
are the possible eigenvalues, within the irreducible 
space, of the single-named operator in the class name 
at the head of the column. The fact that C3 and (jv do 
not commute does not affect the value of listing 
together all the possible eigenvalues, as the next 
section shows. If the £1 and £2 functions are chosen 
so that C3 becomes diagonal, the functions will be 
classified in terms of magnetic quantum number 
modulo 6. The eigenvalues of Ca in the table for 
Dah are clearly related to the crystal field quantum 
numbers", of Hellwege7•8 by the equation 

(1.3) 

If (j" or C~ are made diagonal, the basis functions 
can be made real, and this yields the same convention 
as that adopted by Griffith3 for zero magnetic field. 
In this context, we refer to "Ca quantization" and 
"(j" quantization" of the £1 and £2 functions. 

By the nature of the group character table used to 
construct Table I, it follows that no two rows of 
eigenvalues are identical. Thus, the Dirac criterion 
that each basis function should have a unique label 
is obeyed, as far as group symmetry labels are con
cerned. The orthogonality property of functions from 
different reps is now reduced to the orthogonality 
property of functions associated with different eigen
values of a unitary operator. 

B. The Decomposition of Kronecker Products 

In the traditional procedure for the decomposition 
of the Kronecker product of two reps, the product 
of two characters is expressed as a linear combina
tion of irreducible characters, either by inspection of 
the character table or by using the formula 

(1.4) 

to find the number of times which each rep occurs 

in the product. Use of this formula may involve finding 
several Cv to be zero before hitting on the required 
nonzero ones. In the class-sum-operator approach, 
the relevant result here is that which arises from the 
logical way in which the group operators act on 
product functions. This gives 

R(hfJ = A1A2(hh), (1.5) 

when /1 and /2 are eigenfunctions of R with eigenvalues 
AI, A2 , respectively. This result holds for single group 
operators, but not in general for class sum operators. 
To illustrate the operator approach, we decompose 
the triple product £2 X £2 X £2 for Dah . The resulting 
product functions, eight in number, all have eigen
value (-1)3 for (j h and thus must belong to B1 , B2 , 

or £2. The eigenvalue of Ca in the triple product is 
(w, W 2)3 = I, I, W, w2 , W, w2, W, w2• The last six of 
these numbers clearly belong to 3£2' while the first 
two may belong to Bl or B2 • The eigenvalues of (jv 

give the result {l, -1)a = 1, -1, 1, -1, 1, -1,1, -1, 
and show that both Bl and B2 occur; the decomposi
tion is, accordingly, 

£2 X £2 X £2 = 3£2 + Bl + B2 • 

The procedure outlined above may often be shorter 
than the standard procedure. (Note that the method 
does not depend on whether Ca and (J" commute, 
since we may choose Ca or (J" quantization arbitrarily 
at any step of the argument.) When allied with Eq. 
(1.4), this procedure quickly sorts out the nonzero Cv • 

2. PROJECTION AND TENSOR OPERATORS 
FOR FINITE GROUPS 

Lowdin has introduced projection operators for 
the 3-dimensional rotation group. These operators 
take the form9 

O(N) _ IT C
2 

- L(L + 1) 
- L N(N + 1) - L(L + 1)' (2.1) 

where C2 is the squared angular-momentum operator 
and L runs over all the eigenvalues of C2, which are 
known to be represented in the subspace on which 
O(N) acts. Such an operator appears to contrast 
sharply with the projection operators of finite group 
theory; the latter proceed directly by projecting out 
the component of the desired symmetry, while the 
operator O(N) takes the more cumbersome indirect 
route of eliminating one by one the symmetry types 
which are not desired. This paper is intended to point 
out that, for a finite group, there is essentially no differ
ence between the direct and indirect approaches; their 
equivalence may be established by using the class
sum-operator approach, which is summarized in 
the preceding section. Section 2A sets out the required 
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mathematical results and discusses the equivalence 
result, indicating some simplifications which can be 
introduced into the finite group projection operator 
theory by means of the class-sum approach. Section 
2B discusses briefly the formation of tensor operators 
within the group algebra. In order to render the 
material accessible to physicists, the "proofs" are 
mainly heuristic and proceed by using the particular 
group Dah as an example. 

A. Projection Operators and the Group Algebra 

As pointed out in the preceding section, the class
sum operators for a finite group form a commuting 
set. In this section, we need the further results: 

(a) The product of two class-sum operators may 
be written as a linear combination of class-sum 
operators 

(b) For a group in which the inverse of every 
element belongs to the same class as the element 
itself, the coefficients cJKN are symmetric under 
interchange of any two indices and obey the sum rule 

~CJKN = 1. 
N 

The criterion of (b) is obeyed by the groups Oh and 
Ttl and by the groups D .. , Dnv, and Dnh for any n.1t 
clearly cannot be obeyed by groups which are Abelian 
and possess an element of order three or more, e.g., 
Ca and Cah . The slight modification of the symmetry 
properties of the CJKN for these cases involves 
inverse classes. 2 The essential point is that such 
symmetry properties greatly simplify the construction 
of the class multiplication table. The result that 
CKCN does not contain C J , if CJCK does not contain 
C N' is analogous to the well-known property of the 
Kronecker product of group reps, and is another 
example of the close duality between the properties of 
classes and reps which has been studied in detail by 
Gamba.1o The class multiplication table for Dah is 
summarized by giving the symmetry properties (b) 
and the following nonzero coefficients (the class 
numbering is the same as in Table I of Sec. 1); 

CINN = h-;/, for all N, 
C256 = Ca55 = C366 = C456 = t, 

C2a4 = t, Caaa = Ca44 = 1· 
The traditional projection operators of finite group 

theory are the primitive idempotents of the group 
algebra.2 They are those linear combinations of the 
CJ which transform the class multiplication table 
into the unit matrix. To investigate the projection 
operators, we use the group Dah as an illustrative 

example; the modified character table is given in the 
Sec. I. The C6 class-sum operator has the eigenvalue 
-I for the A2 and Bl reps. With the indirect 
approach, the operator C6 + I removes any Az or 
Bl components from the operand. In a similar 
manner, C2 + 1 removes any Bl , Bz , or E2 component, 
and C6 removes any El or E2 component. Application 
of the operator 

C6(C2 + 1)(C6 + 1) 

= C1 + C2 + 2Ca + 2C4 + 3C5 + 3C6 (2.3) 

thus ensures that only the Al components of the 
operand survive. The right-hand side of (2.3) is 
obtained from the class multiplication table and is 
seen to be the usual Al projection operator. The 
Lowdin indirect approach for the finite group case is 
accordingly seen to be equivalent to the usual 
approach, provided the class sum eigenvalues are used 
to label the reps. The essential mathematical reason 
for this is the fact that, within the group algebra of 
the finite group, it is possible to reduce any polynomial 
in the C J to a linear sum of the C J. The corresponding 
process within the continuous rotation group is not 
possible, and so the indirect approach cannot be 
simply converted into an equivalent direct approach. 
The procedure outlined above actually provides a 
useful factorization of the projection operators, and 
is an alternative to the factorization procedure of 
Melvin,4 which systematically employs the concept of 
kernel subgroups and quotient sets. By using the 
modified character table of a group, it is possible to 
vary tactics and choose the simplest projection opera
tor for a given situation. For example, the set of 
eight functions arising from the product El X El X El 
for Dah contains only B1 , B2 , and El type components. 
The following alternative operators can then be used 
to extract these components: 

B1 : C6(C6 - 1), C5(C5 + 1), C6(C5 + I), etc., 

Bz: C6(C6 + 1), C5(C5 ..:. 1), C6(C5 - 1), etc., 

E1 : (C6 - 1)(C6 + 1), (C5 + 1)(C5 - 1), etc. 

Having obtained the El functions, we can further 
separate the two types of component by using, for 
example, 0'" quantization. The operators O'v - I 
and O''D + 1 would then give the two members of the 
El family, 0'" being one chosen vertical reflection-plane 
operator. The operators Ca, Sa, or C~ could equally 
well be used in this subclassification process, or even 
to simplify the complete process. Thus, if we know 
that only B1 , Bz, and El functions occur in the oper
and, we may use the operator 0'" - I to leave only 
B1 and E1 ( -1) type functions; the operator 0' h + 1 
then removes the B1 part to leave an E1( -I) type 
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function. The operator involved would then take the 
form 

(ah + l)(av - 1) = C~ + ay - ah - 1, (2.4) 

where the particular C~ axis involved lies in the av 

plane used to classify the El states. This approach 
requires only individual group operators and not class 
sums, and, except for the choice of quantization, the 
representation matrices are not used at any stage of 
the proceedings. In many cases, it is not necessary to 
use all the operators of the group in the projection 
process. In general, the more information that is given 
about the components of a subspace, the simpler are 
the projection operators. For example, a d electron 
in a Dah crystal field gives one singly degenerate level 
and two doubly degenerate levels. The modified 
character table shows that the singly degenerate 
function may be obtained simply by using Cs as the 
projection operator. The traditional projection opera
tor for this case would involve a sum over all group 
operators, and would yield many terms which cancel 
out in the final result. When the L5wdin operators 
O(N) are used in atomic theory, the set of allowed L 
values in the operand is known, but could, in principle, 
take any of the values 0, t, I, etc. For a finite group, 
only a finite number of reps can occur, and so the 
projection process must terminate even when no 
information is given about the operand. 

B. Tensor Operators for a Finite Group 

From the definition of a class follows the result 
(c) For any group operators U and Rj , 

URP-l = Rk , (2.5) 

where Rk is in the class of R j , but in general depends 
on U. 

I.f matrices are set up to describe the way in 
whIch the elements of a given class are permuted 
amongst themselves by the equivalence transforma
tions of Eq. (2.5), the resulting representation may be 
reduced to yield linear combinations of the R j which 
transform amongst themselves according to a rep 
of the group. They may accordingly be termed tensor 
operators of the group. Such operators were investi
gated by Gamba,lO who determined the number of 
tensor operators furnished by each class of a group. 
Clearly, every class provides one Al tensor operator, 
namely the class sum itself. This set of Al operators 
are ~asic to the discussion of this and the preceding 
sectIOns. The classes of Dah provide the following 
operator types: 

Al from classes 1,2,3,4,5,6, 

A2 from classes 3, 4, 

El from classes 5, 6. 

B1 , B2, and E2 type operators cannot be constructed 
from. the group operators themselves, although such 
phYSIcal operators do exist, e.g., the coordinate 
operator z is of B2 type. The set of reps A A E . 1, 2, 1 

IS closed, in the sense that no Kronecker product of 
any two of them will yield anything other than 
AI' A2, or El reps. The "excluded" set B1 , B2, E2 
does. not have this property. Thus the rep types of the 
pOSSIble tensor operators in the group algebra form 
a c~ose~ family with respect to addition and multipli
catIOn In an analogous "rep algebra." 

The tensor operators commute with the class sum 
operators and thus cannot have matrix elements 
between functions belonging to different reps. In 
this. respect, they are analogous to the operator 
eqUIvalents of crystal field theory, 11 which formally 
belong to reps other than D(O) , but which are 
diagonal in J, since they are actually polynomials in 
the operators J"" J1I , and J •. (For the rotation group, 
of course, J"" J1/' and J. belong to the Lie algebra of 
the group generators.) From an analysis of Kronecker 
products, it is readily seen that an A z type operator 
has nonzero matrix elements within an E or E 

. ld 1 Z mamfo . The modified Dah character table shows 
t~at if the El and E2 states are labeled in Ca quantiza
tIon, then an A2 operator will be diagonal within El or 
E2 • If av quantization is used, the A2 operator is off
diagonal within El or E2. The class of Ca provides 
the Al operator Ca + C; and the A2 operator 
Ca - q; using Cs quantization, we have 

(ElwJ Ca - ci JElW) = -(Elw
2J Ca - C; JElW2) = i. 

The relative value of these matrix elements is, of 
co~rse, exactly that which results from the generalized 
WIgner-Eckart theorem on using the coupling 
coe~cients of Griffith.a The procedure may also be 
applIed to El type operators if care is taken to choose 
a standard quantization for both operators and wave
fu?ctions. For example, with Ca quantization a 
SUItable E1 operator pair are C(I) + WC(2) + w 2c(a) 

2 2 2 
and qll + wZQ2) + wqa), where the bracketed 
superscript labels the three dihedral axes. 

SUMMARY 

It has been pointed out that the class-sum-operator 
approach to gro~p representation theory suggests 
the use of a modIfied form of the usual finite group 
character tables. The modified table includes all the 
traditional data, plus extra information which aids 
in the simplification of some calculations and which 
renders many of the group theoretical results under
standable in terms of the usual operator language of 
quantum mechanics. 
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The class-sum approach has been used to demon
strate the equivalence of the direct and indirect 
methods of constructing projection operators for a 
finite group. By using the properties of the group 
algebra, it has been shown how a flexible method of 
factorizing projection operators may be achieved 
and also how certain tensor operators, which are 
the analogs of the operator equivalents of rotation 
group theory, may be constructed within the 
group. 
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A set of vector functions analogous to the 3-dimensional vector spherical harmonics is defined in four 
di,?ensions. These f~n~tions are employed to separate the Bethe-Salpeter CBS) equation for a spin-l + 
spm-O system at vamshmg total.4-momentum K, wher~ 0(3) symmetry degenerates into 0(4) symmetry. 
The an.gular parts of the. matrIX elements o~ all pOSSible t~nso~ operators, symmetry conserving and 
otherWIse, are reduced. Fmally, the BS equatIOn at small K IS brIefly discussed. 

1. INTRODUCTION 

Much work has been done in the investigation of the 
0(4) properties of scattering amplitudes since it was 
first learned that these amplitudes exhibit 0(4) sym
metry at vanishing total 4-momentum K of the inter
acting particles.1- 3 Besides possessing this type of 
symmetry, the Bethe-Salpeter (BS) model4 is espe
cially interesting because it exhibits several other nice 
properties. Hence, many attempts have been made to 
study the 0(4) properties of scattering amplitudes in 
the context of the BS model, and several methods 
have been proposed for the expansion of these ampli
tudes at K = 0 where 0(4) symmetry exactly holds 
and near K = 0 where it is slightly violated.5,6 

In this work we are motivated by the 4-dimensional 
vector character of the BS wavefunctions for a spin-
1 + spin-O system to introduce a set of 4-dimensional 
vector spherical harmonics (VSH) analogous to the 
well-known 3-dimensional VSH.7 Our method is, of 
course, good not only for the BS equation but also for 
any other integral or differential equations satisfied by 
4-dimensional vector functions and invariant under 
0(4) symmetry. We start by summarizing some of the 
results obtained by Biedenharn8 for the 4-dimensional 
rotation group R(4), which are necessary for defining 
the VSH. Having defined these functions by analogy 

with 0(3) VSH, we examine their behavior under 
reflection in order to define new functions which are 
eigenstates of reflection. The inclusion of reflection is 
necessary for obtaining functions that belong to 0(4) 
representations since the symmetry group of the 
equation we are dealing with is 0(4) rather than R(4). 

In Sec. 3, we show how to reduce the actions of 
various tensors on vector and scalar spherical har
monics and how to derive several useful formulas that 
relate these two types of functions. Then, in Sec. 4, 
we introduce the BS equation and use the results ofthe 
previous sections to separate this equation and discuss 
its solutions in the region where 0(4) symmetry is 
valid. Finally, in Sec. 5, we attack the BS equation in 
the region where 0(4) symmetry is slightly violated 
and put the equation in a form vulnerable to nonde
generate perturbation theory. Then we indicate how to 
obtain the slopes of Regge trajectories and the resi
dues of Regge poles from the results of perturbation 
theory. 

2. DEFINITION OF 0(4) VECTOR SPHERICAL 
HARMONICS 

It is well known that the 4-dimensional rotation 
group R(4) is locally isomorphic to R(3) x R(3) and 
thus homomorphic to SU(2) x SU(2). Therefore, we 
may find'the representations of the group R(4) by 
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The class-sum approach has been used to demon
strate the equivalence of the direct and indirect 
methods of constructing projection operators for a 
finite group. By using the properties of the group 
algebra, it has been shown how a flexible method of 
factorizing projection operators may be achieved 
and also how certain tensor operators, which are 
the analogs of the operator equivalents of rotation 
group theory, may be constructed within the 
group. 
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A set of vector functions analogous to the 3-dimensional vector spherical harmonics is defined in four 
di,?ensions. These f~n~tions are employed to separate the Bethe-Salpeter CBS) equation for a spin-l + 
spm-O system at vamshmg total.4-momentum K, wher~ 0(3) symmetry degenerates into 0(4) symmetry. 
The an.gular parts of the. matrIX elements o~ all pOSSible t~nso~ operators, symmetry conserving and 
otherWIse, are reduced. Fmally, the BS equatIOn at small K IS brIefly discussed. 

1. INTRODUCTION 

Much work has been done in the investigation of the 
0(4) properties of scattering amplitudes since it was 
first learned that these amplitudes exhibit 0(4) sym
metry at vanishing total 4-momentum K of the inter
acting particles.1- 3 Besides possessing this type of 
symmetry, the Bethe-Salpeter (BS) model4 is espe
cially interesting because it exhibits several other nice 
properties. Hence, many attempts have been made to 
study the 0(4) properties of scattering amplitudes in 
the context of the BS model, and several methods 
have been proposed for the expansion of these ampli
tudes at K = 0 where 0(4) symmetry exactly holds 
and near K = 0 where it is slightly violated.5,6 

In this work we are motivated by the 4-dimensional 
vector character of the BS wavefunctions for a spin-
1 + spin-O system to introduce a set of 4-dimensional 
vector spherical harmonics (VSH) analogous to the 
well-known 3-dimensional VSH.7 Our method is, of 
course, good not only for the BS equation but also for 
any other integral or differential equations satisfied by 
4-dimensional vector functions and invariant under 
0(4) symmetry. We start by summarizing some of the 
results obtained by Biedenharn8 for the 4-dimensional 
rotation group R(4), which are necessary for defining 
the VSH. Having defined these functions by analogy 

with 0(3) VSH, we examine their behavior under 
reflection in order to define new functions which are 
eigenstates of reflection. The inclusion of reflection is 
necessary for obtaining functions that belong to 0(4) 
representations since the symmetry group of the 
equation we are dealing with is 0(4) rather than R(4). 

In Sec. 3, we show how to reduce the actions of 
various tensors on vector and scalar spherical har
monics and how to derive several useful formulas that 
relate these two types of functions. Then, in Sec. 4, 
we introduce the BS equation and use the results ofthe 
previous sections to separate this equation and discuss 
its solutions in the region where 0(4) symmetry is 
valid. Finally, in Sec. 5, we attack the BS equation in 
the region where 0(4) symmetry is slightly violated 
and put the equation in a form vulnerable to nonde
generate perturbation theory. Then we indicate how to 
obtain the slopes of Regge trajectories and the resi
dues of Regge poles from the results of perturbation 
theory. 

2. DEFINITION OF 0(4) VECTOR SPHERICAL 
HARMONICS 

It is well known that the 4-dimensional rotation 
group R(4) is locally isomorphic to R(3) x R(3) and 
thus homomorphic to SU(2) x SU(2). Therefore, we 
may find'the representations of the group R(4) by 
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merely carrying over the already well-known results 
for the representations of SU(2). However, we are 
interested in representations diagonal in the group 
0(3) since our objective is to investigate Regge tra
jectories and residues of Regge poles where we have to 
deal explicitly with the total 0(3) angular momentum. 

Let A and j2 be the two independent SU(2) angular 
momenta. The states diagonal in the 0(3) angular 
momentum are Ijd2, 1m) == Ipq, 1m), where I and m 
stand for the total 0(3) angular momentum and its 
azimuthal component. In the future, we will label 
these states with the invariants p == j1 + j2 and q == 
j1 - j2' which are related to the eigenvalues of the 
two Casimir operators of the group R(4). The states 
belonging to a given 0(3) subspace transform under a 
4-dimensional rotation R in the following way: 

R Ipq, 1m) = L Df:::.~~m,(R) Ipq, I'm'). (2.1) 
l'm' 

The rotation matrices satisfy the following group 
property: 

D[P.q] (R) '" D['P.q] (RS-1)D[P.Q] (S) 
lm,l'm' = £., lm.f'm" l"m",l'm" 

Z"m" 

The well-known 4-dimensional spherical harmonics 
Z':I(CP, e, X) are defined in terms of the rotation 
matrices as a special case with m' = l' = 0. In this 
case the D's vanish unless j1 = j2, i.e., p = n, a non
negative integer, and q = 0. The Z':z (normalized to 
unity) are expressed in terms of the D's as follows: 

Z::;( cP, e, X) = [en + 1)/7TJ2]Df;:;.~r (cp, e, X). (2.2) 

The Kronecker product R(4)· R(4) is reduced ana
logously to R(3) . R(3): 

= L (P1q1 l1m1, P2q212m21 P1q1P2q2, PQLM) 

X D~M~L M'(P1Q1P2q2' I.:M' I p1Q1l;m~, p2Q21~m~). 
(2.3) 

The reduction coefficients, however, are more in
volved in this case: 

(P1Q1 l1m1, P2Q212m21 P1Q1P2Q2' PQLM) 

= (11m1, 12m2 I 1112 , LM) 

X (P1Qlll, P2Q212 ' L I PIQlP2Q2, PQL) 

= (llm1, 12m2 I 1112 , LM) 

X [(211 + 1)(212 + l)(P + Q + l)(P - Q + I)]! 

{

t{Pl + q1) Hp1 - q1) II} 

x Hp2 + q2) Hp2 - q2) 12 . (2.4) 

t{P + Q) t{P - Q) L 

We may also write (2.4) in terms of the six SU(2) 
angular momenta 

j1 = Hp1 + ql), j{ = t{Pl - ql), 

j2 = t(P2 + q2), j~ = Hp2 - q2), (2.5) 

j = HP + Q), j' = t{P - Q) 

in the following form: 

(p1q1 l1m1, P2Q212m21 PIQ1P2Q2' PQLM) 

= «(jdDl1ml, (j2j~)I2m21 (jlj2)j(jU~)j', LM) 

= (llml, 12m211112LM) 

X «(jlj{)11(j2j~)I2' L I (jlj2)j(j{j~)j', L) 

= (11m1, 12m2 I 1112 , LM) 
X [(211 + 1)(2/2 + 1)(2j + 1)(2j' + I)]! 

{

jl j~ II} 
X j2 j~ 12 . 

j j' L 

(2.6) 

The curly brackets designate the so-called Wigner 91 
symbol which characterizes the addition of four angu
lar momenta. 7 

The reduction formula for the product of two 
spherical harmonics follows immediately from Eqs. 
(2.3) and (2.2): 

zml Zm2 = (n1 + 1)(n2 + 1) '" CNnIn2 ZM 
nIl! n212 7T-J2 £., N + 1 NL 

where 

X (n10n20, NOLM I n10I1m1, n20I2m2), 

(2.7) 

CNnInz == (n1000, n2000 I n10n20, NOOO). (2.8) 

Let us now use the material developed so far to de
fine a set offunctions-that separate the BS equation for 
a system of two particles whose spins are one and zero. 
These functions are found by reducing the product of 
the 0(4) orbital representation (tn, in) with the 0(4) 
spin representation (t, i). The 0(3) orbital and spin 
angular momenta of these representations take the 
values 1 = 0, I, ... , nand s = 0, I, respectively. We 
should remark here that, in addition to the part that 
describes a system with total spin equal to one (the part 
we are interested in), a part that describes a system 
with total spin equal to zero is also contained in the 
BS equation we are attempting to investigate. To 
eliminate the latter part, certain subsidiary conditions 
must be imposed. These conditions, however, lead to a 
more complicated equation. 

The orbital representation (tn, in) is given by the 
Z~ . For the spin representation (t, t) we use certain 
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combinations of the coordinate vectors el , ••• , e4 : 

<-

eOO = e 4 , el-l = (el - ie2)IJ2, 

en = -eel + ie2)IJ2, (2.9) 

(i'/l = es~' eS/leS'/l' = (Jss,(J/l/l" sf.l = 00,1 -1, 10, 11. 

The arrows indicate to which direction the vectors act. 
Reversing the direction of the arrow is the same as the 
operation of Hermitian conjugation. The arrows will 
often be dropped when they are not necessary. It is 
easy to see that, in the momentum space, the 4-
momentum k is given by 

-k ""k.... ~k ""k*-= k S/leS/l = = k S/leS/l' 

kS/l =es/lk =(1TIIJ2)Z~:(rp,8,X), ks~ = fe'/l' 

(2.10) 

Using the eS/l' Z;:'z' and the reduction coefficients 
given by (2.9), (2.2), and (2.4), respectively, we define 
the following set of vector functions: 

n~!.t;ll(n) ==! (nOlm, 10Sf.l1 nOlO, NQJ .A(,)z:;(n)e'/l 
l.s 

(2.11) 

c~!i.~f == (nOlm, 10Sf.l1 nOlO, NQJ.A(,) 

== (1m, sft lis, J .A(,)C~fn.Ql> (2.12) 

where 

c~~fn.Q) = (n0110s, J I nOlO, NQJ) 

= [(21 + 1)(2s + 1) 

X (N + Q + l)(N - Q + 1)]1 

X {t; t; :}. (2.13) 

teN + Q) teN - Q) J 

The values of Q, N, and J for which the 9-j symbol in 
(2.13) does not vanish are 

Q = ±I, N = n, 1 ~ J ~ N, 

Q = 0, N = n ± 1, 0 ~ J ~ N. 

Thus, for given N, J, and .AL, there are four possible 
functions with 

(n, Q) = (N, -1), (N, 1), (N - 1,0), (N + 1,0). 

(2.14) 

Let us examine the behavior of these functions under 
the following reflection operation which leaves the BS 
equation invariant: 

Q,F(rp, 8, x; e./l) = F(1T + rp,1T - 8, x; (-l)se./l)' 
(2.15) 

It is easily found that 

QA n,J.AI., "" ClmS/lJ.AI.,( 1) IZ m( 1)'-uNCn.Q) = k NCn.Q) - nl - eS/l 
I •• 
m./l 

_ ( l)N+n+J+ln,J.AI., - - UNCn.-Q)· (2.16) 

Thus we may define the following eigenfunctions of 
Q: 

- J.AI., +- J.AI., -1 +- J.AI., +- J.AI., 
nNeN±l.O); n NCN.±) = 2 (nNeN•I ) ± n NCN.-I), 

(2.17) 

where the eigenfunctions (N ± 1, 0) and (N, -) be
long to the eigenvalue (-IV while (N, +) belongs to 
( -1 )J+I. The new functions (2.17) are given explicitly 
by 

where 

E = 0, ±1, (2.18) 

ClmS/lJ.AI., (I 11 J U)ClsJ.AI., NCN.±) = mSft S vI\> NCN.±) , 

C1sJ 2-1(CzSJ ± ClsJ ) NCN.±) = NCN.l) NCN.-I) • 

(2.19) 

(2.20) 

We have calculated the coefficients C~fn .• ) using the 
recursion relations of the 9-j symbols and their 
symmetry properties. The results are shown in Ap
pendix A. 

It is evident that the new functions (2.18) belong to 
the 0(4) representations (j,j') EEl (j' ,j) [cf. (2.5)]. If 
we now define the quantum number M = J QJ, we may 
speak of representations belonging to M = 0, E = 0, 
and M = 1, E = ±. 3 

The BS equation is invariant under the reflection 
operation Q in the region of 0(4) symmetry, i.e., when 
the total 4-momentum K vanishes (cf. Sec. 3). In this 
region the BS equation contains only the relative 4-
momentum K which commutes with Q, as can be seen 
from (2.10) and (2.15). When the total 4-momentum 
K differs from zero, the BS equation can again be 
invariant under Q provided that K is directed along the 
fourth axis. Thus, near K = 0, where 0(4) symmetry 
is slightly violated, we expect the state E = + not to 
mix with the states E = 0, - since the former state 
belongs to the eigenvalue (-IV+I while the latter 
ones belong to the eigenvalue (-l)J of the reflection 
operation Q. 

3. REDUCTION OF EXPRESSIONS INVOLVING 
SYMMETRY-CONSERVING TENSORS 

Before attempting to separate the tensor equation 
which will be introduced in the next section, we must 
learn how to reduce expressions containing Z~ and 
n~~.) acted upo~ by ~e various possible tensors 

constructed from K and o. This may easily be achieved 
with the help of the material developed in the previous 
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section. For example, using (2.11), (2.12), (2.10), 
(2.7), and the unitarity of the matrix Cm:::~.At." we may 

-+ J.At., 
evaluate KUNIn.'): 

-+-J.At., TTl "" ImSI'J.At.,Z mZI' 
kON(n .• ) = /2 k. C Nln.') nl Is 

y 1.8 
m.p 

_ TTl "" ClmSI'J.At., 2(n + 1) 
- ~2 t N(n.') TT~2 

m.p 

"" C N'nl ClmspJ'.At.,'Z.At.,' 
X k., N'(n.O) N'J' 

N'J'N + 1 
.At., , 

n+1 .At., 
= 1-- CNnld.oZNJ· 

N + 1 

If we compute CNnl from (2.8), (2.12), and Appendix 
A and substitute the above result, we finally obtain 

kfi~1!: .• ) = d.olB NnZ-:J , (3.1) 

where 

BNn = [Nj2(N + 1)Ji, n = N - 1, 

= [N + 2j2(N + 1)]i, n = N + 1. (3.2) 

We may evaluate kZ'I:, (we will often drop the azi
muthal quantum number .A(, because it is irrelevant in 
our calculations) in a similar fashion: 

- -J kZNJ = tf I o.oBNnON(n .• ) 
(n •• ) 

-J -J 
= tfBNN-10N(N-l.0) + tfBNN+l°N<N+1.0)· 

(3.3) 

If we now combine (3.1) with (3.3), we find 

+-

To reduce expressions containing the derivative a, 
we make use of the following Wigner-Eckart theorem 
which can be easily derived: 

C1mSI'J.At., 
(Z'::t*o.pZt,)f(tf) = N(n.O) (Z~ooooZ~o)f(.l). 

CNnl 

If we make use of this theorem and the relations 

we can derive the following formulas: 

aZNAo')f(.l) = 2 fit(n,O)(o')BNnDNn(l)f(.l), 
n 

(3.5) 

afi~(n.£)(O)f(l) = d'OZNJ(O)DNn(.l)f(.l), (3.6) 

where 

(
N + 2 0) 

DNn(.l) = BNN- 1 -,- + OJ ' n = N - 1, 

= BNN+l(- ~ ~ :1)' n = N + 1. 

Combining (3.3) and (3.5), we obtain 

O~(N-l 0) = - 1 !(laZNJ + N kZNJ) , 
. [N(N + 1)] .l 

OJ _ 1 
N(N+l.O) - [(N + l)(N + 2)]! 

X (kaZNJ - N ~ 2 IzNJ ). 

The formulas we have derived above provide sufficient 
tools for ,reducing the angular parts of all the sym
metry-conserving tensors that may be encountered in 
the equation we are about to introduce. 

4. SEPARATION OF THE BS EQUATION IN 
THE REGION OF 0(4) SYMMETRY 

The BS equation for a bound state of two particles 
with spins zero and one and a total 4-momentum K is 

D~!(Ol'" O2<<, m1 , m2)'Y~(xl' x2) 

= I dX3 dx4[cpv(01«' .. 04",)V(X1 ... x,)]'YK(X3, x,), 

(4.1) 

D~! == (o~ + m~)[(02 + m;)gp. - 02P02V] ' 
where 

o == opoP = gpvopo., ft, 'V = 0, 1,2,3. 
FollowingWick,9 we rotate the time direction from the 
real Xo axis to the imaginary X4 axis. As a result of this 
rotation, the time component Ao of any 4-vector A 
goes into iA4' and we end up with vectors obeying 
the Euclidean metric. Then D;! goes into 

D~! = (- 0 1 + m~)[( - 02 + m~)dpv - 02p02V], 

o == 0,..0,.., ft = 1, ... , 4. (4.2) 
Let us transform to momentum space where it is easier 
for us to work. There (4.1) and (4.2) become 

D;;(kl' k2)(fJ Klk1, k2) 

= J dk3 dk4CpvCkl> ••• , k4)V(k1, ... , k4)(fJ Kv(k3, k,), 

(4.3) 

D;!(k1, k2) = (k~ + m~)[(k; + m~)o,..v - k2,..k2v ], 
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where 

V(k .. , k) = -l-fdx ... dx eik""'l+ikS""'S 
1 , ,4 (2 7T )8 1 4 

X e-ikS""'3-ik4 ""'4V(XI , ... , X
4
), 

'" (k k) - 1 fd d ikl""'1+ik2'X2\TJ' ( ) WK. I' 2 - --4 Xl x2e T Kv Xl' X2 , 
(27T) 

with kl + k2 = K, due to translational invariance, 
and ki = -mi, k~ = -m~ on the mass shell. The 
ladder approximation and translational invariance 
reduce the form of V to 
V(xl , ••• , X4) = (27T)2Ab(Xl - Xa)b(X2 - X4) 

X V(Xl - x2). (4.4) 

If we now make the following change of variables, 
K =. kl + k2' k =. akl - bk2 , 

K' == ka + k4' k' =. ak3 - bk4 , (4.5) 
X =. bXl + ax2., X =. Xl - X2 , a + b = 1, 

we obtain after some algebraic manipulations the fol--lowing equations for the wavefunction cI> and its 

Hermitian conjugate cI>: 

<l>(K, k) = AD(K, k) fe(K, k, k/) 

X V(k - k')$(K, k') dk', (4.6a) 

$(K, k) = AJ dk'$(K, k')D(K, k') 

X C(K, k'k)V(k - k'), (4.6b) 
where 

t--t +-+--i"-+2 

D K k = I - (bK - k)(bK - k)/m2 

( ,) leaK + k)2 + mi][(bK - k)2 + m~] , 
(4.7a) 

D-1(K, k) = leaK + k)2 + mil 
X {[(bK - k)2 + m~]7 - kk}. (4.7b) 

Here 7 denotes the unit dyad. We have dropped the 
subscripts and used the more compact arrow notation 
introduced in Sec. 2. It is useful to note that the eigen
value spectrum of Eqs. (4.6) is not affected by the 
particular choice of the parameters a and b as long as 
a + b = 1. This may easily be seen from Eqs. (4.6) 
and (4.7): a change of a and b into a - c and b + c 
changes k in (4.7) into k - cK. If we now define new 
variables p = k - eK and p' = k' - eK, the eigen
value equation will look the same as before while the 
function (fl(K, k) changes into (fl(K,p + eK) =. 
F(K,p). This property of the BS equation allows us to 
choose a and b such that the equation is simplified 
considerably. 

At K = 0 the BS equation acquires 0(4) symmetry. 
In this special case Eqs. (4.6) go into 

;P(k) = ADo(k) JC(k, k')V(k - k')~(k') dk', (4.8) 

Do(k) = 7 + kklm~ 
(k2 + m;)(k2 + mD . 

(4.9) 

The most general form of Cat K = 0 is 

C(k, k') = I Gi(/, I', k· k')£;, (4.10) 

where the If;, i = I, ... ,5, denote the following 
symmetry-conserving tensors: 

E; =. 1" kk, k'k', kk',i?f. (4.11) 

Thus, for each term in (4.10), the BS equation (4.8) 
may be written in the following form: 

~(k) = A flick, k')~(k') dk' , (4.12) 

U(k, k') =. Do(k)EG(/, I', k . k')V(k - k'), (4.13) 

where E stands for anyone of the tensors enumerated 
in (4.11). 

To separate Eq. (4.12), we expand ;P(k) in the set of 
0(4) VSH defined by (2.18): 

<- .... ...... J' 
cp(k) = k ! ON'ln'.<,)(O)YN'ln'.<,)(l). (4.14) 

N'J'ln' .• ') 

Since J is always conserved and since Nand fi are good 
quantum numbers at K = 0, the matrix element of U 
with the angular functions reduces to 
-+ J +-+ -+- J 

(ON(n . .,(D)U(k, k')DN'ln'.<,)(D'» 
= U~:,(', I')bJJ,bNN.b. ... (4.15) 

Thus U is diagonal in the M = 1 states (fi = ±) 
while it mixes the M = 0 states (fi = 0). This result is 
consistent with the 0(4) parities and reflection eigen
values of the states. If we now substitute (4.14) and 
(4.15) into (4.12), we end up with the following matrix 
equation (in the radial variable i) which consists of 
two I-dimensional equations for the M = I states and 
a 2-dimensional matrix equation for the M = 0 states: 

(If) 

( 

'YNI~~~») 
'YN{N.-) 

(I) 
'YN{N-l.O) 

(,I) 
'YN(N+l.O) 

( 

U ::il, I') ) 

= A fila dl' U UNCI, I') 
N U~~lN-l(/, I')U~~lN+l(/, I') 

U~!1N-l(/, I')U%!lN+l(/, I') 

( 

'YNCt:~») (,I') 
'YN{N.-) 

X (,I')' (4.16) 
'YNIN-l.O) 

(,I') 
'YN(N+l.O) 
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For a given N, this equation possesses, in general, four 
solutions and four corresponding eigenvalues which 
we indicate with the subscript r = 1, ... ,4. More
over, for given Nand r there is an infinite number 
of eigenvalues corresponding to different potential 
strengths A1 •. This infinity, which we indicate with 
the superscript i, results from solving an integral 
equation in the radial variable I. We will find later 
on that U%~ = U%N (cf. Appendix B). Therefore, 
the radial wavefunctions and the eigenvalues of the 
M = 1 states are identical. Let us now write down 
the total wavefunctions and their eigenvalues: 

-Ji i -J (n) 
fPN2(f) = YN(/)QN(N.-), 

with eigenvalue A:V1 = Ahr2 = Ahr, 
-Ji i (ti) -J (!l) 
fPN3(k) = 'fJN(N-l.O)QN(N-l.O) 

i (i) +-J (!l) + 'fJN(N+1.0)QN(N+l.O) 

with eigenvalue A~3' 

with eigenvalue A~4' 

It remains now to determine the explicit form of the 
matrix U~~ for the various tensors enumerated in 
(4.11). This may be accomplished with the help of the 
formulas derived in Sec. 2 and the following ex
pansion: 

G(/, I', k· k')V(k - k') = I Z:;(Q)F n(I,f')Z::'l*(Q')· 
nlm 

The results are listed in Appendix B. 

5. PERTURBATION IN K; REGGE SLOPES 
AND RESIDUES 

Ifwe examine Eqs. (4.6) and (4.7), we find that they 
contain a complicated dependence on K and cos X, 
where X is the angle between the total 4-momentum K 
and the relative 4-momentum k (we choose a coordi
nate system in which K lies along the fourth axis). 
Thus, a rash attempt at studying Eqs. (4.6) for small 
values of K would result in very lengthy and com
plicated perturbation formulas. However, the equa
tion will be simplified considerably if we decide to 
choose a = 1 and b = O. We have already mentioned 
in Sec. 3 that the choice of a and b does not affect the 
eigenvalue spectrum as long as a + b = 1. The eigen
functions, on the other hand, are dependent on the 
particular choice of a and b. It is possible, however, to 
transform among systems corresponding to different 

choices of a and b. (Incidentally, in the c.m. system 
a = b = t.) With a = I and b = 0, (4.6a) becomes 

(
COS X 1 2)+-1 + 2 2 J(, + 2 2 J(, <I>(K, k) 

f + m 1 I + m2 

= A J U(k, k')$(K, k') dk' 

+ A f W(K, k, k')<I>(K, k') dk', (5.1) 

where D is the K-independent (zeroth-order) kernel 

given by (4.13), while if' is the K-dependent kernel 
which may be expanded in a power series in J(,. In 
addition to the symmetry-conserving tensors listed in 

(4.11), W involves the following symmetry breaking 
tensors: 

k . KI, kK, Kk,KK. (5.2) 

We have calculated the matrix elements of these 
tensors with 0(4) VSH and listed them in Appendix 
C. Further simplifications occur if we are interested 
only in classes of s-independent potentials (s = _J(,2 

is the square of the c.m. energy). In this case, the 
second term in the rhs of (5.1) drops out, and the per
turbation formulas for A and <I> assume very simple 
forms. These formulas may easily be found if the power 
series expansions in J(, of A and <I> are substituted 
into (5.1). There is no need to write the formulas here, 
especially. since we do not plan to investigate the slopes 
and residues. 10 However, for the sake of completeness, 
we will explain briefly how to extract the slopes of 
Regge trajectories and the residues of Regge poles 
from the perturbation results for A and <1>. 

To obtain the slopes of Regge trajectories, we first 
find the second-order corrections of A [the first
order correction vanishes due to 0(4) parity considera
tions] : 

,J • -u-2,J(2) 
AN. = AN. + <1\J AN. +"', r = 1,"',4. 

Then we continue Nand J to complex values keeping 
the difference always equal to a nonnegative integer. 5 

Thus 

N ~ P, J ~ oc", P - OC" = I<. = 0, 1, ... , 

Afv. = A.(S,OC,,), AN.-+A.(oco), A"Jv~2) -+A~2)«(Y.,,), (5.3) 

where s = _J(,2 is the square of the c.m. energy. 
K = 0 refers to what is usually called the parent tra
jectory, while I<. = 1, 2, . .. refer to the daughter 
trajectories.2 The equations for Regge trajectories 
OCI( = oc,,(s) are found by keeping A (the strength of 
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the potential) constant and varying rJ.1( in s, i.e., by 
inverting the equations A,(s, rJ.1() = const. Thus the 
slopes at zero energy are given by 

drJ.=(s) I oAr(s, rJ.1()/os I 
~ .=0= - oA,(s, rJ.1()/0rJ.1( .=0 

A~2)( rJ.1()/ A;( rJ.o) 
= - - ........ - , 

{((Jr(k, rJ.o)[oU(k, k')/orJ.o]((Jr(k', rJ.o)} 

r = 1,'" ,4. 

We should now be able to investigate the signs of the 
slopes by making use of the machinery developed in 
the previous sections, if we put certain general restric
tions on the form of the potential. 

If the kernels of Eq. (5.1) are Fredholm or may be 
made so by introducing suitable cutoff functions, then 
the resolvent kernel, which is the T matrix, is a mere
morphic function of the parameter A. Using the results 
for the perturbed wavefunctions, we may straight
forwardly write down the residues of the poles in the 
A plane if we assume these poles to be simple. Having 
done this, we continue Nand J as prescribed in (5.3). 
Obviously, the residues obtained this way differ only 
by a factor of (dAfdv)-l from the residues of the 
corresponding poles in the v plane. However, these 
residues, which belong to what we usually call 0(4) 
poles, are not exactly the residues we are after. We are 
interested in Regge poles (poles in the rJ.1( plane) which 
may easily be extracted if we know how to unveil the 
0(3) content of an 0(4) pole. To do this, we need to 
know the matrix that projects 0(4) VSH on 0(3) VSH. 
With the help of (2.12), (2.19), and the factoriza
tion of Z;:'z(/, e, X) into x~(x)Y;n(/, e), Eq. (2.18) 
can immediately be rewritten into the following 
form: 

1lto == y'f( ((J, erioo · 
We recognize the three functions 1i:?h, / = J, J ± 1, as 
the well-known 0(3) VSH. 7 They describe a system of 
two particles whose spins are one and zero, while the 

fourth function 1if.,0 describes a system with zero total 
spin. 
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APPENDIX B 

(1) E = 1, 
(4) E=kk', 

(12 + mi)(l2 + m~)U~~,(l, I') 

= (dnn' + dEO ~~ BNnBNn)F n.(l, I'). APPENDIX C 

(2) E = kk, 
m~(l2 + m~)U~:,(l, I') = dEoBNnBNn,Fn,(l, I'). 

(3) E = 'k'"k', 
(12 + mi)( 12 + m;)U ~:,( I, I') (AJ (0) K+-K-r:.J (0) J(,2.Il CJOJ CJOJ 

~"'N(n,E) ~"'N'(n',E') = U nn' N(n,E) N'(n'.E') ' 

= dEol,2B NnB Nn' - J (0) <-++-J (0) - J +- J 
(ON(n.E)k· KION'(n'.E') = lJ(,(ONln.E) cos XON'(n'.E')' 

X (F n(l, I') + I: ~ B:VnlF nl(l, I'»)' 
m2 n1 

where cos xot(~~~) is given explicitly by the following: 

oJ (N - J)(N + J + 1»)!OJ (N - J + 1)(N + J + 2»)!OJ 
cos X NlN.+) = 4N(N + 1) N-1IN-l.+) + 4(N + 1)(N + 2) N+1(N+1.+) ' 

cos OJ = (N - J)(N + J + 1»)!OJ _ ( J(1 + 1) )!OJ 
X N(N.-) 4N(N + 1) N-1IN-l.-) 2N(N + 1)3 NlN-l.O) 

( 
J(J + 1) )! OJ (eN - J + 1)eN + J + 2»)! oJ 

+ 2(N + 2)(N + 1)3 N(N+l.O) + 4(N + 1)(N + 2) N+1(N+1.-) ' 

(
N - 1)(N - J)(N + J + 1»)! J (N - J)(N + J + 1»)! J 

cos X 0NlN-l.O) = 4N3 0N-1IN-2.-) + 4N3(N + 1)3 0N-l(N.O) 

( 
J(J + 1) )!OJ (N(N - J + 1)(N + J + 2»)!OJ 

- 2N(N + 1)3 NlN.-) + 4(N + 1)3 N+l(N.O) ' 

cos 0 = (N - J)(N + J + 1»)!OJ + ( J(J + 1) )!OJ, 
X N(N+1.0) 4(N + 2)(N + 1)3 N-l(N.O) 2(N + 2)(N + 1)3 N(N.-) 

(
N - J + 1)(N + J + 2»)! oJ + (N - J + l)(N + J + 2»)! oJ 

+ 4(N + 1)3(N + 2)3 N+l(N.O) 4(N + 3)(N + 2)3 N+1(N+2.0)· 

• Work supported in part by the National Science Foundation 
and based in part on a thesis submitted in partial fulfillment of the 
requirements for the degree of Doctor of Philosophy in Physics, 
University of California. 

t Present address: International Centre for Theoretical Physics, 
Trieste. Italy. 

1 G. Domokos and P. Suranyi. Nucl. Phys. 54, 529 (1964). 
2 D. Z. Freedman and J. M. Wang. Phys. Rev. Letters 17, 569 

(1966); Phys. Rev. 153, 1596 (1967). 
3 M. Toller. Nuovo Cimento 53, 671 (1968). Toller works directly 

with the homogeneous Lorentz group 0(3, 1) which is related to 
0(4) through analytic continuation. 

• S. S. Schweber, An Introduction to Relativistic Quantum Field 
Theory (Harper & Row, New York, 1962). 

6 G. Domokos, Phys. Rev. 159, 1387 (1967). 
6 W. R. Frazer, F. R. Halpern, H. M. Lipinski, and D. R. Snider, 

Phys. Rev. 176,2047 (1968). 
7 A. R. Edmonds. Angular Momentum in Quantum Mechanics 

(Princeton U.P., Princeton, N.J., 1957). 
8 L. C. Biedenharn, J. Math. Phys. 2,433 (196\). 
• G.-C. Wick. Phys. Rev. 96, 1124 (1954). 

10 We have done some investigations of the slopes and residues 
elsewhere [Phys. Rev. (to be published)]. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 8 AUGUST 1970 

Block Diagrams and the Extension of Timelike Two-Surfaces 

MARTIN WALKER * 
Department of Mathematics, Birkbeck College, London, Englandt 

(Received 12 February 1970) 

The work ?fFinkelstein! Kruskal, .Grav~s and Brill.' C~rter, and Boyer and Lindquist on the extension 
and schematic re~resentatlOn of 2-dlmensl~:mal ~etncs IS systematized and generalized. As a result, a 
numb.er o~ exte~slOns may be f~un~ by. Inspection .. So?Ie well-known examples are given, and the 
technIque IS apphed to the "SOIUZlOnI obhque" of Levl-Clvita. 

INTRODUCTION 

An exhaustive global analysis of a solution! of 
Einstein's gravitational-field equations is usually a 
formidable task. In certain special cases however, 
there are intrinsically singled-out 2-dimensional sub
manifolds of the 4-dimensional space-times which 
can be simply analyzed. Examples are the symmetry 
axis of an axially symmetric static or stationary 
solution or the 2-surfaces containing the repeated 
principal null directions in a type [22] solution. In 
many cases, the analysis of such a 2-surface has 
provided valuable clues to the global structure of the 
space-time.2 The first applications of a 2-dimensional 
approach were Finkelstein's3 and Kruskal's4 maximal 
extensions of the Schwarzschild solution. Subse
quently, analogous techniques were employed by 
Graves and Brill5 and Carter6 for the Reissner
Nordstrom solution and by Carter2 and Boyer and 
LindquisF for the Kerr solution. 

In this paper, we systematize and generalize the 
techniques of the above authors. A result is that all 
of the well-known 2-dimensional extensions, together 
with their schematic representations, can be found by 
inspection. 

TIMELIKE TWO-SURFACES 

We work with a static, totally geodesic,S timelike 
2-surface T. Because of the static, totally geodesic 
requirement, the metric on T can always be put in 
the form 

(1) 

where F is the norm of the timelike Killing vector in 
T. F is a function of r and possibly of other coordi
nates on the 4-dimensional space-time, but by the 
totally geodesic property the other coordinates can 
be chosen constant on T. 

Let 

satisfies teVeta = ° (where Ve is covariant derivative) 
which, in the coordinates of (1), can be integrated 
once to give 

dt A 
-=-
d)' F' 

dr = (A2 _ €F}~. 
d)' 

(2) 

A is a constant and tete = € = 0, + 1, or -1 according 
as y is null, timelike, or spacelike. r is seen to be an 
affine parameter along null geodesics in T and is 
therefore an almost invariant coordinate. When F = 0, 
there are incomplete geodesics of all three types, and, 
to the extent to which the incompleteness is due to a 
bad choice of coordinates, the fault lies with the 
coordinate t. 

The only invariant of the curvature of T is the 
intrinsic Gaussian curvature K = td2F/dr2• We show 
that, if F and K are finite for all r in the range - 00 < 
r < 00, then every geodesic in T can be extended 
until it is complete. If, on the other hand, F or K 
becomes unbounded for some value ro of r, then 
only those geodesics along which r = ro within a 
finite affine distance from some point of T are incom
plete and inextendible. In the latter case, T, and the 
space-time in which T is imbedded, are intrinsically 
singular. The extensions obtained are accordingly 
maximal. 

Let the zeros of F be given by r = ai' i = 1, 2, ... , 
n (n finite), with - 00 < a! < a2 < ... < an < 00. 

If F approaches a constant finite value as r -+ 00 (so 
that K -+ 0), then we can rescale the coordinates if 
necessary so that lim F = ± 1, as r -+ 00. For such 
an F, T is asymptotically fiat, and conformal infinity9 

of can be represented by a pair of finite null lines. A 
similar remark applies in the case r -+ - 00. 

BLOCKS 

When F vanishes, the orbits of the timelike Killing 
vector become null, so that we can think of the r = ai 

be the tangent vector to an affinely parametrized as dividing T into n + 1 distinct regions. Each such 
geodesic y in T, with affine parameter A. Then t a region is bounded by the null Killing vector orbits 

2280 
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(or horizons), by one such orbit and .Y, or by a null 
orbit and a singular line at r = ro. Each region 
ai ~ r ~ ai+l will be called a block. The maximal 
extension of T is found by "gluing" the blocks 
together along their boundaries (called seams) 
according to a well-defined scheme. Those seams 
along which F = 0 and K is finite are called non
singular, while those along which For K is unbounded 
are singular. Blocks can only be glued together along 
nonsingular seams across which K is smooth (COO, say). 

In each region 

Ti = {(t, r) I - 00 < t < 00, ai ~ r ~ ai+l}, 

fix some ri between ai and ai+1 and define new co
ordinates1o 

ir dw 
u·=t+ -

, T,F(w) 
and 

(3) 

Then 

Ui + Vi = 2t and Ui - Vi = 2 -- . i T dw 

T;F(w) 

Ti has metric ds2 = F dUi dV i which, for Coo F, is COO 
for - 00 < U i < 00 and - 00 < Vi < 00 except when 
Ti is singular. (In the singular case, put r i = ro.) 

In the nonsingular case, with F > 0 in Ti , we have 
the following implications: 

. . {Vi finite: Ui ---+ 00, t ---+ 00, 
r ---+ ai+l Imphes . 

U i fillIte: Vi ---+ - 00, t ---+ - 00, 

• . {Vi finite: U i ---+ - 00, t ---+ - 00, 
r ---+ ai ImplIes . 

U i fimte: Vi ---+ 00, t ---+ 00. 

Defining Cf!i = tan-1 Ui and "Pi = tan-1 Vi' we can rep
resent Ti schematically by means of the block in Fig. 1. 

t= 00 

t 

q)1' ! )~i 
~--.r 

t =-00 

FIG. 1. A nonsingular block. The figure in the lower left shows 
the axis orientation. 

~. , ~ 
Orbit of '~ 
Killing vector '~~ 
(r = constont) <? 

FIG. 2. Anonsingular block with conformal infinity ..f represented 
by double lines. 

If ai ~ r < 00 and Ti is asymptotically flat, we 
represent conformal infinity .Y by double lines as in 
Fig. 2. 

We discuss the exceptional points at the corners 
of the blocks later. The "point" labeled [0 in Fig. 2 
is not included in Y. 

If ro < r ~ ai+l and Ti is singular, we have the 
situation represented schematically in Fig. 3, where 
the serrated line represents the singularity as K ---+ 00. 

The singular "points" (r = r 0, - 00 < t < 00) are 
not in Ti • 

If F were negative in Ti , all of the above would hold 
in the same way except that Ui and Vi (and, hence, Cf!i 

and "Pi) would be replaced by their negatives. The 
Killing vector orbits in such a block are spacelike. 

Note that each block may be flipped about r = ri 
by interchanging the roles of Ui and Vi and that the 
discrete isometry t ---+ -t turns the block upside 
down. These flips are shown in Fig. 4. 

FIG. 3. A singular 
block. The serrated 
line T = To shows 
where the intrinsic 
curvature K of T, is 
infinite. 



                                                                                                                                    

2282 MAR TIN WALKER 

t=+oo t=-oo 

T-+ -t 
) 

t=-oo t=+cx> 
FIG. 4. The flipping of blocks. 

GLUING BLOCKS TOGETHER 

We now turn to the problem of extending geodesics 
which are incomplete in one block, or, equivalently, 
of gluing the blocks together along their nonsingular 
seams. [We have seen from Eq. (2) that all geodesics 
along which r = ai are incomplete.] Our convention 
for the resulting diagram is that the timelike coordi
nate in each block (t if F> 0, r if F < 0) change 
vertically. Consider the case of gluing Ti+1 with F > 0 
to Ti with F < O. According to the convention, the 
blocks are as shown in Fig. 5. 

Intuitively, by making use of the discrete isometry 
t ---->- - t, the blocks can be glued together in the two 
ways indicated by the arrows in Fig. 5. Since the 
intrinsic curvature is assumed to be a smooth function 
of r at r = ai+l, showing that the blocks can be so 
glued reduces to showing that the null "cones" are 
continuous across the seams, i.e., that their exists a 
coordinate system covering both blocks in a neighbor
hood of r = ai+l in a smooth way. To do this, we use 
a patching technique discovered by Finkelstein.3 

Taking configuration 1 of Fig. 5 first, define du = 
dt + dr/F. Then 2 du dr = 2 dt dr + 2 dr2/F and 

FIG. 5. Gluing blocks together: I and 2 indicate the two ways 
in which Tj may be glued to Ti+l' ~s discussed i~ the text. A repre
sentative pair of Killing vector orbits r = const IS shown. 

FIG. 6. Ti glued to 
Ti+l in configuration 
1 of Fig. 5. 

F du2 = F dt + 2 dr dt + dr2/F, so that 

ds2 = F dt! - dr 2/F = F du2 - 2 du dr. (4) 

Allowing r the range ai =:;;: r =:;;: ai+2, 11 we see that the 
coordinates (u, r) cover both blocks in configuration 
1 of Fig. 6. The coordinate u is finite at r = ai+l and 
the metric (4) is Coo in the region a i < r < ai+2' 

Defining in a similar way dv = dt - dr/F so that 

ds2 = F dv2 + 2 dv dr, (5) 

where v is finite at r = ai+l, we see that metric (5) is 
Coo in the region ai < r < ai+2 also, but now the 
blocks have been glued together in configuration 2 of 
Fig. 7. 

Performing both gluing operations simultaneously, 
we obtain Fig. 8. Because of the flip mentioned 
earlier, obtained by interchanging the roles of Ui+l 
and Vi+1 in Ti+1' we can also glue in the dotted Ti+1 
of Fig. 8. The point labeled p in Fig. 8 is covered 
neither by the coordinates of Eq. (4) nor by those of 
Eq. (5). By making a further restriction on the func
tion F, we are nevertheless able to include p by defining 
a coordinate system (originally found by Kruskal4 in 
the case of the Schwarzschild solution) which covers 
all four blocks of Fig. 8 at once. 

We ask for coordinates [1 and V such that ds2 = 
F dt 2 

- dr2/F = G dU dV, where G is a function that 

FIG. 7. Ti glued to 
T/+l in configuration 
2 of Fig. 5. 
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/ 
/ 

" , 
/ 

/ 

/ 
/ 

/ 

" , p , , , , , 

FIG. 8. Both gluing operations performed simultaneously. The point 
p is not covered by either coordinate system. 

is finite and nonzero at r = ai+l' Since U = U(r, t) 
and V = VCr, t), we must solve the equations 

G
auav = F, 
at at 

au av + au av = 0 (6) 
or at at or ' 

G au av = _.!. 
or or F 

Letting U = R(r)T(t) and V = p(r)T(t), we see that 
Eq. (6) separates with separation constants 

dT dT = a and FG dR dp = 1- . 
dt dt dr dr b 

For later convenience, rescale the coordinates so 
that b = 1. Then with a = c2 we find 

1 dT 1 dT 
--=---=c 
T dt T dt 

so that 

and 1 dR 1 dp c 
R dr =; dr = F' 

1 
and T = - - = ocect

, 
T 

where oc is a constant of integration. Hence, coordi
nates U and V and a function G satisfying (6) are 
given by 

1 ct ( f dr) V = - ; e- exp c F' (7) 

G = ~ exp ( - 2c f ~) . 

The problem therefore reduces to that of finding 
a suitable value for the constant c (by rescaling the 
coordinates) so that G is finite and nonzero at r = 
ai+!. We show that this can indeed be done, provided 
F is of the form H-I(r - al)(r - a2) ... (r - an), 
where H is a polynomial in r of degree n whose zeros 
(if any) are distinct from those of F. We write 

!=H(~+~+"'+~)' 
F r - al r - a2 r - an 

where 

!Xj = (r - al) ... (r - aj_l) 

X (r - aj+!) ... (r - an)lr=aj' 

Integrating by parts once, we obtain 

J ~ = In (r - as'lH(r - a2)«2H ... (r - an)«nII 

-Jln [(r - al)'z'(r - a2Y2 ... (r - anY"] dB dr. 
dr 

Each subsequent integration by parts produces a 
higher derivative of H, so that after n such integrations 
by parts we find 

dr/F = In [her - ai+l)' + g], 

where h, f, and g are polynomials in the (r - aj) 
and h andfdo not have (r - ai+l) as a factor. Hence, 

G = a-l(r - al) ... (r - ai)(r - ai+l)(1-2Cf) 
X (r - ai+2) ... (r - an)h-2ce-2Cg 

and, by ch90sing c = [2f(ai+l)]-I, we obtain 

G = a-l(r - al) ... (r - ai ) 

X (r - aiH) ... (r - an)h-2Ce-2Cg, 

which is finite and nonzero for r = ai+! as required. 
In all of the cases which we consider, F will have the 
above polynomial form, so that the exceptional point 
p of Fig. 8 will be a regular point of the extensions 
constructed. Note, however, that the Kruskal tech
nique for covering four blocks at once cannot be 
generalized in a simple way to give coordinates 
regularly covering more than four blocks, because of 
the way we had to choose the constant c of Eq. (7). 

THE GENERAL CASE 

Given the function F, the rules for constructing the 
maximal extension of T starting from any r value 
are now very simple: 

(1) The timelike coordinate in each block changes 
vertically; 

(2) The blocks are combined in all possible ways by 
joining them along nonsingular seams; 

(3) The Gaussian curvature K must be smooth 
across the seam between any two blocks. Thus, a 
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block cannot be simply flipped and joined to itself, for 
example. 

EXAMPLES 

We illustrate the technique with three well-known 
examples and one which has not been given hitherto. 

In the usual coordinates, the metric of the timelike 
2-surfaces containing the repeated principal null 
directions in the Schwarzschild solution is 

ds2 = (1 - 2m/r) dt2 - (1 - 2mlr)-1 dr2 

so that F = 1 - 2mlr and K = 2mlr3, n = 1, and 
al = 2m; thus there are two blocks: TI , bounded by 
r = 2m and the singular seam at r = 0, and T2, 

bounded by r = 2m and null infinity (Fig. 9). Com
bining Tl and T2 according to the above rules, we 
obtain the Kruskal4 diagram, with conformal infinity 
./ represented by four finite null lines -Yr and ./t 
(Fig. 10). 

In the charged Schwarzschild or Reissner-Nord
strom solution, the corresponding 2-surface T has 
metric 

ds2 = (1 _ 2m + ~)dt _ (1 _ 2m + ~)-ldr2, 
r r2 r r2 

where e is the charge parameter. Suppose m> e; 
then F = 1 - 2mlr + e2jr2 has two real zeros at 
r = m ± (m2 - e2)t. The Gaussian curvature K = 
(2mr - 3e2)jr4, and there are three blocks. Combining 
them according to the rules, we obtain the usual 
diagram (Carter6) shown in Fig. 11. 

Our third example is one in which Tis nonsingular, 
namely, the symmetry axis of the Kerr solution which 
was analyzed by Carter.2 Every geodesic in the maxi
mally extended T is complete. In the coordinates used 
by Carter, we have F = 1 - 2mrl(r2 + a2) and 
K = 2mr(r2 - 3a2)(r2 + a2)-S, where a is the angular
momentum parameter. F has two zeros, provided 
m > a, at r = m ± (m2 - a2)!, so that there are three 
blocks. Combining them according to the rules, we 
obtain Fig. 12. F and K are plotted against r in Fig. 13. 

Finally, we discuss briefly the "soluzioni oblique" 
of Levi-Civita,12 which has been rediscovered by a 
number of authors13 and is perhaps best known as 
the C metric of Ehlers and Kundt.14 The C metric 
has been given in a coordinate system which lends 

r= 0 

FIG. 9. The blocks 
for the Schwarzschild 
solution. 

r= 0 

FIG. 10. The Krus
kal diagram for the 
Schwarzschild solu
tion with conformal 
infinity represented. 

itself to the most straightforward analysis by 
Kinnersleyl5 : 

ds2 = Fdu2 + 2dudr + 2r2dudx - dx2/G - Gdz2. 

Here, u is a null coordinate and r is an affine param
eter along the repeated principal null rays, G = 
mx3 - ax - b, and F = mlr - Gr2 + (dG/dx)r -
3mx where m, a, and b are constants. In order to 
ensure that spacelike cross sections of the null cone 
in the tangent space at each point are topologically 
2-spheres, it is necessary to have !b2 < ,£)-a3 and also 
to restrict the range of x to Xo ~ x ~ Xl say, where 
Xo and Xl are determined by m, a, and b. This 
restriction on the range of x, together with the fact that 
a curvature singularity at r = 0 restricts r to 0 < r < co, 
means that F has only one zero for each (fixed) value 
of x with Xo < x ~ Xl' When x = xo, Fhas no zeros. 

The timelike 2-surface T containing the repeated 
principal null rays has metric ds2 = F du2 + 2 du dr 
and Gaussian curvature K = 2mlr3 - 2G. T is 

FIG. 11. The Reiss
ner-Nordstr0m solu
tion. 
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FIG. 12. The sym
metryaxis of the Kerr 
solution. Conformal 
infinities are labeled 
by ± 00 according to 
the value of r there. 

totally geodesic only for null geodesics, and its 
asymptotic Gaussian curvature (as r - (0) depends 
on x. For these reasons, as well as for the reason that 
F has no zeros on the "south pole" of S at x = xo, 
the block diagram for T must be interpreted with 
care; the diagram is given in Fig. 14. A complete 
account of the peculiar properties of the C metric wiII 
be give~ elsewhere,16 

CONCLUSION 

In conclusion, we remark briefly on the applicability 
of the extension technique for timelike 2-surfaces 
given here to the analysis of the global structure of 
the corresponding 4-dimensional space-times. Since 
T is totally geodesic, the topology of the inextendible 
space-time is T X S where S is the spacelike 2-
surface orthogonal to T. Thus, in the Schwarzschild 

r~-oo----------~~~~~~~-----
- ... _ oJ' 

---.,.,."'" 

FIG. 13. Fand Kplotted against r for the Kerr solution; not to scale. 

FIG. 14. The C metric. 

and Reissner-Nordstrom solution, the space-time 
has topology R2 X S2 because of the spherical sym
metry, and we can think of each point of T as repre
senting a 2-sphere whose radius is the r value at that 
point. In these two cases, the global properties of T 
exactly mirror those of the full space-time. 

In the Kerr solution, however, this is not the case. 
There are incomplete, inextendible geodesics in the 
Kerr solution which do not lie in any totally geodesic 
timelike 2-surface. Nevertheless, it was by studying 
the symmetry axis that Carter6 was able to guess at 
the complete global structure of the Kerr solution, 
and his guesses were borne out by the independent 
investigations of Boyer and Lindquist. 7 

The block diagrams are most useful in that they 
give a sound basis from which to begin a more 
detailed investigation of the space-time. 

ACKNOWLEDGMENTS 

I would like to express my thanks to A. Qadir, 
R. Penrose, and R. Geroch for stimulating discussions 
during the course of this work. 

* This work was completed while the author held a Common
wealth Scholarship awarded by the British Council, London, 
England. 

t Present address: Department of Mathematics, Carleton 
University, Ottawa 1, Ontario, Canada. 

1 By a solution of Einstein's equations we understand a Lorentz 
metric of appropriate signature defined (in general) on some open 
submanifold of an inextendible space-time. Global analysis is 
largely concerned with finding the inextendible space-time given 
only the metric components in some coordinate system. See R. P. 
Geroch, J. Math. Phys. 9, 450 (1968). 

2 B. Carter, Phys. Rev. 141, 1242 (1966). 



                                                                                                                                    

2286 MARTIN WALKER 

• D. Finkelstein, Phys. Rev. 110,965 (1958). 
4 M. D. Kruskal, Phys. Rev. 119, 1743 (1960). 
6 J. C. Graves and D. R. Brill, Phys. Rev. 120, 1507 (1960). 
8 B. Carter, Phys. Letters 21, 423 (1966). 
7 R. H. Boyer and R. W. Lindquist, J. Math. Phys. 8, 265 (1967). 
8 A hypersurface in a space-time is totally geodesic if any geodesic 

tangent to the surface at a point lies in the surface. 
D R. Penrose, Proc. Roy. Soc. (London) A284, 159 (1965). 

10 Ui and Vi are sometimes called advanced and retarded null 
coordinates, respectively. 

JOURNAL OF MATHEMATICAL PHYSICS 

11 We could equally well let r take on its full range in Eq. (4), but 
it is more convenient for our purposes to restrict r to aj ~ r ~ aHa' 

12 T. Levi-Civita, Atti Accad. NazI. Lincei, Rend.,27(2), 343 (1918). 
18 E. T. Newman and L. A. Tamburino, J. Math. Phys. 2, 667 

(1961); P. Jordan, J. Ehlers, and W. Kundt, Akad. Wiss. Lit. 
(Mainz), Abhandl Math. Nat. Kl., No.2 (1960). 

14 J. Ehlers and W. Kundt, Gravitation, an Introduction to Current 
Research, L. Witten, Ed. (Wiley, New York, 1963), p. 49. 

16 W. Kinnersley, J. Math. Phys. 10, 1195 (1969). 
16 W. Kinnersleyand M. Walker, submitted to Phys. Rev., 1970. 

VOLUME II, NUMBER 8 AUGUST 1970 

Classical and Quantum Mechanical Correlation Functions of Fields 
in Thermal Equilibrium * 

JOSEPH B. KELLER 
Department of Mathematics, University Heights and Courant Institute of Mathematical Sciences 

New York University, New York, New York 

(Received 26 September 1969; Revised Manuscript Received 10 February 1970) 

The two-point, two-time correlation functions of classical and quantum mechanical fields in thermal 
equilibrium in an arbitrary domain are considered. For classical fields that satisfy linear equations of 
motion, the correlation functions are expressed in terms of certain Green's functions of the domain. 
It is also shown, by evaluating the characteristic functional of the field, that a classical field is Gaussian 
distributed, so that all higher-order correlations can be expressed in terms of the second-order correla
tions. Then the second-order correlations are evaluated in various cases, and the classical and quantum 
mechanical results are compared. They are found to agree except within layers, about a thermal wave
length wide, near the boundaries of the domain and near the characteristic surface or light cone em
anating from either of the two points. Thus the quantum mechanical correlation function can be 
approximated by the classical one with quantum-mechanical boundary-layer corrections. 

1. INTRODUCTION 

Classical statistical mechanics yields the Rayleigh
Jeans law for the power spectrum of a linear field in 
thermal equilibrium. This law differs from the Planck 
distribution of quantum statistical mechanics at high 
frequencies and yields an infinite energy density. As a 
result, classical statistical mechanics has not been 
used to calculate other properties of fields. But the 
Rayleigh-Jeans law agrees with the Planck law at low 
frequencies. Therefore, we should expect that classical 
and quantum statistical mechanics will yield approxi
mately the same results for any property of a field 
which does not depend appreciably on the high
frequency components. Since the classical result is 
usually easier to calculate, it can be used as an 
approximation to the quantum result. In addition, the 
statistical properties of classical fields are of interest 
in themselves. 

For these reasons, we calculate the classical char
acteristic functional of any field in thermal equilibrium 
satisfying linear equations of motion in an arbitrary 
domain. This functional is just the function-space 
Fourier transform of the Gibbs distribution. As is to 
be expected, it is a Gaussian functional, just as in the 
quantum mechanical case. Therefore, all the higher-

order correlation functions of the field ui(x, t) can be 
expressed in terms of the second-order or two-point, 
two-time correlation function (u;(x, t)uiX/, t ' ). 

The second-order correlation can be expressed as a 
sum or integral over the modes of the field with 
amplitudes determined by the Rayleigh-Jeans law in 
the classical case and by the Planck law in the quantum 
case. In the classical case it also solves an initial
boundary-value problem and, therefore, it can be 
expressed in terms of two Green's functions. This 
representation exhibits the structure of the second
order correlation and also faciliiates its calculation. 
We shall see that the quantum mechanical second
order correlation function satisfies a difference equa
tion involving one of the same Green's functions. 

To illustrate our results, we shall use them to calcu
late the second-order correlation function of a scalar 
field in various domains with different boundary 
conditions. The illustration applies to sound waves in 
three dimensions and to vibrating strings, sound 
waves, and electromagnetic waves in one dimension. 
For comparison we shall also calculate the correlation 
of the corresponding quantized boson field. We shall 
see that the two correlations are in close agreement 
except within layers about a thermal wavelength wide 
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usually easier to calculate, it can be used as an 
approximation to the quantum result. In addition, the 
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in themselves. 

For these reasons, we calculate the classical char
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Fourier transform of the Gibbs distribution. As is to 
be expected, it is a Gaussian functional, just as in the 
quantum mechanical case. Therefore, all the higher-

order correlation functions of the field ui(x, t) can be 
expressed in terms of the second-order or two-point, 
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The second-order correlation can be expressed as a 
sum or integral over the modes of the field with 
amplitudes determined by the Rayleigh-Jeans law in 
the classical case and by the Planck law in the quantum 
case. In the classical case it also solves an initial
boundary-value problem and, therefore, it can be 
expressed in terms of two Green's functions. This 
representation exhibits the structure of the second
order correlation and also faciliiates its calculation. 
We shall see that the quantum mechanical second
order correlation function satisfies a difference equa
tion involving one of the same Green's functions. 

To illustrate our results, we shall use them to calcu
late the second-order correlation function of a scalar 
field in various domains with different boundary 
conditions. The illustration applies to sound waves in 
three dimensions and to vibrating strings, sound 
waves, and electromagnetic waves in one dimension. 
For comparison we shall also calculate the correlation 
of the corresponding quantized boson field. We shall 
see that the two correlations are in close agreement 
except within layers about a thermal wavelength wide 
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near the boundaries of the domain and near the 
characteristic surface or light cone emanating from 
either of the two points at which the correlation 
is calculated. Therefore, we can approximate the 
quantum correlation function by the classical one with 
quantum mechanical boundary-layer corrections in 
these places. 

For the quantized electromagnetic field in an un
bounded domain, the second-order correlations have 
been found by Bourret,! Sarfatt,2 Mehta and Wolf,3 
and others. Glauber4 and Holliday5 showed that this 
field is Gaussian. For the electromagnetic field in an 
arbitrary domain and for a scalar meson field obeying 
the Klein-Gordon equation, the quantum mechanical 
characteristic functionals were found by E. F. Keller6 

and also found to be Gaussian. 
For a classical field satisfying nonlinear equations 

of motion, the characteristic functional and the 
second-order correlation have not been evaluated. 
The present results can be used to obtain a low
temperature expansion of them by means of Laplace's 
method applied to function-space integrals. E. A. 
Spiegel and I tried to use this idea to treat turbulence 
in an inviscid incompressible fluid, using Clebsch 
potentials to write the equations of fluid motion in 
Hamiltonian form. The Hamiltonian is homogeneous 
of degree four in the potentials, so Laplace's method 
is not applicable. 

In Sec. 2 we express the characteristic functional of a 
classical linear field in thermal equilibrium in terms of 
the second-order correlation (uiuj ). In Sec. 3 we obtain 
three different expressions for (uiuj ) in the classical 
case. In Sec. 4 we give a representation for (uiUj) in 
the quantum case and also a difference equation for it. 
In Secs. 5-7 we apply our results to find (u;uj ) in 
various special cases. 

2. CHARACTERISTIC FUNCTIONAL OF A 
CLASSICAL FIELD 

Let 
q(x, t) = [ql(X, I), ... ,qn(x, I)] 

and 
p(x, t) = [PI (X, t), ... ,Pn(X, I)] 

be the coordinates and conjugate momenta of a classi
cal field with Hamiltonian H(q, p) defined in a domain 
D. Hamilton's equations of motion for the field are 

bH bH 
qit = -;- (x, t), Pit = - ;- (x, t), i = 1, ... , n. 

up. uqi 
(2.1) 

We require that the field satisfy homogeneous bound
ary conditions on the boundary of D, which we shaI1 

not write explicitly, and the initial conditions 

q(x,O) = qo(x), p(x,O) = Po(x). (2.2) 

Now. ~e suppose that (2.1), (2.2), and the boundary 
condltlOns determine q and p uniquely in terms of the 
initial data qo and po· It is convenient to introduce the 
2n-component vector u(x, I) = [q(x, I), p(x, t)] and to 
write H(q,p) = H(u) and Uo = [qo,Po)' 

If the field is in thermal equilibrium at temperature 
T, then its statistical properties are determined by the 
Gibbs distribution e-PH(uol(Je-P][(uolduo)-I. Here (3 = 
l/kT, where k is Boltzmann's constant. We now 
introduce the characterIstic functional F(A) , which 
is the function-space Fourier transform of the Gibbs 
distribution, defined by 

F(A) 

= f exp (i L: inA-(X, t) , u(x, t) dx dt - (3H(Uo») duo 

x (f e-PH(uo) duof· (2.3) 

Here)' is a 2n-component vector. One virtue of F is 
that, except for a power of i, its functional derivatives 
at A = "0 are the correlation functions of the field, as 
we see from the following consequence of (2.3): 

biF I 
b).il(XI , tI ) ••• b).ilXj, ti) ).=0 

= ii f Ui1(XI , 11) ... u,;Cxj , tj)e-pmuo) duo 

x (f e-/lH(uo) duo r1 

== ii(UiJXI' tl ) ••• ui;Cx j , ti ». (2.4) 

The last equality in (2.4) defines the angular-bracket 
notation for the thermal average. 

In general, it is difficult to determine F, but, for a 
field with a quadratic Hamiltonian, F can be obtained 
readily from (2.3), as we shall now show. First we 
write H in the form 

H(u) = t LUMU dx. (2.5) 

Here M is a self-adjoint operator with its domain 
defined to include only fields which satisfy the bound
ary conditions. Then F()') is given by the following 
theorem, in which the summation convention is used. 

Theorem 1: The characteristic functional (2.3) of a 
field with the quadratic Hamiltonian (2.5) is given by 

F()') = exp (-tf<Xl r f<Xl J A;(x, t) 
-<Xl JD -<Xl D 

(ui(x, t)ulx', t')Alx', t') dx' dt' dx dt) 
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This result shows that the field is a Gaussian random 
function and that all its correlation functions are 
expressible in terms of its second-order or two-point, 
two-time correlation functions. 

Theorem 1 can be proved by using the normal-mode 
representation of the field to evaluate the integrals in 
(2.3). However, we shall give a different proof which 
also yields an interesting expression for the two-point, 
two-time correlation function. First, by using (2.5) in 
(2.1), we find that the field satisfies the linear equations 
of motion 

Ut = Lu. 
Here L is defined by 

L=JM, 

(2.6) 

(2.7) 

where J is given in terms of the nth-order identity 
matrix Iby 

J=(O I). 
-I 0 

(2.8) 

The first term on the right side of (2.13) is just 
2(3H(fl), as we see from (2.12) and (2.5). Therefore, 
(2.13) can be written 

r/. = (3H(p) - (3H(tfJ). (2.14) 

When (2.14) is used for the exponent in the numerator 
of (2.3), the integrals in the numerator and denomi
nator become identical except for the factor ePH(Jl). 

Therefore, they cancel, leaving the result 

F(A) = ePH<Jl). (2.15) 

By using (2.12) in (2.5) and replacing etL+ acting on 
A(X, t) by its adjoint acting on A(X, t'), we can write 
(3H(p) as 

(3H(p) 

= - ~ let:) I'" f A(X, t)etLM-1et'L+J.(x, t') dx dt dt' 
2(3 -et:) -et:) D 

= _1- I'" I'" f J.(x, t)e(t-t'lLM-lA,(x, t') dx dt dt'. 
2{l -et:) -et:) JD 

(2.16) The solution of the initial-value problem (2.6) and 
(2.2) can be written as 

The last form of (2.16) results from the following 
(2.9) sequence of identities: 

By using (2.9), we can rewrite the exponent r/. of the 
numerator in (2.3). Then we replace elL acting on Uo 

by its adjoint etL+ acting on J. to obtain 

r:t. == if 00 r J.. etLuo dx dt - (lH(uo) 
-'" JD 

= ifet:) f e-tLJ. . Uo dx dt - (lH(uo)' (2.10) 
-'" JD 

We now change from the integration variable Uo in the 
numerator of (2.3) to the new integration variable tfJ 
defined by uo(x) = tfJ(x) + p(x), where p(x) is a 
function to be chosen. Then (2.10) becomes 

r/. = J fet:) etL+ A . (UO + p) dt dx 
JD -00 

- (l LuOMP dx - (lH(uO) - (lH(p). (2.11) 

To complete the square in (2.11) by eliminating the 
terms linear in uO, we choose for flex) the value 

fleX) = .!.. M-1 etL J.(x, t) dt. . f'" + 

(l -00 

(2.12) 

Now (2.11) becomes 

IX = - - etL J.(x, t) dt Ii f'" + 
(l D -00 

f
et:) + 

X M-1 _"",et'L J.(x, t') dt' dx - (lH(uO) - (3H(p). 

(2.13) 

etLM-1et'L+ = etLL-Ve-t'MJ = etLL-le-t'JMJ 

= etLe-t'LL-1J = e(t-t'lLM-1. (2.17) 

The second equality follows from the power series for 
the exponential. 

We shall now represent the operator e(t-t'lLM-l in 
(2.16) as an integral operator with kernel (3R(x, x', 
t - ('), 

e(t-t'lLM-Y(x) = (l r R(x, x', t - t')f(x') dx'. (2.18) • JD 
Then by using (2.18) in (2.16) and (2.16) in (2.15), we 
obtain 

F(A) = exp (-tiOO f fet:) f J.(x, t)R(x, x', t - t') 
-et:) JD -et:) D 

X J.(x', t') dx' dt' dx dt). (2.19) 

Differentiating (2.19) with respect to Ai(X, t) and 
Aj(X', t') and then setting A = 0 and using (2.4) yield 

(ui(x, t)ulx', t'» 

= t[Ri;(X, x', t - t') + R;lx', x, t' - t)]. (2.20) 

Since only the symmetric part of R on the right side of 
(2.20) occurs in (2.19), we can use (2.20) to eliminate 
R from (2.19). In this way we obtain Theorem 1. 

3. TWO-POINT, TWO-TIME CORRELATIONS 
OF A CLASSICAL FIELD 

The two-point, two-time correlation function 
U(i(X, t)u;(x', t'» is given by (2.20) in terms of the 
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matrix R defined by (2.18). From (2.18) it follows that 
R can be written explicitly in the form 

R(x, x', t - t') =! r rex, y, t - t')G(y, x') dy. 
P JD 

(3.1) 

Here G and r are the Green's matrices defined by 

MG(x, x') = Ib(x - x'), (3.2) 

This fact and (2.20) show that 

(ui(x, t)ulx/, t '» = Rilx, x', t - t'). (3.11) 

Another expression for R can be obtained by using 
the normal modes of the field. To obtain it, we assume 
that p(x, t) can be calculated from q(x, t), and we shall 
deal only with q. Then we introduce the complete set 
of complex normal modes v.(x), which are n-com
ponent vectors and the corresponding eigenfrequencies 
w., s = 1,2, .... In terms of them the field q(x, t) can 
be written 

rt(x, x', t) = Lr(x, x', t), rex, x', 0) = Ib(x - x'). 

(3.3) 

To obtain another expression for R, we first set q(x, t) = t f w;f{fp.(t) + iQlt)Jvlx) 
8=1 

t - t ' = 0 in (3.1) and use (3.3) to get 

R(x, x', 0) = p-1G(X, x'). (3.4) 

From (3.2) and the fact that M+ = M, it follows that 

GT(X/, x) = G(x, x'). (3.5) 

Here the superscript T denotes the transposed matrix. 
Similarly from (3.3) we find after a little calculation 
that 

rT(x, x', t) = -Jr(x/, x, -t)J. (3.6) 

Now we differentiate (3.6) with respect to t and use 
(3.3) and (2.7) to obtain 

r;(x, y, t) = Jrb, x, -t)J = JLr(y, x, -t)J 

= -Mr(y, x, -t)J. (3.7) 

We note that, in (3.7), Land M operate on the 
variable y. Next we differentiate (3.1) with respect to t, 
use (3.7), replace M acting on r by M+ = M acting on 
G, and use (3.2) and (3.7) to obtain 

Rix, x', t) = ! r rt(x, y, t)G(y, x') dy 
P JD 

= { r [Mr(y, x, _t)]TG(y, x') dy 
f3 JD 

=!. r rT(y, x, -t)MG(y, x') dy 
p JD 

= p-1JrT(x', x, - t) 

= pr(x, x', t)J. (3.8) 

Finally, we integrate (3.8) with respect to t and use 
(3.5) to get 

R(x, x', t - t') = (J-IG(X, x') 

+ p-l f-t'r(x, x', s) ds J. (3.9) 

From (3.9) we find, by using (3.5) and (3.6), that 

RT(X/, x, t ' - t) = R(x, x', t - t'). (3.10) 

+ [Pit) - iQ.(t)]v:(x)}. (3.12) 

Here Q. and p. are the coordinate and momentum of 
mode s. The modes are assumed to be orthogonal with 
respect to M and so normalized that the Hamiltonian 
(2.5) takes the form 

w 

H = t L w.(P; + Q~). (3.13) 
.=1 

Then the equations of motion for p. and Q. are 
Pst = w.Q. and Q.t = -w.Ps, which yield 

P.(t) + iQ.(t) = [p.(O) + iQ.(O)]eiw,t. (3.14) 

We now use (3.12)-(3.14) in the integral in (2.4) which 
defines (ui(x, t)U;(X/, t '». The integration is taken over 
P.(O) and Q.(O) , and it can be performed explicitly 
with the result 

R;lx, x', t - t') = (qi(X, t)q,(X', t'» 

= ~~lW;-2 Re [VSi(X)v~(x')ei( •• (t-t'}J, 

i,j = 1, ... ,n. (3.1S) 

Here Vs; denotes component i of v. and * denotes the 
complex conjugate. 

We shall state the results of this section as a theorem. 

Theorem 2: The second-order correlation matrix 
R(x, x', t - t') = (u(x, t)U(X/, t')) is given by (3.1) or 
(3.9). It is the solution of the initial-value problem 
Rt = LR, R(x, x', 0) = p-lG(X, x'). The correlation 
matrix (qiq;) is also given by (3.15). 

4. TWO-POINT, TWO-TIME CORRELATIONS 
OF A QUANTUM MECHANICAL FIELD 

Theorem 1 also applies to a quantum mechanical 
boson field. [See Ref. 6, Eq. (22).] However, the two
point, two-time correlation function differs from the 
classical one. In the quantum mechanical case, 
q;(x, t) and q;(X/, I') are possibly noncommuting oper
ators, and the expectation value of their product may 
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not be real. Therefore, we define the correlation func
tion R't;m. to be the thermal expectation of one-half the 
anticommutator of the two operators, which is real. 
Then we use Eq. (20) of Ref. 6, with q instead of A, 
with c = I, and with Vi replaced by vSiei""t, to obtain 
in our notation 

Rq·m·(x x' t - t') 
"'1 " 

== !(q;(x, t)q;(x', t') + qix', t')qlx, t» 
00 

= iiI [(eJlli'" , - 1)-1 + t]w:;-1Re[vs;(x)v~(x')ei"'.(t-t'J], 
8=1 

i = 1, ... ,n. (4.1) 

In view of the symmetric form of the integral defining 
F(A) in Eq. (22) of Ref. 6, only this anticommutator 
occurs in it. We see from (4.1) that, as Ii tends to zero, 
the limit of R't;m. is R;j given by (3.15). 

We shall now obtain an interesting alternative 
characterization of Rq·m. for a boson or a fermion 
field. First we write 

Rq·m·(x, t, x', t') 

= t[p(x, x', t - t') ± pT(X', x, t' - t»). (4.2) 

Here and below the upper sign applies to bosons and 
the lower sign to fermions, pT denotes the transpose 
of the matrix p, and p is defined in terms of the oper
ator u by 

p(x, x', t - t') = Tr [e-JlHu(x, t)u(x', t')]fTr e-JIH. 

(4.3) 

The operator H is the Hamiltonian, which is a scalar. 
The fact that p depends on t - t' can be proved from 
(4.3) by rewriting the numerator of (4.3) as follows 
and using the invariance of the trace under cyclic 
permutation: 

Tr [e-JlHeili-ltHu(x, O)e-iTl-ltHeili-lt'Hu(x', O)e-Tl-1t'H 

= Tr [e-JlHeiTl-l(t-t'JHu(x, 0)e-ill-1lt-t·)u(x', 0)]. (4.4) 

The commutation relations for the field operators 
can be written succinctly in the form 

u(x, t)u(x', t') ~ [u(x, t)u(x', t')]T 

= ilir(x, x', t - t')J. (4.5) 

It is clear that (4.5) holds when t = t', and it can be 
proved for t ¥- t' by applying %t - L to both sides 
and noting that both sides vanish because of (2.6) and 
(3.3). Upon taking the thermal average of (4.5), we 
obtain 

p(x, x', t - t') ~ pT(X', x, t' - t) 

= ilir(x, x', t - t')J. (4.6) 

Another relation satisfied by p can be obtained by 
writing (4.3) in the form 

pT(X, x', t - t') 

= Tr [e-JlHeJIHu(x', t')e-JlHu(x, t»)fTr e-JIH 

= Tr [e-JlHu(x', t' - i{Jli)u(x, t)]fTr e-flH 

= p(x', x, t' - t - ifJli). (4.7) 

By combining (4.6) and (4.7) we obtain the follow
ing result: 

Theorem 3: The quantum mechanical second-order 
correlation. Rq·m.( x, t, x', t') of a boson or fermion 
field with the quadratic Hamiltonian (2.5) is given by 
(4.2) with p determined by the difference equation 

p(x, x', t - t') ~ p(x, x', t - t' - ifJli) 

= ilir(x, x', t - t')J. (4.8) 

Ifwe take the upper sign, divide both sides of (4.8) by 
-i{Jli, and let Ii tend to zero, we obtain the classical 
result (3.8), since R is the limit of p in the boson case. 

5. CORRELATION OF A SCALAR WAVE IN 
THREE DIMENSIONS 

We shall now apply Theorem 2 to obtain the two
point, two-time correlation function of a scalar field 
q satisfying the wave equation in an unbounded 3-
dimensional domain 

(5.1) 

The field q could be the velocity potential of an 
acoustic wave or could have various other interpreta
tions. In this case p = c-1qt, and so it suffices to 
determine the two-point correlation of q. By symmetry 
it depends only upon the distance r = Ix - x'i and the 
time difference 1" = cit - t'l ; thus we write 

R(r, T) = (q(x, t)q(x' , t'». (5.2) 

In Appendix A we show, by, using Theorem 2, that 

R(r, T) = Ij4."fJr, T < r, 
= 0, T > r. (5.3) 

The corresponding result for a quantum mechanical 
scalar boson field, omitting a vacuum fluctuation 
term which is singular when r = T, is given by Eq. 
(5.6) of Ref. 6. When a factor 16 is corrected to be 8, 
the result is 

Rq·m"(r, T) = _l_[L(.:!!.... (r + T») 
. g."fJr IifJc 

+ L(Ii;/r - T)) 1 (5.4) 
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FIG. 1. Comparison between the simultaneous two-point correlation functions of a 3-dimensional scalar classical field and a scalar 

quantum mechanical boson field both satisfying the wave equation (5.1). The classical correlation R(r, 0) (dashed line) is given by (5.3) and 
the quantum mechanical correlation Rq·m·(r, 0) (solid line) is given by (5.4) with T = O. The abscissa is rl(Jfzc where r is the distance between 
the two points. 

Here L is the Langevin function 

L(s) = coth s - ri. (5.5) 

When 7T(r + 7-}JIi(3c and 7T(r - T)JIi(3c are both large 
and positive, both L's are approximately unity and 
Rq·m. is approximately R given by (5.3). When 7T(r - T)/ 
li(3c is large and negative, the second L is nearly -1 
and Rq·m. is nearly zero, in agreement with (5.3). The 
difference between Rq·m. and R is appreciable only 
within a thermal wavelength (3lic or so ofthe light cone 
r = T, and it decreases exponentially with distance 
from the cone. Therefore, Rq·m. can be approximated 
by R except in this layer (see Fig. 1). 

6. CLASSICAL CORRELATION OF A SCALAR 
WAVE IN ONE DIMENSION 

If q satisfies (5.1) in one dimension, an analysis 
similar to the foregoing yields 

R(r, T) = R(O, 0) - r/2(3' T < r, (6.1) 

R(r, t) = R(O, 0) - T/2(3, T> r. (6.2) 

The constant R(O,O) is undetermined because G is 
determined only within an additive constant. These 

results (6.l)and (6.2) apply to a transverse component 
of the vector potential of an electromagnetic field, 
to the velocity potential of an acoustic wave, etc. In 
these cases the physical quantities are first derivatives 
of the potentials and the correlation of two physical 
quantities is a second derivative of R. Therefore, it is 
a b function, vanishing except on the light cone r = T, 

where it is singular, and the arbitrariness of R(O, 0) is 
of no significance. However, if q represents the trans
verse or longitudinal displacement of an elastic string, 
R itself is meaningful. But since the string is not tied 
down anywhere, it is not surprising that R(O, 0) is 
undetermined. 

To eliminate the arbitrariness of R(O, 0), let us 
consider a semi-infinih: string fixed at its end point 
x = O. Thus we assume that q(x, t) satisfies (5.1) for 
x > 0 and that qeD, t) = 0. Then G(x, x') satisfies 
G.,., = -b(x - x') and G(O, x') = O. Therefore, 

G(x, x') = x 

for 0::;; x ::;; x' and G(x, x') = x' for x ~ x', assum
ing that G is bounded. We now solve the wave equa
tion for R with the initial value (3-IG, where RT = 0 
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initially because R is even in T and where R = 0 at 
x = O. We readily find that 

R(X,X',T)=X/f3, O::S;;X::S;;X'-T, 

= x' / f3, x ~ x' + T, 
=0, O::S;;X::S;;T-X', 
= (x + x' - T)f2f3, 

(I) 

(1') 

(III) 

lx' - TI ::s;; x ::s;; x' + T. (II) 
(6.3) 

The numbered regions are shown in Fig. 2. 
From (6.3) we see that R(x, x, 0) = x/f3; thus, the 

mean-square value of q(x, t) increases linearly with the 
distance from the end point x = O. The two-point 
correlation at one time R(x, x', 0) is given by x/f3 for 
o ::s;; x ::s;; x' and by x' / f3 for x ~ x'. The two-time 
correlation at one point R(x, x, T) is given by (2x - T)/ 
2f3 for T::S;; 2x and by zero for T ~ 2x. The remarks 
above, about the vanishing of correlations of physical 
quantities which are derivatives of q, also apply here 
since R is piecewise linear. 

Next we shall consider a solution of (5.1) in the 1-
dimensional finite interval oflength L with the bound
ary conditions 

q(O, t) = q(L, t) = O. (6.4) 

To illustrate the use of (3.15), we shall use it to find R. 
The normalized modes and eigenfrequencies of (5.1) 
and (6.4) are 

v.(x) = (2fL)l sin (s7Tx/L), 
Wo = s7Tc/L, S = 1,2, . . . . (6.5) 

When (6.5) is used in (3.15), the result is 

R(x, x', T) 

2L ~ 2' (S7TX) . (S7TX') (S7TT) = -2- k S- sm - sm - cos -
7T f3s=1 L L L 

= ~ ~:S-2[COS (S7T(X - x' + T») 
27T2f3 0=1 L 

+ cos (S7T(X - x' - T») 
L , 

(
S7T(X + x' + T)) (S7T(X + x' - T»)] - cos - cos . 

L L 
(6.6) 

We see that R is periodic in T with period 2L, so that 
it suffices to determine it in one period. 

To evaluate the sum in (6.6), we use the identity 
<Xl 

.~>-2 cos SZ' = ~7T2 - !7TZ + tz2, 
8=1 

z = z' mod 27T, 0 ~ Z ~ 27T. (6.7) 

When we use (6.7), we obtain different analytic ex
pressions for R in different regions of (x, x', T) space. 
In Fig. 3, six numbered regions of the (x, T) plane are 
shown. The value of R in each region is given in the 

m/ / 
x = T- x' X = x' + T 

x' 1I 

I I' 

~------~---------------x x' 
FIG. 2. Three numbered regions of the positive quadrant of the 

(x, T) plane are shown for a fixed value of x'. The inequalities de
fining these regions are given in (6.3). 

following list: 

R(x, x', T) = x(L - x')/f3L, in I, 

=x'(L-x)/{3L, in 1', 

= -xx'/f3L, in III, 

= -(L - x)(L - x')J{3L, in III', 

2L 

2L-x' 

= [x(L - x') + x'(L - x) - LT]/2{3L, 
in II, 

= [x(L - x') + x'(L - x) 

- L(2L - 2T))/2{3L, in IV. (6.8) 

2L 

I 
~ I' 

/ x=2L+x'-T 

X=T+X'-2L L+x' 

T ill m' 

, 
x 

o 

I 

Jl 

X= X'-T 

x 

x=2L- X'-T 

I 
x=x+T 

I' 

L-x' 

L 

FIG. 3. Six numbered regions of the strip 0 ~ x ~ L, 0 ~ T < 2L 
in the (x, T) plane are shown for a fixed value of x'. The slanting 
lines bounding these regions are characteristics with slope + I or - 1. 
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This function is continuous and has discontinuities in 
its first derivatives on the characteristics separating 
the various regions. The result (6.3) for the semi
infinite domain and the results (6.1) and (6.2) for the 
infinite domain can be obtained from (6.8) by letting 
L become infinite, with one or no end points fixed. 
The mean-square value of q(x, t) is, from (6.8), 

R(x, x, 0) = x(L - x)/fJL. (6.9) 

Thus it varies quadratically from zero at the end points 
to a maximum of L/4fJ at the midpoint. This result is of 
interest for the thermal oscillation of a string of length 
L fixed at its end points. 

The case q", = 0 at the end points is treated in 
Appendix B. 

7. QUANTUM MECHANICAL CORRELATION 
OF A SCALAR WAVE IN ONE DIMENSION 

Let us repeat the preceding calculations for a 
quantum mechanical scalar boson field satisfying 
(5.1) and (6.4). Then the eigenfunctions and eigen-

values are again given by (6.5), and (4.1) becomes 

Rq·m,(x, x', r) = 2elli[(ekP!lUC/L - 1)-1 + t]k-1 

7T lc=1 

X sin (k~X) sin (k~XI) cos (k;r). 
(7.1) 

From (7.1) we see that Rq,m, is symmetric in x and x' 
and even and periodic in r. 

The most essential features of Rq,m, will be retained, 
and the analysis will be simplified, if we let L become 
infinite in (7.1). In this case the interval becomes 
semi-infinite. Then the sum in (7.1) becomes an inte
gral, and we obtain 

Rq,m,(x, x', r) 

= 2ell roo[(eapliC _ 1)-1 + t]oc-1sinocxsinocx/cosocrdoc. 

7T Jo (7.2) 

The integral (7.2) is the sum of a vacuum fluctuation 
term R~,m" which has just t in the bracket, and the 
main part R~,m. in which the t is omitted, In Appendix 
C we evaluate R~,m, and R~,m, with the result 

R ' . = Ro' '+ Rl' '= -log . qm qm q m Ile 1 sinh(7T Ix +x' +rl//lllc)sinh(7Tlx +xl-rl//llle)1 

47T sinh (7T Ix - x' + rl/ /llle) sinh (7T Ix - x' - rl/ /llle) 
(7.3) 

Since Ri,m. becomes infinite when any of the four 
absolute values in (7.3) vanishes, (7.3) is not then 
valid. This occurs on the light cones shown in Fig. 2, 
which separate the various regions. 

The mean-square value of q(x, t) is given by setting 
x' = x and r = 0 in Rq,m,(x, x', r). From (C4) we 
find 

Rq,m,(x x 0) = Ilc 10 1 sinh (27Tx//llle) I. (7.4) 
o " 27T g 27TX/ /llle 

The vacuum fluctuation term R~,m,(x, x', r) is sin
gular at x = x' and r = O. For 27Tx//llle large, (7.4) 
yields 

x Ile 47TX Rq·m,(x x 0)......., - - - log - + . ". (7.5) 
o " /l 27T /llle 

Since R(x, x, 0) = x//l, Eq. (7.5) shows that the classi
cal and quantum mechanical results agree, except for 
a term of order Ii, as 27TX/ /llic increases. Since the 
coefficient of this Ii term increases as x increases, the 
difference is not uniformly small for all x, although it 
is a small fraction of the leading term. This is shown 
clearly in Fig. 4. 

The case q", = 0 at the end points is treated in 
Appendix C. 
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APPENDIX A: DETERMINATION OF R FOR A 
SCALAR FIELD 

From (5.1) and (5.2), R satisfies the wave equation; 
thus it is of the form 

R(r, r) = r-1 [f(r - r) + g(r + r)]. (AI) 

Since R is even in r, g = / + b, where b is a constant 
which can be set equal to zero without loss of general
ity. 

To use Theorem 2, we note that in the present case 

H(u) = t L [(V'q) 2 + e-2q;] dx 

= tin (-ql1q + p2) dx. (A2) 

Therefore, M = diag (-11,1) and G = diag [1/47Tr, 
b(x - x')], so that 

R(r, 0) = 1/47T/lr. (A3) 

Now (AI) and (A3) yield 2/(r) = 1/47T/l for r > O. 
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FiG. 4. The mean-square value of a I-dimensional scalar field satisfying the wave equation (5.1) in a semi-infinite region, as a function of 
the distance x from the boundary. The classical value R(x, x, 0) (dashed line) is given by (6.3) and the quantum mechanical value for a boson 
field, R~·m·(x, x, 0) (solid line), is given by (7.4). The ordinate is fJR~·m·(x, x, O)/x which is unity in the classical case, and the abscissa is 
x/fJhc; 

Then (AI) can be written 

R(r, 1') = 1/47TfJr, l' < r. (A4) 

For 11'1 ¥: 0, we require that R be finite. By using this 
condition in (AI), we obtain 

f( -1') + geT) = 0, l' > 0. (AS) 

Since, fOTT > 0, g = f = Ij87TfJ, (AS) yieldsf( -1') = 
-1/87TfJ for l' > 0. Then (AI) gives 

R(r,T) = 0, l' > r. (A6) 

Equations (A3) and (A6) determine R(r, 1') completely 
and yield (5.3). 

APPENDIX B: R FOR A SCALAR FIELD WITH 
q", = 0 AT THE END POINTS 

Now we shall consider (5.1) again, but with the 
boundary conditions 

q.,(o, t) = q.,(L, t) = 0. (BI) 

In this case the normalized eigenfunctions and eigen
values are 

Vo = L-!, Wo = 0, v. = (2jL)! cos (s7Tx/L), 

Ws = s7Tc/L, S = 1,2, .. '. (B2) 

In the derivation of (3.15), it was assumed that 
w. :;6 0, for otherwise the integral diverges. Therefore, 
we shall omit the mode Vo with frequency zero. Then 

(3.15) becomes 

R(x, x', 1') 

= 2; i: S-2 cos (S7TX) cos (S7TX') cos (S7TT) 
7T fJ s~l L L L 

L ~ -2[ (S7T(X + x' + 1')) =-- 4 S cos 
27T2fJ s~l . L 

(
S7T(X - x' + 1')) + cos 

L 

+ cos C7T
(X -Lx' - 1')) + cos C7T(X + :' - 1')) J. 

(B3) 

Proceeding as before, we find the following, with the 
regions shown in Fig. 3: 

R(x, x', 1') 
= (! _ x' + x2 + (X')2 + T2)!: , in I, 

3 L 2L2 fJ 

= (! _ ~ + X2 + (X')2 + T2)!:. , in I', 
3 L 2L2 {3 

= (! _ !.- + X2 + (X')2 + T2)!:, in III, 
3 L 2L2 {3 

= (~ _ x + x' + l' + X2 + (X')2 + T2)!:, in III', 
3 L 2L2 fJ 

= (! _ x + x' + l' + x2 + (X,)2 + T2)!:, in II, 
3 2L 2L2 fJ 

= (~ _ x + x' + 31' + x2 + (X,)2 + r2)!:, in IV. 
3 2L 2L2. fJ 

(B4) 
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As before, R is continuous with discontinuous first 
derivatives on those characteristics of the wave equa
tion separating the various regions. 

The mean-square value of q(x, t) is, from (B4) in 
region I, 

(BS) 

We see that this function has its maximum at the 
end points and its minimum at the midpoint. The two
point correlation at equal times, R(x, x', 0), is found 
to be 

R(x x' 0) = (! _ ~ + x
2 
+ (X')2)!: ' 

" 3 L 2L2 P , X ~ X , 

= (1 _ x' + x2 + (X')2)!: 
3 L 2L2 p' x:::;; x'. 

(B6) 

The two-time correlation at one point, R(x, x, T) is, 
for x ~ fL, 

R(x x, T) = (! _ 2x + T + 2X2 + T2)!: 
, 3 L 2L2 p' 

o :::;; T :::;; 2(L - x), 

= (i _ 2x + T + 2X2 + T2)!:: 
3 L 2~ p' 

2(L - x) :::;; T :::;; 2x, 

= (i _ 2x + 3T + 2X2 + T2)!:: 
3 2L 2~ p' 

2x :::;; T :::;; 2L. (B7) 

For 0 :::;; x :::;; tL, (B7) holds with x replaced by L - x 
in the Inequalities. 

To obtain the correlation function for the semi
infinite region x ~ 0, we may try to let L become 
infinite in (B4); but then R diverges like L/3p. There
fore, we first subtract L/3P = R(O, 0, 0) from Rand 
then let L become infinite. In this way, we obtain 

R(x, x', T) - R(O, 0, 0) = -x'/P, 

= -x/P, 

in I, 

in 1', 

= -T/P, in III, 

= - (x + x' + Tj)2P, in II. 
(BS) 

From (6.17) we find that 

R(x, x, 0) - R(O, 0, 0) =-x/P, (B9) 

R(x, x, T) - R(O, 0, 0) = -(2x + T)/2P, 

0:::;; T:::;; 2x, 

= -TIP, T ~ 2x. (BlO) 

APPENDIX C: EVALUATION OF Rq·m. 

By using trigonometric identities, we can rewrite 
(7.2) as 

Rq·m. = eli roo [(eab _ 1)-1 + HX-l[COS oc(x - x' + T) 
217' Jo 
+ cos oc(x - x' - T) - cos oc(x + x' + T) 

- cos oc(x + x' - T)] doc. (C1) 

Here b = plie. To evaluate the integral in (B2), let us 
consider the integral 

- -- doc = - - coth - - -, b > 0. 1
00 

sin ocz 17' ( 7TZ b ) 
o eab 

- 1 2b b 7TZ 

(C2) 

Integration of (C2) with respect to z, from ZI to Z2, 

yields 

roo cos OCZ2 - cos OCZ1 doc 

Jo oc(eab 
- 1) 

11 (Sinh (7Tz1Ib») 11 (Sinh (7Tz2Ib») = ][ og - 2 og . 
7Tzl1 b 7Tz21 b 

(C3) 

We can use the result (C3) to evaluate that part of the 
integral in (CI) containing (eab 

- 1)-1 as a factor. We 
shall denote it by R~·m .. It is given by 

Rri.m. = eli log (Sinh [7T(X + x' + T)/plie] 
417' (x + x' + T) 

sinh [7T(X + x' - T)/plie] 
X 

(x + x' - T) 

(x - x' + T) 
x---"-----'--'------

sinh [7T(X - x' + T)/plie] 

(x - x' - T) ) 
X . 

sinh [7T(X - x' - T)/plie] 
(C4) 

The remaining integral, containing t as a factor in 
the integrand, is associated with vacuum fluctuations. 
We shall denote it by Ri·m .• It can be evaluated by 
utilizing the following integral, in which ZI and Z2 are 
both positive: 

la laJz. (cos OCZ2 - cos OCZ1)OC-
1 doc = (-sin ocz) dz doc 

o 0 '1 

= (cos az - I)Z-1 dz I'· 
Z1 

I ZI + cos xd l
az. 

= og- -- X. 
Z2 aZl X 

(CS) 

Upon taking the limit as a becomes infinite in (CS), the 
left side assumes the form of the integral in Ri·m., 
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while the integral on the right vanishes. By using this 
result in (CI), we obtain 

R~.m. = lie log (IX - x' + rllx - x' - orl). (C6) 
47T Ix + x' + rllx + Xl - rl 

The absolute signs occur in (C6) because all the co
sines in (7.3) are even functions. The result (C6) is not 
valid if anyone of the four absolute values vanishes, 
since then the limit of the last integral in (7.7) is not 
zero. Instead it leads to b functions of these absolute 
values. By combining (C6) and (C4), we obtain (7.3). 

In case q1) = ° at the end points, the modes and 
eigenfrequencies are given by (B2), and Rq·ID. is given 
by using them in (4.1). As in the classical case, we 
omit the mode Vo with eigenfrequency zero. By letting 
L become infinite, we convert the sum representing 
Rq·m. into an integral. It is the same as (7.2) with 
sin IXX sin IXXI replaced by cos IXX cos IXX'. Trigono
metric identities enable us to reduce the integral to the 
form (CI), with plus signs in front of all four cosines. 

Before evaluating the integral, we observe that it 
diverges at the lower end point. Therefore, we consider 
the difference 

Rq·m·(x, x', or) - Rq·m'(O, 0, 0), 

which is finite. We denote the difference between the 
integrals containing (e· b - 1)-1 as a factor by 

Rg·m·(x, x', or) - Rg·m·(O, 0, 0). 

By using (C3) with Z1 = 0, we can write it as 

R~·m·(x, x', r) - Rg·m·(O, 0, 0) 

eli I (Sinh 7Tb-l ex - x' + or) 
= -- og 

47T 7Tb-\x - x' + r) 

sinh 7Tb-l (x - x' - 7') sinh 7Tb-l (x + x' + 7') 
X -----~--------~-------~---~~ 

7Th-l (x - x' - r) 7Th-l (x + x' + or) 

sinh 7Tb-l (x + x' - 7'») 
X . (C7) 

7Tb-l (x + x' - or) 

The difference between the integrals containing t 
as a factor is the vacuum fluctuation term, which is 
divergent. 
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A relativistic dynamical group recently introduced by Aghassi, Roman, and Santilli for the quantum 
mechanics of elementary particles is briefly reviewed. It is shown in detail that the algebra of this group 
can be obtained by contracting the Lie algebra of the inhomogeneous de Sitter group ISO (3 , 2). Some 
crucial concepts of the proposed new group are shown to appear in a new light when viewed in the 
context of a de Sitter world. The emergence of proper time as an additional kinematical variable is dis
cussed in some detail. 

1. INTRODUCTION 

Recentlyl we proposed a new relativistic group 
(denoted by (£)s) as the symmetry group of dynamics. 
The carrier space of (£)5 is the Cartesian product 
space E3•1 x E1 , where E3•1 is the Minkowski space 
and E1 a I-dimensional manifold, with 

x = (XO Xl x2 x3) E E , " ,3 t 1 

and U E E1 • The defining transformations of (£)5 are 

Xll----)- x,p = A~xy + aP + bPu, 

u ----)- u' = u + <1. (Ll) 

Here A~ is a restricted Lorentz matrix, all a constant 
translation vector, bp another constant vector, and (J 

a scalar. Since we choose all XII and u to have the 
dimension of length, bll is dimensionless and (J has the 
dimension of length. Clearly, the IS-parameter group 
(£)5 contains the restricted Poincare group as a sub
group. The subset of transformations XII ----)- XII + bjJu 
we call zest transformations. They are analogous to 
the boost transformations of the nonrelativistic Galilei 
group. Actually, it is easy to see that (£)5 contains the 
nonrelativistic Galilei group (£)4 as a subgroup. The 
detailed structure of (£)5 can be written as 

(£)5 = {T~ ~Tn x {T~ ~ SOo(3, I)}. (1.2) 

Here T: is the space-time translation group, Tf the 
u translation group, T: the zest group, and SOo(3, 1) 
the restricted Lorentz group. Equation (1.2) reveals 
that (£)5 is a group extension2 of the restricted Lorentz 
group.s Since the restricted Poincare group is also 
an extension of SOo(3, 1), our suggested group (fj5 

can be looked upon as a natural generalization of the 
Poincare group. Both "grow out" from the metric
determining Lorentz group in an analogous manner. 
We recall at this point that the nonrelativistic Galilei 
group (fj4 is a group extension of the rotation group 
SO(3) which, in turn, is the metric-determining group 
of the Euclidean space4 E3 • Furthermore, (fj4 contains 
the inhomogeneous Euclidean group /SO(3) as a 

subgroup. All these considerations show that our 
proposed group (fj5 is a natural generalization of the 
Galilei group (fj4' but it is a group for relativistic 
phenomena. The main heuristic point of our argument 
in Ref. 1 was that the Poincare group should be looked 
upon simply as a geometrical, kinematical group, 
just as /SO(3) is only a (nonrelativistic) kinematical 
group. In order to have a relativistic dynamical group, 
the Poincare group should be augmented in a manner 
analogous to the enlargement of /SO(3) to (£)4' 

which is known to be the (nonrelativistic) dynamical 
group. Our discussion above shows that this enlarge
ment of the Poincare group leads precisely to our 
group (£)5' 

As was discussed in detail in Ref. 1, for the use in 
relativistic quantum mechanics a further extension 
must be made.s The new relativistic quantum mechan-

ical group will be denoted by &s and its structure is 

(£)s = {T~ x (T~ X Tm ~ {T: >5) SL(2, C)}. (1.3) 

Here T: denotes a I-dimensional Abelian phase group 
and SL(2, C) is the covering group of SOo(3, 1). Thus, 

our &s is the scalar extension2 of the covering group 
of (£)5 by a phase group. 

By denoting the generators of SL(2, C), T~, T:, 
and T;by JjJv, P!" QjJ' S, respectively, the Lie algebra 

of &5 was found to be as foIlows6: 

[Jpy , Jpa] = i(gvpJjJa - gjJpJ.a - gjJaJpy + gvaJPjJ)' 

(1.4a) 

[PI" JpaJ = i(gjJpPa - gll"Pp), 

[PII , p.J = 0, 

[Jp ., S1 = 0, 

[P!" S] = 0, 

[Qp, QvJ = 0, 

[Pp, Qv] = -igllyl-t, 

(J pv' Qp] = i(gypQ!, - gllpQy), 

[S, QpJ = iPp' 

(l.4b) 

(l.4c) 

(l.4d) 

(1.4e) 

(1.4f) 

(l.4g) 

(lAh) 

(1.4i) 

2297 
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The constant I in (l.4g) has the dimension of length 
and its appearance is connected with the phase group 
~. We interpret I as a covariant fundamental length, 
and, clearly, we have a superselection rule. 

The Casimir operators of &5 were found to be 

:D = Pp,pp, + 21-1S, (1.5a) 

'6 = tTp,.Tp,·, (1.5b) 

(1.5c) 
where 

with 
Tp,. == Jp,. - lMp,., (1.6) 

(1.6 ') 

In Ref. I we discussed the immediate physical 

implications of &5' We showed that Xp, == -IQp, is a 
perfectly acceptable relativistic space-time position 
operator. Furthermore, 

.M.,2 == -21-18 (1.7) 

was shown to act as a nontrivial relativistic mass 
operator. Note that both Xp, and .M.,2 are operators in 

the Lie algebra of &5' We also pointed out that S 
plays a further role: It acts as an evolution operator 
in the sense that 

~~ = i[S, 0] (1.8) 

for any operator 0 which is a function of Xiu) and 
Pp,(u). In addition to these basic observations, we 
studied briefly the projective irreducible unitary 

representations of &5 and pointed out that we obtain 
towers of states with increasing spin. Using the 
realization of the operators, we also gave simple 
models where the mass spectrum was calculated. 

At this point we note that the carrier space Ea,1 x 
El of &5 is not endowed with metric.7 We may there
fore ask whether there exists some metric space with 
a group of motions which, by a well-defined limiting 

procedure, reduces to our <£5' It is well known that 
the standard procedure for performing limiting 
procedures on groups is that of contraction.s In 
particular, it has been shown9 that the nonrelativistic 
quantum mechanical Galilei group arises as the con
traction of the covering of the connected Poincare 
group. The main purpose of the present paper is to 
show that our relativistic quantum mechanical group 

&;5 is the contracted limit of the covering of the con
nected component of the inhomogeneous de Sitter group 
ISO(3,2). 

There are several reasons why our present study 
merits some interest. First, the representation of 
quantities belonging to &;5 in terms of limits of 

quantities that belong to ISO (3 , 2) sheds further light 
on to the nature of important physical entities, such 
as the mass (and evolution) operator S and the zest 
(or position) operators Qp.- Secondly, the formulation 

of a theory in de Sitter space, of which our <£5 theory 
is a limiting case, opens up the possibility of studying 
directly quantum dynamics in the de Sitter world. As 
is well known, the de Sitter world merits special 
attention because it is the embedding of the simplest 
nonflat Riemannian spaces, viz., the spaces of constant 
curvature. Thirdly, the study of the contraction of 
[SO (3 , 2) is interesting from the purely mathematical 
point of view as well. 

In connection with the second and third item listed 
above, we note that even though much work has been 
done in exploring the possibility of a particle theory in 
a de Sitter world,IO these investigations centered on 
the use of the homogeneous group SO(4, I) or SO(3, 2). 
As far as we know, there is only one attemptIl to 
utilize the framework of [SO(4, I). 

There is one more bibliographical remark we wish 
to make. While we were preparing the present work, 
we became aware of a paper by Castell12 in which he 
endeavors to construct Lie algebras that contain a 
relativistic position operator. One of his algebras is 

isomorphic to the Lie algebra of our group &5' and 
another of his algebras is isomorphic to the [SO (3 , 2) 
Lie algebra. He also mentions that the former can be 
obtained by contracting the latter. However, the 
detailed properties of these algebras and the actual 
process of the contraction have not been considered in 
Ref. 12. 

2. THE [80(3, 2) GROUP AND ITS 
CON'IRACTION 

Let us start with the carrier space Ea,1 x El of our 

group &5 and change it to the geometrical manifold 
Ea.2 by introducing a metric. We denote the points1a 

of Ea,2 by xa , so that for a = 0, 1,2,3 we have our 
previous xl' coordinates, while we set 

X4 = u. (2.1) 

The metric in E3 •2 is defined by the line element14 

where 
gab = 0, if a ¢ b, 

goo = +1, 

gll = g22 = ga3 = -1, 

g44 = +k2
• 

(2.2) 

(2.2') 

For the actual £3,2 space, k2 can be taken to be the 
constant + 1; however, since it will be our contraction 
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parameter, we prefer to use right from the beginning 
the notation k 2

• 

As usual, we define gab through the relation 

(2.2") 

We then easily verify that the Casimir operators are 

12 = Papa, 

14 = !w"b wab, 
13 = iWabJab. 

(2.1Oa) 

(2.1Ob) 

(2.1Oc) 

This implies, in particular, that 

g44 = Ijk2. 

It will be convenient to rewrite these expressions in 
(2.2"') 4-dimensional notation. With some trivial labor, we 

get 
To avoid confusion, we also note that 

X4 = g44X4 = k2u. (2.3) 

The space £3.2 equipped with the metric (2.2) is the 
embedding of the so-called closed de Sitter world. 
The group of isometries (group of rigid motions) of 
£3.2 is the inhomogeneous de Sitter group IS0(3, 2). 
The transformations of this group are defined by 

(2.4) 

where Ba is a constant 5-vector and 

(2.4') 

In the present paper we are interested only in the 
Lie algebra of the (covering group) of the connected 
component of IS0(3, 2). This algebra has the fifteen 
generators Jab = -Jba and Pa. The algebra is given 
by 

[Jab' Jed] = i(gbcJad - gaJbd - gadJeb + gbdJea), (2.5) 

(2.6) 

(2.7) 

It will be convenient to rewrite these relations in a 
more detailed form. We then have the algebra 

[Jpv , Jp,,] = i(gvpJp" - gppJv" - gp"Jpv + gv"Jpp), 
(2.8a) 

[Pp, Jp,,] = i(gppP" - gp"Pp), 

[Pp , Pv ] = 0, 

[JJlV' P4] = 0, 

[PJI ' P4 ] = 0, 

[J4J1 , J4v] = ik2J I'V' 

[Pp, J4V] = -igpvP4, 

[JJlV' J4p ] = i(gvpJ4Jl - gJlpJ4v), 

[P4, J4P] = ik2PI" 

(2.8b) 

(2.8c) 

(2.8d) 

(2.8e) 

(2.80 

(2.8g) 

(2.8h) 

(2.8i) 

The Casimir operators of ISO (3 , 2) are constructed 
in the standard manner. We have at our disposal the 
vector Pa , the tensor Jab' and form the pseudotensor 

(2.9) 

12 = PJlpJI + P4P" 

14 = (lj2k2)WJlWp + tHJlyHPv, 

(2. 11 a) 

(2.11b) 

13 = i€I'V"T(JI'VJ"TP4 + k2JJlvM"T + k2MJlvJ"T)' (2. 11 c) 

Here WJl is the Pauli-Lubanski vector 

(2.12) 

HJlV is the abbreviation 

(2.13) 

and M"T is defined by (1.6 '). 
We are now ready to perform the contraction of 

the ISO (3 , 2) algebra with respect to the Poincare 
algebra1S0(3, 1). This means that we will let JI'V and 
Pv go to zero relative to J4P and P4. However, prior to 
this limiting, we first make a redefinition of the latter 
operators, viz., perform the transformations 

P4 = k2jl + S, 

J41' = k 2Qp. 

(2.14) 

(2.15) 

In (2.17), I is an arbitrary nonzero constant of the 
dimension of length. It is now clear that the above 
defined contraction amounts to letting k2 ---+ 00. 

Trivial inspection of Eqs. (2.8) now reveals that 
under the contraction the IS0(3, 2) algebra goes over 

into our m5 algebra (1.4). QED 
Concerning the contraction of the Casimir opera

tors, we note the following. From (2.14) we get 

P4P4 == g44P4P4 = k2j/2 + 2Sjl + S2jk2. (2.16) 

Thus, redefining the invariant 12 of ISO (3 , 2) to be 

1~ = 12 - k 2W = Papa - k 2W, 
we see that under contraction 

(2.17) 

(2.18) 

with 1> being the Casimir operator of &5 as given by 
Eq. (l.5a). 

Next, we consider (2.13) and observe that, owing to 
(2.14) and (1.6), we have 

(2.19) 
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Hence, redefining 14 to be 

1~ = /214' (2.20) 

we obtain easily from (2. 11 b) that under contraction 

(2.21) 

where ::t is given by (1.5b). 
FinaJly, concerning the contraction of la, we first 

redefine it to be 

(2.22) 

Then we note that we may add to the right-hand side 
of (2. Ilc) an arbitrary multiple of 

B == EllvarMllvMar, 

because, on account of (1.6 '), this expression is 
identically zero. After these trivial manipulations we 
then readily see that under contraction 

(2.23) 

with J{, given by (Uc). 

3. DISCUSSION 

The major insight that we gained from the present 
work is that, if desired, our proposed relativistic 
quantum dynamics can be formulated in the frame

work of ISO (3 ,2) rather than of &5' This has the 
advantage that we are more familiar with groups of 
isometries than with the rather complicated group 
structure (1.3). For example, it will be easier to find 
equations describing particles of arbitrary spin in the 

ISO(3,2) framework than it would be in the &5 
framework. The corresponding &5 equation will then 
be obtained by contraction.15 In spite of these formal 
advantages we maintain that the theory to be pursued 

further is the &5 dynamics discussed in Ref. 1. This 
does not demand the description of phenomena in a 
5-dimensional world: The metric space-time structure 
is still the Minkowski world, even though an additional 
kinematical parameter must be added so as to obtain 
the carrier space of the dynamical group.16 The zest 
operators Q" (or equivalently, the relativistic position 
operators X,,) have a much more direct meaning than 
the rotation operators J41l from which they arise by 
contraction, cf. (2.15). 

One further insight we obtained in our calculations 
is that, as seen from (2.14), our operator S [connected, 
via Eq. (1.7), with the mass] is essentially the finite 
part of the P4 translation operator of the de Sitter 
world. This observation also sheds further light on 
our previous knowledge [see Eq. (1.8)] that S in some 
sense serves as an evolution operator. Actually, we 
can now directly show that this evolution is with 

respect to proper time. To see this, let us define the 
proper time r of the de Sitter world by setting 

dp = k dr. (3.1) 

Then, from Eq. (2.2) we have 

dr2 = (l/k2) dXI< dx lt + (dX4)2, (3.2) 

so that after the contraction k2 -). 00 we obtain 

(3.3) 

This tells us that in the &5 framework the additional 
kinematical variable u is nothing 'else than the proper 
time. 

We can go somewhat further and define in the 
de Sitter world the S-velocity 

Ua = dx
a

• 

d7' 

Upon contraction we then get 

UIl-). dx/l. 
du ' 

(3.4) 

(3.5a) 

confirming the interpretation of u, and we also find 

(3.Sb) 

From (3.2) it follows that 

U"UI< = k2[l - (U4)2]. (3.6) 

In view of (3.5b), the contraction of UIlUI< is an 
indefinite expression, and, clearly, it is not invariant 

under &5' However, it is invariant not only under the 
Poincare group ;r but also under ;r >9 Tr (where T; 
is the u-translation group). 

A definite numerical value for UIlUIL in the &5 
framework can be obtained if we set 

(3.7) 

with m being the mass eigenvalue. An elementary 
calculation then tells us that, after contraction,17 

U"U" + (2S/1m2
) = <JJ/m2

• (3.8) 

Since (3.8) together with (3.7) is consistent with (1.5a), 
the relating of ua and pa by (3.7) is justified. Then, as 

a consequence, in the &5 theory we have pll = mU", 
as already conjectured in Ref. 1. 

APPENDIX 

We wish to illustrate here the obtaining of dynami

cal equations and Lagrangians in the &5 framework 
via contracting ISO(3, 2) results. 
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The simplest dynamical equation in the /SO(3, 2) 
framework is /~ = O. Realizing the Pa by the differ
ential operators iOa , we have, from (2.17), 

(AI) 

Assuming that 1p is complex, we have that the corre
sponding action integral is 

w = fL(1p,Oa1p)dX = f(Oa1p*oa1p - ~: 1p*1p) dx, 

(A2) 

where 

(A2') 

Using (2.14), we easily find that, upon contraction, 

w ~ f ('0# 1p*'Ou1p + ~i 1p*ou 1p) dxo dx1 dx2 dx3 du. 

(A3) 

(Here we used the realization of S by iou, cf. Ref. 1.) 
The corresponding equation of motion is 

This, naturally, coincides18 with what one obtains 
directly from contracting (AI). However, there is 
some new insight, inasmuch as we know now that 
the action integral in the &5 framework must be 
an integral not only over the Minkowski coordinate 
space, but must also involve integration over the 
proper time u. In other words, the Lagrangian 
density in the Poincare framework may be looked 
upon as 

* Work supported by the U.S. Air Force under Grant No. 
AFOSR-67-0385B. 
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The summability of the many-fermion perturbation series in the presence of attractive forces is con
sidered. We find that,although it is an asymptotic series, the potential-strength perturbation series is 
summable. We find that some rearrangements to handle the hard-core potentials also lead to the correct 
sum; however, the "hole-line" summation procedure using Brandow's choice for intermediate state 
energies is either wrong or deceptive in its convergence. 

1. INTRODUCTION 

Insofar as we can discover, the problem of the 
summability of the many-fermion perturbation series 
in the presence of attractive forces has not yet been 
treated in any detail. Negative results, showing that 
it cannot be summable for a purely attractive poten
tial due to "nuclear collapse", have been known for 
a long time.! We have investigated summability for a 
purely repulsive potential2 and found, in the case 
where some physically plausible estimates are valid, 
that summability by appropriate methods is possible. 
The reason that the question of summability arises is 
that the many-fermion perturbation series for the 
usual type of potentials with a strong central repulsion 
can be at best asymptotic2 and not convergent. Hence, 
the usual procedure of adding up the terms in a power 
series, or even a rearrangement power series, cannot 
a priori be supposed to yield a satisfactory answer. 

In Sec. 2, we give an example which illustrates one 
of the problems which can arise, even for a convergent 
series beyond its radius of convergence. We then 
argue that, at least for weak enough attraction, the 
ordinary perturbation series in powers of the potential 
strength is summable, in the same way that the series 
for a purely repulsive potential was.2 We next con
sider the rearrangement problem. We have in mind 
those rearrangements which are used to handle the 
hard-core potentials and also to improve generally 
the accuracy of the early terms in the series. We 
conclude that many of the commonly used procedures 
are satisfactory. One notable exception was found, 
that is, the hole-line resummation procedure3•4 using 
the Brandow choiceS for the intermediate state 
energies. We discuss this procedure in Sec. 3 and show 
by means of a counterexample that it is either wrong 
(possible though a formally correct resummation of 
a divergent series) or deceptive in its convergence 
properties. 

2. ACCEPTmILITY OF RESUMMATIONS OF 
THE POTENTIAL-STRENGTH 

PERTURBATION SERIES 

As has been previously pointed out,2 the perturba
tion series in the potential strength for the many
fermion ground-state energy problem is divergent for 
potentials of the type commonly employed. As is well 
known, due care must be exercised in manipUlations 
with such series. The problem of even defining the 
answer which corresponds to the physical problem at 
hand is not one which is always completely obvious. 
As an example of a purely mathematical nature, 
consider6 

I + 2x2 + 2X4 + 2x6 + 2x8 + ... , (2.1) 

which can be summed for small x as 

(1 + x2)/(1 -- x2). (2.2) 

However, by rearranging (2.1) as 
2 ' 4 

1 + 1 ( 2x ) + 1 . 3 ( 2x ) 
2 1 + x2 2 . 4 1 + x2 

+ L1..:j(~)6+... (2.3) 
2·4·6 1 + x2 

' 

we obtain a series which is now also convergent for 
large x. Summing up directly, we get, for large x, 

(x 2 + 1 )/(x2 
-- I). (2.4) 

Since (2.2) is a meromorphic function, it represents 
the unique analytic continuation of the series (2.1) 
throughout the whole complex plane. The result (2.4), 
seemingly valid for large x, is the negative of (2.2) 
and thus incorrect. Nevertheless (2.3) gives the correct 
sum for small x. This example illustrates that some 
care is necessary in rearrangement of series. In the 
many-fermion problem, we have a procedure for 
defining the physical sum of the series. We want that 
sum which is the limit as N tends to infinity of the 
energy of a system of N particles (density held 
constant in this limiting process). 

2302 
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We have previously discussed in detai12 the con
vergence problem for finite repulsive potentials. We 
made it very plausible that the rate of divergence of 
the perturbation series is no faster than 

(2.5) 

where r and A are potential-dependent constants and 
n is the order in the perturbation series. In this esti
mate, it was essential that the "self-energy" insertions 
on occupied lines and hole lines be taken together 
since, in higher order, they separately diverge.2

•
7 The 

only property of the potential used in this proof was 
that 

Iv(x)! ~ A/Cl + Bx2
), (2.6) 

where vex) is the momentum representation of the 
potential interaction. This form is clearly as suitable 
for potentials of two signs as for purely repulsive 
potentials. Hence, we conclude that, for bounded, 
nonsingular potentials of the usual sort, Eq. (2.5) 
forms a valid bound for the perturbation series. The 
next step in assigning a meaning to the perturbation 
series comes from a theorem of Carleman.6 He 
proved that a necessary and sufficient condition for 

Ig(z)1 ~ O(:lzl n
, Izl ~ ro < 00, larg zl ~!7T (2.7) 

to imply g(z) = 0 is that ~ OC:;;1 diverge (for suitably 
regular oc). If the many-fermion perturbation series is 
asymptotic in the angular sector larg VI ~ i7T, then 
this theorem means, since (n!)1/n ex n implies ~ 0(:;;1 

diverges, that there exists at most one function which 
is regular for positive real V in the neighborhood of 
V = 0 and asymptotically equal to the perturbation 
series. Consider those potentials in which there is a 
strong but finite central repulsion so that no collapsed 
state is possible.We feel that for such potentials (V ~O) 
the behavior should be essentially that of the central 
repulsion. That case was analyzed in detail and the 
location of the singularities nearest the origin esti
mated.2 It was found that they approach the origin 
from the direction of the negative real axis. The closest 
one is at a distance of the order N-! to N-I from the 
origin and makes an angle with the negative real axis 
of at most In N/N!. The physical reason for this 
singularity is the well-known collapse phenomenon in 
(for V negative) an attractive short-range potential 
well. Thus it is, we feel" physically reasonable to 
suppose that, for very weak potentials, at least, the 
ground-state energy is asymptotic in the closed right 
half-plane. Let us specifically mention that the type of 
singularities found in superconductivity 

(2.8) 

are excluded here since they do not satisfy (2.7) for 
V pure imaginary. We have argued in a previous 
paper8 that, for the usual sort of potential with a 
central repulsion plus short-range attraction, super
conductivity should not be a problem. We also remark 
that the nearest singularity of course sets a limit on the 
radius of convergence so that, while V = 0 is a 
regular point for a system of finite size N, the radius 
of convergence tends to zero as N tends to infinity. 

In order to deal with the hard-core potential, a 
number of resummation procedures have been pro
posed.3.4.8-10 Let us now consider under what con
ditions these resummations correctly define the proper 
physical function. Let the energy per particle in the 
N-fermion problem with pair interaction Vt:p(r) be 

OC! 

EN(V) = ~ NenVn. (2.9) 
n=O 

This series has a nonzero radius of convergence as 
mentioned above, and hence, by analytic continua
tion, defines EN(V) everywhere in the complex V 
plane except at singular points or on branch cuts. 
This analytic continuation is conveniently given by 
the Mittag-Leffler method.6 We define 

00 vn 
E (V 0) ="'" Nen 

N, n-=o r(on + 1) . 
(2.10) 

For every 0> 0, EN(V, 0) is an entire function of V 
as EN(V) is analytic at V = O. Also, as shown by 
Hardy6 (Theorem 135), the relation 

lim E.v(V, Cl) = E",(V) (2.11) 
3-->0 

holds uniformly in any closed and bounded region in 
the Mittag-Leffler star of EN(V), The Mittag-Leffler 
star is defined by cutting the complex V plane from 
every singularity to infinity along rays. As we have 
pointed out above, EN(V) is regular for positive real 
V (at least V small), and hence the positive real axis 
in the neighborhood of V = 0 is interior to the 
Mittag-Leffler star for all N. The meaning we wish to 
assign to the sum of the perturbation series for infi
nitely many fermions is 

lim EN(V) = lim lim EN(V, 0). (2.12) 
N-rf] lV-OO 0-0 

With this prescription as a guide, we shall show that 
a wide class of rearrangements, including many of 
the usual ones, are frequently satisfactory. We now 
introduce the Mittag-Leffler function 

(Y) zn 
m (z) - "'" ) (1 Z)-l 't'3 -/:0 f(1 + 611) Izl-->oo - , 

17TCl ~ \arg z\ ~ 7T. (2.13) 
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For V less than the radius of convergence we have, by 
Cauchy's theorem for regular functions of a complex 
variable, 

(2.14) 

where the contour is a circle about the origin inside 
the circle of convergence. Again using Cauchy's 
theorem, we may deform the contour as shown in 
Fig. 1, provided we cross no singular points of EN(u). 
If we now restrict 1Tr5 < 2'IjJ, then, for 

'IjJ ~ larg (V/u)1 ~ 1T, 
we find that 

(2.15) 

as V/u tends to infinity. Thus ((JJ(V/u) is bounded on the 
contour of Fig. 1. We may now shrink the circular 
arc part of the contour to the origin. Since EN(U) is 
bounded and the length of the arc goes to zero, the 
contribution from this part of the contour goes to 
zero. Hence, we can replace the contour of Fig. I by 
that of Fig. 2 which is now independent of N. How
ever, EN(U) tends to a finite limit at every point on 
this contour and hence does so uniformly. Thus, for 
all 1Tr5 < 2'IjJ, when we take the limit of (2.14), we have 
that EN ( V, 15) tends uniformly to 

E(V, 15) = -. ({Jd - E(u) - . 1 f (V) du 
2m U U 

(2.16) 

By the properties of ((Jlx), we deduce that 

E(V) = lim E(V, 15) = Jim lim EN(V, 15). (2.17) 
d-->O 0-->0 N-->oo 

That is to say, we may obtain E(V) correctly from the 
V series by first taking the limit as system size increases 
indefinitely and then summing the series. We can see 
roughly how the Carleman restriction comes into play 
by noting that we can get E(V, 15) by simple series 
summation only when b > I, and we can only prove 
analyticity in 15 for 0 < 15 < 2'IjJ/1T. Thus, if 2'IjJ/1T > I, 

}-+-----
FIG. I. N-dependent integration contour. 

v 

FIG. 2. N-independent integration contour. 

we can establish E(V, b) over a range of 15 and hence 
analytically continue it uniquely to 15 = 0, whereas, 
if 2'IjJ/1T < I, we cannot make contact and sum in 
this manner. In the latter case, Carleman's theorem 
assures us that indeed there is not a unique analytic 
continuation, but in the former case, which obtains 
for the problem at hand, we do have a unique analytic 
continuation and hence a well-defined sum for the 
energy series. 

We will now formally rearrange the series as 

EN(V) = n~oNan(vn%oNbn'iV} 
We require that 

m 

Nem = I (Nan)(Nbn,m-n), 
n=O 

(2.18) 

(2.19) 

in order that this be a formal rearrangement of the 
energy. In order to facilitate our development, we 
will introduce the auxiliary function 

EN(V, A) = ntNanAnvn( i~oNbn'iVi). (2.20) 

We will assume that the rearrangement has preserved 
the bounds for the original series in the sense that 

m 

I I (Nan)(Nbn,m-n) I ~ A(BNy)m and r'(N)mm!, 
n=O 

(2.21) 

the second bound holding uniformly in N. Under this 
assumption, there exists a circle I VI ~ peN), for which 
the double series converges uniformly and absolutely, 
provided IAI ~ R > 1. It follows, then, by standard 
arguments that for V in this circle 

(2.22) 

We now wish to extend EN(V, A) by analytic con
tinuation to a wider domain. This may be done, again 
by the Mittag-Leffler method. To this end, we 
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introduce 

'" Nan.lenV
n 

( ~ Nbn.jV
i 

) 

6N(V, .Ie, f5, rJ) = n~o r(rJn + 1) £:0 r«j + n)f5 + 1) . 

(2.23) 

The analytic continuation is then given by 

6N(V, .Ie) = lim lim 6i\'(V, .Ie, f5, rJ) (2.24) 
0--+0 q--+O 

throughout the Mittag-Leffler star. If there exists a 
path, interior to the Mittag-Leffler star, connecting 
(V = 0, .Ie = 1) with (V = V, .Ie = 1) for all N, then 
by analytic continuation from (2.22) we have (2.22) 
also valid for (V = V, .Ie = 1). Now, since this path 
is a closed and bounded set and since, from our 
discussion of the V series, EN(V) tends to a finite limit 
at every point of such a path, it does so uniformly in 
N; thus, we conclude that under these assumptions 

We have established that this series is summable to 
the correct value provided the rearrangement satisfies 
(2.21) and there exists a ryath in the Mittag-Leffler 
star joining (V = 0, .Ie = 1) and the point of interest. 
The imposition of the second part of (2.21) is necessary 
to insure that the limiting analytic continuation be 
unique. 

We remark that, when (2.25) is known to be sum
mabie and the terms in parentheses are at least 
asymptotic in an angular wedge ° :::;; larg VI :::;; 'If ~ t7T 
in the sense of (2.7), then Carleman's theorem assures 
us that it sums to the correct result in any connected 
region of summability. To see this, we need only note 
that a finite number of terms from the nand j sums 
in (2.25) will suffice to give any finite-order coefficient. 
These restrictions on the quantities in parentheses are 
certainly valid for resummation of the ladd~r diagrams 
into a K matrix when the potential is purely repulsive. 
This result follows since the series is closely related to 
a series of Stieltjes.n The R-matrix procedure,s also, 
satisfies these restrictions because R(V) is convergent 
when V is bounded and of finite range, and, for 
usual potentials, R(V) is nonsingular in the neighbor
hood of the positive real Vaxis.s 

It is worth noting that the example at the beginning 
of this section violates one of our conditions. To see 
that this is so, rewrite (2.3) as 

1 + - -- ). + - . - -_ }.2 + ... 1 ( 2X)2 1 3 ( 2x )4 
2 1 + x 2 2 4 1 + x 2 

[ ( 
2x )2 ]-! =1---). . 

1 + x 2 
(2.26) 

Now, it is not possible to pass from small x to large 
x without crossing the unit circle in the complex x 
plane by the Jordan curve theorem. For x on the unit 
circle, we find that 

1 :::;; [2x/(1 + X2)]2 :::;; Cf) 

and hence points on the unit circle in the x plane lie 
on the branch cut introduced by Mittag-Leffler 
summation of the }. series when .Ie = 1. Hence, there 
is no path within the Mittag-Leffler star which 
connects large and small values of x and thus no 
necessity for the sum of (2.3) to be the same function 
in the two regions. 

We remark that the "hole-line" expansion method, 
using the Brandow choices for the energy denomi
nators, as used by Kallio and Day, 12 for example, is 
not analyzable by this method. It violates the inequali
ties (2.21), as we will see. Besides this mathematical 
infelicity, there is a physical reason to believe that the 
"hole-line" expansion method, under Brandow choice, 
may suffer from the problem that our example (2.3) 
does. That is to say, there is doubt as to whether, if 
carried out, it would in principle lead to the correct 
sum. The situation can be studied by considering 
the first, or two "hole-line," contributions. The 
energy-contribution calculations here follow the usual 
procedures of the Brueckner method.13•14 The differ
ence comes only in the definition of the Green's func
tion, which is defined as 

G (r r') = ('" k,,2 dk" .iLCk"r)jz(k"r') F( - k", k). 
k.!' Jo 2[H(k") - ~(k)] p, 

The Brandow choices is 

H(k") = tk"2, 
~(k) = E(k), 

(2.27) 

(2.28) 

which uses the unperturbed energies for the occupied 
states and makes the hole-state energies self-consistent. 
This procedure sums9 all the self-energy insertions on 
the hole lines but leaves the occupied state lines bare. 
The V expansion of Eb for this procedure does not 
exist on account of infinities in the coefficients for 
higher powers of V as we have shown previously.2 
In the rearranged series, these are canceled exactly by 
compensating contributions on the occupied state 
lines. 

For normal nuclear-type potentials, the Brandow 
choice results in a large energy gap at the Fermi 
surface so that the convergence of the integral (2.27) 
is greatly improved. However, as we weaken the 
strength, the short-range repulsion becomes dominant 
and the energy gap becomes negative. This unhappy 
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circumstance makes the integral in (2.27) divergent! 
The consequence is that Eb from the two "hole-line" 
terms is not an analytic function on the positive real 
V axis. This trouble persists to arbitrarily small 
potential strengths with usual potentials for N = 00. 

Furthermore, it also occurs for the analogous finite-N 
result. For N finite, we still have the first of inequalities 
(2.21) but not the second. We can, perhaps, therefore 
still establish an analytic continuation to V's of 
interest; however, with singularities in the right half
plane it is difficult to know whether we are on the 
right Riemann sheet of the resummation or, as in 
example (2.3), we have the incorrect answer for large x. 

3. EXAMPLE OF THE HOLE-LINE 
RESUMMATION PROCEDURE 

In this section, we shall give in some detail the 
results of applying the "hole-line" resummation 
procedures, using the Brandow choice (2.28) to two 
simple potentials which resemble the nucleon
nucleon potential to some extent. For simplicity, we 
choose them to be of the following form. First, for 
states of even relative angular momentum, 

VT(r) = VI' Vs(r) = V2 , 0 < r < c, 

VT(r) = Va, Vs(r) = V4 , c < r < d, (3.1) 

VT(r) = Vs(r) = 0, d < r, 

where Vs is the singlet potential and VT is the triplet 
potential. For states of odd relative angular momen
tum, we choose 

VT(r) = Vs , Vs(r) = Vs , 0 < r < c, 

VT(r) = Vs(r) = 0, c < r. (3.2) 

For the first potential, we have picked 

c = 0.4 F, d = V C, 

VI = V2 = Vs = Vs = 10s/i2jMc2
, (3.3) 

Va = 1.25c;r ~:2' V4 = 0.
96c;r ~:2' 

This potential has the 2-body data 

aT = 5.39 F, rOT = 1.71 F, ET = -2.20 MeV, 

as = -23.7 P, ros = 2.14 P. (3.4) 

All these values except ET and ros were fitted. The 
singlet effective range should have been about 2.6 F. 
The singlet phase shift c50 = 0 for k around 150 MeV 
instead of 200 MeV which serves to illustrate the 
well-known fact that the simple square-well shape is 
inadequate for nuclear forces. 

Next, we note that according to the variational 
principle we can give a rigorous upper bound on the 

many-fermion binding energy by use of the first V
series term.9 If we denote the momentum transform of 
the potential by v(q, qexch)' then we easily compute 
that 

E 3 f - :::;; 743 dm dn[4vs(0, (m - n) + 2vs(m - n,O) 
N 2 7T kF 

+ 12vT(0, m - n) - 6vT(m - n,O)], (3.5) 

where q is the momentum transfer and qexch is the 
exchanged momentum transfer and the range of 
integration is Iml and Inl :::;; k F' For this potential, 
the momentum representation can be expressed in 
terms of that for the simple square-well of various 
arguments. In this case, (3.5) can be evaluated exactly.ll 
When this is done and the collapse limit k F -- 00 is 
taken, we obtain for our shape of potential 

1
. E 1m --

kp-+oo (k~N) 

~ 53 a(i
C
(3V1 + 9V5)r2 dr + 3 (dV3r2 dr 

2 7T 0 .c 

+ f(3V2 + Vs)r2 dr + 3 f V4r2 dr) 

3ca 
= 5"3 [3VI + 3V2 + 9Vs + V6 + 100.36(V3 + V4)], 

27T 

(3.6) 

where the last line has been evaluated for d = 29
9 c. 

We have increased the core radius to 0.51 P to roughly 
maintain its effective radius in the face of the weaker 
core repulsion anticipated. For our second potential, 
we have picked a Serber force, i.e., V5 = Vs = O. In 
addition, we will choose 

VI = -(5.6)2Va, 

V2 = -(5.6)2V4' (3.7) 

and with this choice, by virtue of (3.6), the system 
will collapse (tend to infinity density) for any real 
negative V3 , V4 • (It will also collapse for real positive 
Va, V4 by a modification of thestandard arguments. I) 
We have selected, in the same units as (3.3) where 
1 = 259.2 MeV, 

Va = -0.3318, V4 = -0.2290 (3.8) 

which values reproduce the deutron binding energy 
and the singlet scattering length. The triplet core is 
about 2.7 BeV. 

We have adapted the numerical procedures of 
Baker, Gammel, and Hill 11 to compute the hole-line 
2-particle energy contributions. The numerical details 
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are explained therein, except that we have used a 29-
point mesh for r with 7 points in the core for the first 
potential. This procedure is closely parallel to that of 
Kallio and Day.12 For the hard-core potential (non
collapsing), using 0 SIS 3 at a density of kFc = 
0.625-the apparent saturation density for this po
tential (nuclear saturation density3 is k~ = 0.544)
we obtain the following results: 

Eb = -8.38 MeV, 

E(k) ~ -122 MeV + tk2jm*, (3.9) 

m* = 0.54, 

where Eb is the binding energy and E(k) is the con
verged single-particle energy for k less than the Fermi 
momentum k F • The formula for E(k) is only a fit to 
the final results and was not used in the determination. 
Four iterations were necessary for four-figure con
vergence. We used a new guess for the function ~(k) 
which was f of the way from the old to the new 
single-particle energy. Our results with this fairly 
crude potential are generally similar to those of 
Kallio and Day using a more realistic potential. Their 
binding energy was less, and the single-particle 
energy was about -81 MeV at k = 0 and had a 
larger m* R:! 0.6 which yielded a similar but shallower, 
flatter curve. 

The results for the second potential are qualitatively 
similar to those of the first potential. The main 
difference at kFc = 0.625 comes from a more nega
tive value of E(O). The results are 

Eb = -27.55 MeV, 

E(k)~ -141 MeV + tk2jm*, 

m* = 0.56. 

(3.10) 

Of the change in binding energy, about 2 MeV of the 
ll-MeV shift are due to dropping the odd-state 
repulsions in going to Serber-type forces. The rest of 
the shift would roughly be expected,4.15 in going to a 
soft core from a hard one. This result also accords 
with our resultsl6 on the velocity dependent force 
which exactly simulates a hard core in 2-body 
scattering. There, it was found to be less repulsive for 
the many-fermion problem than an ordinary hard 
core. 

In Fig. 3, we have plotted both the two "hole-line" 
approximation to the binding energy using the 
Brandow choice for the energy denominators and 
the ladder approximation. It will be noted that the 
former shows the usual saturation minimum (although 
at higher density) even though the potential is known 

I I T I FlO. 3. Binding 
energy vs kFc for the 
soft-core, collapsing 
potential. The solid 
curve is the two 
"hole-line" approxi
mation using the 
Brandow choice for 
the energy denomi
nators. The dashed 
curve is the usual 
ladder approximation. 
For comparison, we 
have included the two 
"hole-line" approx
imation using the 
Brandow choice for 
the energy denomina
tors for the binding 
energy curve for our 
hard-core potential 
(dotted curve). 
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to cause nuclear collapse. Following the usual pro
cedures of that approximation, we would be led to the 
fallacious conclusion that a many-body system inter
acting under these forces would saturate at about 
kFc = 0.82, with an energy of Eb R:! -35 MeV. The 
ladder approximation, on the other hand, not only 
has no minimum but curves downward. 

Estimates of the relative importance of higher
order corrections to be expected can be given when 
we compare the first potential (hard core) with the 
second (soft core): "It should also be remembered 
that, for a soft-core potential, the 3-body interaction 
should not be so important," according to Rajaraman 
and BetheP They give an extensive discussion to 
justify this statement. This effect should, we feel, 
compensate for the increase in the size of the correc
tions due to a larger saturation density. Therefore, as 
far as we can tell, it is in line with current thinking 
on this subject to conclude that the next few terms 
(four-hole-line contributions have been considered 
recently by DaylS) in the hole-line rearrangement 
using the Brandow choice, will converge about as 
well for our soft-core potential as for the hard-core 
one. 

We are therefore left with only two alternatives: 
(i) that the sum given by the hole-line resummation 
procedure is incorrect; or (ii) that it is deceptive in 
low order. No matter which of these is the true state 
of affairs, we think it is therefore not satisfactory as a 
numerical method. 

• This work performed under the auspices of the U.S. Atomic 
Energy Commission. 
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A technique is presented for the calculation of the oblate and prolate spheroidal wave equation 
eigenvalues and eigenfunctions. The eigenvalue problem is cast in matrix form and a tridiagonal, sym
metric matrix is obtained. This formulation permits the immediate calculation of the eigenvalues to the 
desired accuracy by means of the bisection method. The eigenfunction expansion coefficients are then 
obtained by a recursion method. This technique is quite simple to program, and the computation speed 
is rapid enough to allow its use as a function subroutine where values not previously tabulated or large 
numbers of values are required. 

I. INTRODUCTION 

The scalar wave equation 

defined in terms of a rectangUlar coordinate system by 

\j2'I.jJ + k2'I.jJ = 0 (1) 

is separable in both the oblate and prolate spheroidal 
coordinate systems. For this reason the formulation 
of physical problems in these coordinate systems has 
received much attention from a wide variety of 
disciplines. They offer an obvious generalization of 
physical processes described in spherical coordinate 
systems and, in addition, yield the extremely inter
esting limiting cases of the infinitely thin, finite "wire" 
and the infinitely thin, circular disk. 

II. THE COORDINATE SYSTEMS 

The notations and conventions of Flammerl will be 
used in the following. Due to the existence of thorough 
discussions of these coordinate systems and functions 
in the literature,l,2 only that material necessary for a 
coherent presentation will be given here. 

The prolate coordinate system (;, ,/}, tfo) may be 

x = id[(l - 1]2)a2 - 1)Il cos 4>, 

y = id[(l - 1]2)(;2 - l)]l sin tfo, 

(2) 

(3) 

(4) 

where d is the interfocal distance. The oblate sphe
roidal coordinate system is obtained by replacing ~ 

with i~ and d with -id. In view of this simple trans
formation between the prolate and oblate coordinate 
systems, all expressions, although valid in both 
systems, will be written in terms of the prolate system. 
Both coordinate systems are shown in Fig. 1. 

The scalar wave equation (1) now becomes 



                                                                                                                                    

2308 GEORGE A. BAKER, JR. 

• B. H. Brandow, Phys. Rev. 152, 863 (1966). 
• G. H. Hardy, Divergent Series (Oxford U.P., New York, 1956). 
7 v. V. Tolmachev, Dok!. Akad. Nauk. S.S.S.R. 141, 582 (1961) 

[Sov. Phys. Dok!. 6,976 (1962)]. 
8 G. A. Baker, Jr. and J. Kahane, J. Math. Phys. 10, 1647 (1969). 
• K. A. Brueckner, The Many Body Problem, C. de Witt, Ed. 

(Wiley, New York, 1959). 
10 G. A. Baker, Jr., Phys. Rev. 140, B9 (1965). 
11 G. A. Baker, Jr., J. L. Gammel, and B. J. Hill, Phys. Rev. 132, 

13 73 (1963). 

JOURNAL OF MATHEMATICAL PHYSICS 

12 A. Kallio and B. D. Day, Nucl. Phys. A124, 177 (1969). 
13 K. A. Brueckner and J. L. Gammel, Phys. Rev. 109, 1023 

(1958). 
14 K. A. Brueckner and K. S. Masterson, Phys. Rev. 128, 2267 

(1962). 
15 c. W. Wong, Nucl. Phys. 56, 224 (1964). 
16 G. A. Baker, Jr., B. J. Hill, and R. J. McKee, Jr., Phys. Rev. 

135, A922 (1964). 
17 Reference 4, p. 770. 
18 B. D. Day, private communication. 

VOLUME II, NUMBER 8 AUGUST 1970 

Eigenvalues and Eigenfunctions of the Spheroidal 
Wave Equation * 

D. B. HODGE 
ElectroScience Laboratory, Department of Electrical Engineering, 

The Ohio State University, Columbus, Ohio 43212 

(Received 16 February 1970) 

A technique is presented for the calculation of the oblate and prolate spheroidal wave equation 
eigenvalues and eigenfunctions. The eigenvalue problem is cast in matrix form and a tridiagonal, sym
metric matrix is obtained. This formulation permits the immediate calculation of the eigenvalues to the 
desired accuracy by means of the bisection method. The eigenfunction expansion coefficients are then 
obtained by a recursion method. This technique is quite simple to program, and the computation speed 
is rapid enough to allow its use as a function subroutine where values not previously tabulated or large 
numbers of values are required. 

I. INTRODUCTION 

The scalar wave equation 

defined in terms of a rectangUlar coordinate system by 

\j2'I.jJ + k2'I.jJ = 0 (1) 

is separable in both the oblate and prolate spheroidal 
coordinate systems. For this reason the formulation 
of physical problems in these coordinate systems has 
received much attention from a wide variety of 
disciplines. They offer an obvious generalization of 
physical processes described in spherical coordinate 
systems and, in addition, yield the extremely inter
esting limiting cases of the infinitely thin, finite "wire" 
and the infinitely thin, circular disk. 

II. THE COORDINATE SYSTEMS 

The notations and conventions of Flammerl will be 
used in the following. Due to the existence of thorough 
discussions of these coordinate systems and functions 
in the literature,l,2 only that material necessary for a 
coherent presentation will be given here. 

The prolate coordinate system (;, ,/}, tfo) may be 

x = id[(l - 1]2)a2 - 1)Il cos 4>, 

y = id[(l - 1]2)(;2 - l)]l sin tfo, 

(2) 

(3) 

(4) 

where d is the interfocal distance. The oblate sphe
roidal coordinate system is obtained by replacing ~ 

with i~ and d with -id. In view of this simple trans
formation between the prolate and oblate coordinate 
systems, all expressions, although valid in both 
systems, will be written in terms of the prolate system. 
Both coordinate systems are shown in Fig. 1. 

The scalar wave equation (1) now becomes 



                                                                                                                                    

EIGENVALUES, EIGENFUNCTIONS OF SPHEROIDAL WAVE EQUATION 2309 

z 
"7 = 1 

________ _+--~_+4-~4_--~~--4--- X 

"7 =.-1 

z 

------~+--ifll++++-He_--If--_t_---x 

"7=-0 
FIG. 1. Prolate and oblate coordinate systems. 

where· 
c = tkd. (6) 

Solutions of the form 

(7) 

The condition that V'mn be single valued requires that 
m take on only integer values and, without loss of 
generality, m may be assumed to be nonnegative. The 
eigenvalue Amn(c) remains to be determined. 

III. THE EIGENFUNCTIONS 

When c = 0, Eq. (8) reduces to the defining 
equation for the associated Legendre polynomials; 
therefore, the following representation is chosen for 
the angular functions of the first kind: 

00 

Smn(c, f) = I'd;.nn(c)p::!+r(f). (10) 
r~O.l 

The prime indicates that the summation is over only 
even values of r if n - m is even and over odd values 
of r if n - m is odd. The condition that 

AmiO) = n(n + 1), n ~ m, (11) 

is also obtained if c = 0. The angular functions of the 
second kind are necessary for a general solution of 
Eq. (8), but are seldom used and, therefore, will not 
be discussed here. 

The radial functions of the first, second, third, and 
fourth kinds, R~;(2).(3).(4)(C, ~), may be expanded in 
terms of the spherical Bessel, Neumann, and Hankel 
functions. Due to the similarity between the defining 
equation (9) for these functions and that [Eq. (8)] for 
the angular functions, the required radial function 
expansion coefficients are identical to the angular 
function expansion coefficients d;.nn(c). Thus, the 
determination of the coefficients d;."n(c) suffices for 
the determination of all of the spheroidal functions. 
The necessary expansions are 

R~~(2).(3).(4)(C, f) 

= !(e -:- l)tm :i' {+m-nd;.nn(c) (2m ;- r)! 
or. ~ r~O.l r. 

are assumed, and the separation of variables leads to where 
the ordinary differential equations for the angular and 

X Z~~~2).(3)·(4)(C, ~), (12) 

or. = :i' d;.nn(c) (2m + r)! (13) radial functions, respectively, 
r~O.l r! 

and the Z~il, i = 1, 2, 3, 4, are the spherical Bessel, 
Neumann, and Hankel functions of the first and 
second kind, respectively. 

The substitution of Eq. (10) into Eq. (8) yields the 
following recursion relation for the angular-function
expansion coefficients: 

A;.n(c)d::~(c) + [B;.n(c) - Amn(c)]d;.nn(c) 

+ C;.n(c)d~~(c) = 0, r ~ 0, (14) 
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where 

A
rn( ) _ (2m + r + 2)(2m + r + 1) z 
r C - c, 

(2m + 2r + 3)(2m + 2r + 5) 

B;'(c) = 2(m + r)(m + r + 1) - 2m2 - 1 c2 

(2m + 2r - 1)(2m + 2r + 3) 

+ (m + r)(m + r + 1), 

ern( ) _ r(r - 1) 2 
r C - c. 

(2m + 2r - 3)(2m + 2r - 1) 

(15) 

(16) 

(17) 

Note that the coefficients in this recursion relation do 
not depend upon n. The n dependence is introduced 
solely through the eigenvalue AmnCC). This recursion 
relation provides a ready means of determining the 
expansion coefficients and, thus, the spheroidal 
functions. However, the use of this recursion relation 
hinges upon the determination of the eigenvalue 
AmnCC). 

IV. THE DETERMINATION OF THE 
EIGENV ALVES 

Previous calculations of the spheroidal eigenvalues 
have used the methods of Bouwkamps or Stuckey and 
Layton.4 In the Bouwkamp method, a power-series 
expansion of AmnCC) in terms of c is obtained. The first 
six coefficients in this series have been determinedl ; 

however, a general expression for an arbitrary 
coefficient in this series has not been found. Thus, 
this series expansion provides only a means of 
obtaining an approximate value for Amn(C). A varia
tional procedure is then used to obtain successive 
improvements in the estimate of AmnCC). 

In the Stuckey and Layton method, the infinite
continued-fraction solutions of Eq. (14) are developed 
in terms of AmnCC). The roots of these solutions then 
yield the eigenvalues. Although these methods have 

(Eo - A) (DIFo)! 0 

(DlFo)! (El - A) (D2Fl )! 

0 

0 

indeed been valuable in the absence of other ap
proaches, they are both cumbersome and, at times, 
troublesome. 

In the following, the eigenvalue problem is cast in 
matrix form, and a tridiagonal, symmetric matrix is 
obtained. Standard matrix procedures may then be 
used for determination of the eigenvalues. Because of 
the simplicity of the tridiagonal, symmetric form, 
these procedures are simple and even allow the compu
tation time required for a particular desired accuracy 
to be estimated prior to the calculation. This procedure 
is a generalization of a technique orignially used by 
Weeks.5 Let 

Dq = C2Q-f-s, (18) 

Eq = B2q+s , (19) 

Fq = A2q+s, (20) 
and 

aq = d2q+s, (21) 
where 

s = 0, if n - m is even, 
= 1, if n - m is odd, (22) 

and the superscripts m and n and the argument c have 
been suppressed for simplicity. Then Eq. (14) becomes 

Dqaq_l + (Eq - A)aq + Fqaq+1 = 0, q ~ O. (23) 

This method of indexing allows the index q to range 
upward from zero in integer steps for all cases. 

A change of variable 

aq = (DlD2DS ... Dq/FoFlF2• .. Fq_l)!bq (24) 

is made in Eq. (23), and the resulting expression is 
multiplied by (FoFlF2 ' .. Fa-I/ DID2DS ... Dq)!. The 
following form of the recursion relation is then 
obtained: 

(DqFq_l)!bq_l + (Eq - A)bq + (DHlFq)!bHl = 0, 
q ~ O. (25) 

The set of equations represented by Eq. (25) may be 
written in matrix form as 

0 (D2F1)! (E2 - J.) (DsFz)! bz 0 

0 0 (DaFz)! (Es - A) 
= (26) 

ba 0 

Thus, the spheroidal eigenvalue problem has been reduced to that of determining the eigenvalues of a real, 
tridiagonal, symmetric matrix. In practice, it is necessary to truncate this matrix to, say, an N X N matrix. 
The N eigenvalues then determined are denoted by AmnCC), n = m, m + 2, m + 4, ... , m + 2N - 2 when 
arranged in order of increasing algebraic value. 
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The eigenvalues of the N x N tridiagonal, sym
metric matrix are determined by the bisection method. 
It can be shown6 that the eigenvalues lie in the range 

IAmn(c)1 ~ max [I(DqFq_1)ll + IEql + I(Dq+lFqll]. 
q (27) 

In successive steps of the bisection procedure, this 
range is halved, and the Sturm sequence property is 
used to determine in which resulting range the desired 
eigenvalue lies. Thus each successive application of the 
bisection procedure results in a reduction of the 
uncertainty of the eigenvalue by a factor of one-half. 
Typically, seven- or eight-digit accuracy can be 
obtained after about 30 bisections. 

The bisection procedure also has the additional 
advantages of 

(1) permitting the immediate calculation of any 
single desired eigenvalue without the calculation of 
other values and 

(2) utilizing previously calculated values to reduce 
the uncertainty range and, thus, the computation 
time of subsequent values. 

The bisection method is described in detail by 
Wilkinson6 and will not be further treated here. 

V. THE DETERMINATION OF THE 
EXPANSION COEFFICIENTS 

Having obtained the eigenvalues, we may now use 
the recursion relation to determine the spheroidal
function-expansion coefficients d;nn(c). For fixed m, 
n, and c, we note that d;!'n(c) assumes its largest values 
when 

, R:! n - m. (28) 

This statement is an equality when c is zero as a 
consequence of the initial expansion in terms of the 
spherical eigenfunctions. In this particular case, 
d;:'~m(O) = 1 and all other coefficients, =F- n - mare 
zero. 

Since minimum error generally occurs when a 
recursive calculation proceeds toward larger values, 
the recursion is started at , = s. Assuming a value for 
the first coefficient, i.e., 

(29) 

where g is an unknown constant, we solve the 
recursion relation 

hmn(c) = _ [B;.n(c) - AmnCc)]h;"n(c) + C;"(c)h:::-~(c) 
r+2 A;!'(c) 

(30) 

upward to obtain hr;::::m(c). This is made possible by 

the fact that C;"(c) = O. Now, for some large p where 
p > n - m, it is assumed that 

and 

(32) 

where g' is another unknown constant, t is an arbitrary 
small constant, and the prime indicates that the 
normalization is different than that used in Eq. (29). 
The recursion relation 

h'mn(c) = _ A;!'(c)h;~;(c) + [B;"(c) - Amn(c)]h;mn(c) 
r-2 C;!'(c) 

(33) 

is then solved downward to obtain h~~::,(c). 
The ratio of the two values obtained when, = 

n - m can now be used to obtain a consistent set of 
coefficients having only one normalization constant; 
i.e., 

hmn(c) = h~m(c) h'mn(c) (34) 
r h'mn () r , n-m C 

for, > n - m. 
Flammer's normalization1 is used to determine the 

remaining constant g. This normalization is 

00 

L' F;!' d;nn( c) = F'::_m' (35) 
T=S 

where 

Fr
m __ (_1)'-8(, + 2m + s)! 

(36) 
2r [Hr - s)]! U{r + 2m + s)]! 

Therefore, 

and 

(38) 

Having obtained the expansion coefficients, we can 
readily generate the spheroidal functions from the 
expansions in terms of the spherical eigenfunctions. 

This technique has been used for the calculation of 
both prolate and oblate functions over the ranges 
n = 0,1,' .. ,22, m = 0, 2, andC = 0.2,0.4, .. ·,15.2. 
These values have been compared with good agreement 
whenever possible with existing tabulated values.1.4.7 
Programs have been run on IBM 7094 and Com-Share 
SDS 940 time-sharing computers. No computational 
problems have been encountered. Listings of the 
programs used may be found in Ref. 8. 

Sample computed values of the oblate spheroidal 
eigenvalues, expansion coefficients, and eigenfunc
tions are shown in Tables I, II, and III. An accuracy 
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TABLE I. Sample oblate spheroidal eigenvalue calculations. Matrix truncation size: N = 5; accuracy criteria: 
7 digits. 

Aon( -i4.0) 
n Hodge Flammer1 

0 -9.150793213E + 00 -9.15080E + 00 
2 2.214079039E - 01 2.2141 E - 01 
4 1.237214448E + 01 
6 3.415256711E + 01 
8 6.408657399E + 01 

TABLE II. Sample oblate spheroidal eigenfunction expansion 
coefficient calculations. Downward recursion started at p = 26. 

r 

o 
2 
4 
6 
8 

10 
12 
14 
16 
18 
20 
22 
24 
26 

d~6( -i4.0) 

Hodge 

-6.531966221E - 04 
+ 1.209002662E - 02 
-1.426437444E - 01 

9.260509647E - 01 
1.438420222E - 01 
9.474026638E - 03 
3.642271321E - 04 
9.365921365E - 06 
1.740994242E - 07 
2.461650191E - 09 
2.745315670E - 11 
2.481746195E - 13 
1.85785624OE - 15 
1.171756940E - 17 

Stuckey and Layton' 

-6.5319660505E - 04 
+ 1.2090026397E - 02 
-1.42643743OOE - 01 

9.2605096847E - 01 
1.4384202427E - 01 
9.4740268162E - 03 
3.6422713995E - 04 
9.3659215831E - 06 
1.7409942846E - 07 
2.4616502542E - 09 
2.7453157421E - 11 
2.4817462624E - 13 
1.8578562941E - 15 
1.1717939083E - 17 

criterion of seven digits was set on the eigenvalue 
calculations. This criterion is simply determined by 
the number of bisections performed and, of course, 
subsequently limits the accuracy of the expansion 
coefficients and eigenfunctions. The other accuracy 
determining parameters are the truncation size of the 

Stuckey and Layton' Hanish7 

-9.1507933808E + 00 -9.150793381E + 00 
2.2140790999E - 01 2.214079100E - 01 
1.2372144801E + 01 1.237214480E + 01 
3.415256741OE + 01 3.415256741E + 01 
6.4086572621E + 01 6.408657262E + 01 

eigenvalue matrix and the starting point of the 
expansion coefficient downward recursion. The choice 
of these parameters appears to present no problem. 
The parameters presented in Tables I and II are 
typical of the values used over the ranges of inde
pendent variables and orders investigated. Average 
computation times on the SDS 940 time-sharing 
system for the values shown were 0.4 sec per eigen
value, 0.01 sec per expansion coefficient, and 0.018 sec 
per eigenfunction. 

VI. SUMMARY 

A new technique has been presented for the calcu
lation of the eigenvalues and eigenfunctions of the 
scalar oblate and prolate spheroidal wave equations. 
This technique is based upon the reduction of the 
eigenvalue problem to that of finding the eigenvalues 
of a real, tridiagonal, symmetric matrix. This reduc
tion permits well-known procedures which are both 
rapid and accurate to be used for the eigenvalue 
calculations. The spheroidal function expansion co
efficients are determined, subsequently, by a recursive 
method. 

TABLE III. Sample oblate spheroidal eigenfunction calculations. 

Function Hodge Hanish7 

SOG (-i4.0, 0.0) 
SOG (- i4.0, 1.0) 
R~~( -i4.0, iO.O) 
R~~ ( - i4.0, iO.O) 

-3.125OOO00E - 01 
9.48533868E - 01 
6.88638164E - 04 

-6.18960815E + 01 
6.88638141OE - 04 

-6.189608272E + 01 
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Despite the he:oic ~fforts of Laplace, Legendre, Maxwell, Hobson, and company, there are still new 
chapters to be WrItten In the theory of spherical harmonics. This paper describes some of the special wind
falls that result when one expands analytic functions. In technical language, we are concerned with 
Fourier series of analytic functions on SU(2). 

1. INTRODUCTION 

Suppose we wish to consider a function / of a real 
variable x. In the course of our study, we may attempt 
to expand / in a Taylor series about a point Xo. As 
every student knows, or should know, the behavior 
of a Taylor series cannot be completely understood 
until one introduces the notion of a complex plane 
and considers / as a function of a complex variable. 
Indeed, the Taylor series for / converges within the 
largest circle (in the complex plane) about Xo which 
does not contain any singularities off 

Analogous results hold if we attempt to expand / 
in some other manner. For example, if we attempt to 
expand / in terms of a set of orthogonal polynomials 
on the interval [a, b), we will find that the expansion 
converges within the largest ellipse (in the complex 
plane) which has a and b as foci and which does not 
contain singularities off 1 Similarly, if we attempt to 
expand / in terms of polynomials which are orthog
onal on an infinite interval, such as Hermite or 
Laguerre polynomials, we will find that the expansion 
converges in certain other characteristic regions such 
as strips or parabolas.1.2 

In this paper, we will study the expansion in spheri
cal harmonics of functions / defined on the surface of a 
sphere. In analogy with the case of functions defined 
on the real line and just discussed in the previous 
paragraphs, we will find that the sphere should be 
regarded as the "real part" of a certain complex mani
fold and that we will need to examine the "analytic" 
behavior of/on this complex manifold. Thus, we will 
enlarge the domain of definition of / and consider 
what it means for/to be singular or free of singulari
ties in this larger domain. We shall find that the 
spherical harmonic expansion for /' 

f = 1: a1mY;"({), ,p), (1.1) 

cients aim for large I [i.e., the rate of convergence of 
the series (1.1») is governed by the location of these 
singularities. Finally, we shall discover a new formula 
for the expansion coefficients aim which differs from 
the usual formula 

aim = f dOfY;" (1.2) 

in that it involves contour integrals of the function / 
over the complexified sphere. 

To be more precise, what we shall actually study in 
this paper is the expansion, in terms of the Wigner 
Dj functions, of various functions / defined on the 
group SU(2). Formulas (1.1) and (1.2) are special 
cases of more general formulas holding for such ex
pansions. In fact, we shall see that the results that we 
have just advertised for spherical-harmonic expansions 
are special cases of similar results for "Wigner" ex
pansions. Section 2 presents a review of facts about the 
group SU(2), its complexification SL(2, C), and some 
of their representations. Section 3 defines what is 
meant by an analytic manifold and what it means for 
a function to be analytic on such a manifold. Section 4 
is devoted to studying when, where, and how a Wigner 
expansion converges. Section 5 derives the relationship 
between the analytic properties of a function / and 
bounds on its expansion coefficients. A final section 
contains new formulas for these expansion coefficients, 
a curious version of Cauchy's theorem for functions 
defined on SU(2), and similar results for spherical
harmonic expansions. 

It is anticipated that our results [which in a mathe
matician's language are concerned with "Fourier 
series of analytic functions on SU(2)") can be fairly 
easily extended to the general case of simply connected 
compact Lie groups. 

2. FACTS ABOUT SU(2) AND SL(2, C) 

actually converges in a certain characteristic region in In this section we summarize various facts about 
our "complexified" sphere and that the size of this SU(2) and SL(2, C) which will be needed in subsequent 
region depends on the location of the singularities of sections. Most results will be stated without proof but 
f We shall also find that the behavior of the coeffi- with references to appropriate literature. 

2313 
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A. The Group SU(2) 

The group SU(2) is the set of all 2 x 2 unitary 
matrices with determinant + 1. If u is any element in 
SU(2), it can be conveniently written in the form3 •

4 

u = exp (ti~. a), (2.1) 

where ~ is a real 3-vector, 

3 

~ • a = '2,fJjCT j , (2.2) 
j=} 

and the (1j are the Pauli matrices 

(11 = e ~), (2.3a) 

(2.3b) 

(2.3c) 

We shall also need a matrix (14 defined by 

(14 = (~ ~). (2.3d) 

It is easily verified that 

(~ • a)2 = (~ . ~)(14 = fJ2CT4. (2.4) 

Thus, the Taylor series for (2.1) can be explicitly 
summed to give 

u = (14 cos (tfJ) + i~ • afJ-l sin (tfJ). (2.5) 

The parametrization (2.1) is unique for fJ < 27T. In the 
case u = -(14, we may choose any ~ with fJ = 27T. 

As is well known, the group SU(2) is the covering 
group for the 3-dimensional rotation group 0(3). In 
fact, if R(O, n) is the 3 x 3 rotation matrix for a rota
tion by an angle 0 about the axis in the direction of the 
unit vector ft, we have the explicit relations 

UtCTjU = '2, RikCTk, 1 5:. j, k 5:. 3, (2.6a) 
k 

R ik(6, ft) = t Tr (u t (1 jUCTk), (2.6b) 

when u is given by the expression 

u = exp (ti6n . a). (2.6c) 

Formulas (2.1) and (2.5) show that the topology of 
SU(2) is that of a ball of radius 27T with all points on 
the surface identified. The topology of SU(2) is also 
that of S3, the 3-dimensional surface of a sphere in 
4-dimensional space. To see this, we need to examine 
the form of a unitary matrix. We write 

u = e ~). (2.7) 

The conditions utu = uut = (14 require that both the 
rows and columns of u are orthonormal unit vectors. 
It follows that lal 2 + Ibl 2 = 1 and IW + Idl 2 = 1, 
whencelal = Idl.Similarly, Ibl = lei. Thus we can also 
write u in the form 

u = (_Qgb :a) , (2.8) 

where ~ and 'YJ have modulus one. The condition that 
the rows be orthogonal gives g = 'YJ, and the require
ment that det u = 1 gives 'YJ = 1. Now write a = 
X4 + iXa and b = X2 + ix} with the Xi real. Then 

( 
X4 + iXa X 2 + iXI)' • 

U = = IX' a + X4(14 
-X2 + IXI X 4 - iXa 

(2.9) 

and the condition det u = 1 gives 

4 

'2, x; = 1. (2.10) 
i=l 

If (2.10) is satisfied, u is also unitary. 
The matrices fa i (with i = 1, 2, 3) form a Lie 

algebra with the commutation rules 

(2.11) 

where a, b, e denotes a cyclic permutation of 1, 
2, 3. Let Ja with a = 1,2, 3 denote a set of matrices 
obeying the SU(2) commutation rules: 

(2.12) 

The finite-dimensional irreducible representations of 
(2.12) are well known.a•s Each irreducible representa
tion, which can be chosen in such a manner that the 
J's are Hermitian, is labeled by an integer or half
integer j, and is of dimension (2j + 1). Vectors within 
a representation are labeled by a number rn which 
ranges between - j and j in integer steps. The vectors, 
which we denote by ijrn), obey the relations 

Jslim) = m lim), (2.13a) 

(2.13b) 
3 

IJ; Urn) = j(j :+ 1) jjm). 
1c=1 

The representations of the Lie algebra of SU(2) can 
be exponentiated to give a representation of the group. 
To each element u of SU(2) we assign a unitary matrix 
U(u) by the rule 

U(u) = exp (i~· J), (2.14) 

where u has the parametrization (2.1). That this pro
duces a representation of SU(2) , i.e., 

U(Ul)U(UZ) = U(U1UZ) , (2.15) 

is a consequence of the Campbell-Baker-Hausdorff 
(CBH) theorem.6 •7 It states that, for any two n X n 
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matrices A and B and for sand t sufficiently small, one 
has the relation 

exp (sA) exp (tB) = exp (C). (2.16) 

The matrix C can be expressed as a double-power 
series in sand t which is convergent for sand t suffi
ciently small. Further, and most importantly, the 
coefficients in this power series are all elements formed 
by taking multiple commutators of A and B. That is, 
the coefficients are all elements of the Lie algebra 
generated by A and B. Thus, if we have two sets of 
matrices which obey the same commutation rules, they 
will combine in the same manner under the operation 
(2.16). 

B. The Group SL(2, C) 

The group SL(2, C) is the group of all 2 X 2 ma
trices, unitary or otherwise, with determinant + 1. 
The symbol C denotes our willingness to work over the 
complex-number field. SU(2) is evidently a subgroup 
of SL(2, C). If g is an element in SL(2, C) which is 
sufficiently near the identity 0'4, it can be written 
uniquely in the form 

g = exp (lY' a), (2.17) 

where y is in general some complex 3-vector. 
It is not true that every element in SL(2, C) can be 

written in the form (2.17). [The element (-0'4-
tO'l - ti0'2) provides a counter example.] However, 
every element can be written in the form4 

g = exp (tOt. a) exp W~· a), (2.18) 

where Ot and ~ are real 3-vectors. The first factor is 
Hermitian and positive definite. The second belongs to 
SU(2). Both factors are uniquely defined. We record 
for future reference an explicit formula for IX, 

2 cosh IX = Tr (ggt), (2.19) 

which follows from (2.18) and the complex forms of 
(2.1) and (2.5). Unlike ~, the domain ofOt is com
pletely unrestricted. Thus the topology of SL(2, C) is 
Ea x sa. 

As with SU(2), representations of SL(2, C) can be 
obtained by exponentiating J matrices. If g is any 
element in SL(2, C), we define a matrix G(g) by the 
rule 

G(g) = exp (Ot. J) exp (i~ . J). (2.20) 

Here we have used the parametrization (2.18). If g is 
sufficiently near the identity, we may also write 

G(g) = exp (y. J), (2.21) 

in keeping with the parametrization (2.17). The 
CBH theorem guarantees that the definitions (2.20) 
and (2.21) agree and that the matrices G(g) form a 

representation of SL(2, C). [In fact, using one of the 
standard notations, the representations obtained in 
this way are D(j, 0).]8 

C. Group Integration 

The last tool we shall need is group integration over 
SU(2). We assign to SU(2) the unique left and right 
invariant measure du having the property 

f feu) du = f f(u l uu2) du, (2.22) 

for any elements Ul and U2 in SU(2) and any function 
f If u is parametrized in terms of Euler angles, 

u = exp (-tic/>O'a) exp (-ti00'2) exp (-tbPO'a), 

(2.23) 
the measure du is given by 

du = (167T2)-1 sin 0 dO dr/> dIp. (2.24) 

Carrying out the multiplications indicated in (2.23) 
and comparing the result with (2.9) give the relations 

Xl = +sin to sin t(r/> - 1jJ), 

X2 = -sin to cos ter/> - 1jJ), 

Xa = -cos to sin ter/> + 1jJ), 

X4 = +cos to cos ter/> + 1jJ). 

(2.25a) 

(2.25b) 

(2.25c) 

(2.25d) 

It is easily verified that Sa is covered once, and only 
once, when the angular variables take on the values 
r/> E (0, 27T], 0 E (0, 7T], and 1jJ E [0, 47TJ.9 With this 
region of integration and the measure (2.24), the inte
gral of du over the whole group is unity. In calculations 
to be done later on, we shall sometimes find it useful to 
replace cf> and 1jJ by sum and difference variables: 

0' = ter/> + 1jJ), 

15 = tecf> - 1jJ). 

In this case du is given by the expression 

(2.26a) 

(2.26b) 

du = (87T2)-1 sin 0 dO dr5 dO', (2.27) 

and the group is covered once when the variables take 
on the values 15, 0' E [0, 27T] and 0 E [0, 7T]. 

3. ANALYTIC MANIFOLDS AND FUNCTIONS 
THEREON 

A. Analytic Manifolds 

Loosely speaking, a manifold is a set which locally 
looks like a Euclidean space of some dimension. That 
is, there exists a 1-to-1 bicontinuous mapping (a 
homeomorphism) between a neighborhood of any 
point in the manifold and some Euclidean space. The 
groups SU(2) and SL(2, C) are manifolds. If Uo is any 
element of SU(2) and u is near Uo , then UUijl is near the 
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identity so that we may write 

u = exp W~ . o)uo , (3.1) 

with ~ being a "small" vector. Equation (3.1) gives an 
explicit map between points near the origin of £3 and 
a small neighborhood of Uo. Similarly, if go is any 
element of SL(2, C) and g is near go , we may write 

g = exp (h· o)go , (3.2) 

where y is a "small" complex 3-vector. By treating the 
real and imaginary parts of y separately, we see that 
(3.2) is a map between points near the origin of E6 and 
a neighborhood of go. In keeping with the standard 
terminology, we shall call the images of Euclidean 
space under the mappings (3.1) and (3.2) coordinate 
patches for the groups SU(2) and SL(2,C), respec
tively. The real components of ~ and the real and 
imaginary components of y will be called local 
coordinates. 

We are now in a position to say what it means for a 
manifold to be analytic. Suppose two coordinate 
patches overlap. Then a group element in the overlap 
region has two sets of local coordinates, and it is 
possible in this region to express one set of coordinates 
in terms of the other. We thus get a mapping of En into 
En where, in our cases, n = 3 or 6. A manifold is said 
to be real analytic if one set of coordinates has a 
convergent Taylor-series expansion in terms of the 
other. Note that all terms in the Taylor series are real, 
for the coordinates are real by definition. 

Evidently, as defined, the property of being real 
analytic is a joint property of both the manifold and 
the choice of coordinates. However, each choice of 
coordinates can be uniquely extended to a maximal 
family of coordinate systems by considering all those 
coordinate systems which are related in a (real) 
analytic way to the initial coordinate system. Since 
many choices of coordinate systems lead to the same 
maximal family, we can, in this manner, remove much 
of the arbitrariness pertaining to a particular choice 
of coordinates.1o 

The groups SU(2) and SL(2, C) are both real ana
lytic manifolds: Suppose Uo an~ u~ are two n.earby 
elements in SU(2) and ~ and ~ are the coordmates 
for the corresponding coordinate patches. In the 
region of overlap, we have, using (3.1), the relation 

exp (tiW .0) = exp (ti~ • o)uO(U~)-l. (3.3) 

Since u and u' are nearby, the element uO(U~)-l can be 
written

O 
in ex;onential form with a small exponent. 

Applying the CBH theorem, we conclude that the 
components of ~' can be expressed as convergent 

power series in the components of ~. A similar argu
ment may be made for SL(2, C). In this case, we find 
that the six components of Re y' and 1m y' are related 
to the six components of Re y and 1m y by six Taylor 
series in the six components of Re y and 1m y. The 
knowledgeable reader will observe that what we have 
been saying is a consequence of the fact that SU(2) 
and SL(2, C) are Lie groups. It is, in fact, part of the 
definition of what it means for a group to be a Lie 
group.l0 

The group SL(2, C) is also a complex analytic 
manifold. We observe that the expression (3.2) may 
also be viewed as a mapping between a neighborhood 
of SL(2, C) and C3, the space of three complex vari
ables. That is, we may treat each component of y as a 
complex variable. Looking at the analog of (3.3) for 
SL(2, C) and the CBH theorem, we see that, in fact, 
the three components of y', when viewed as complex 
numbers, are analytic functions of the three complex 
components of y. That is, the three components of 
y' each have a convergent Taylor expansion (a triple
power series) in the three components of y. 

Evidently, every complex analytic manifold of com
plex dimension n is also a real analytic manifold of 
dimension 2n. However, the reader is warned that not 
every real analytic manifold of dimension 2n is a 
complex analytic manifold of complex dimension n. 
S4 provides a counterexample,u Finally, we remark 
that SL(2, C) may be viewed as the complexification 
of SU(2), and hence SU(2) may be regarded as the 
real part of SL(2, C).12.13 

B. Analytic Functions 

The last topic to be discussed in this section is what 
it means for a function to be real or complex analytic. 
A function J on a manifold is a rule which assigns a 
number, in general complex, to each point in the 
manifold. At each point in the manifold, we may 
introduce a local coordinate patch with real coordinate 
variables. Our function Jthen becomes (locally) a func
tion of the real coordinate variables. The function J 
is said to be real analytic on the manifold if, at each 
point, it has a convergent multiple Taylor expansion in 
the local real coordinate variables. (Note that the 
function itself need not take on only real values.) 
Evidently, our definition as it stands appears to depend 
on the choice of coordinate system. However, since 
"an analytic function of an analytic function is again 
analytic," our definition is, in fact, coordinate fre~. 

To get the feel of what it means to be real analytIc, 
consider functions defined on S2, the surface of a 
sphere in 3-dimensional space. It is easily verified that 
S2 becomes a real analytic manifold, if we take as a 
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family of coordinate systems spherical polar coordi
nates with various polar axes. Each polar-coordinate 
system provides a good set of coordinates, i.e., a 
homeomorphic mapping between S2 and E2, every
where except at its poles. Where two coordinate 
systems overlap and are both good, they are analyti
cally related. 

Let us choose the z axis as polar axis, and let the 
polar angles e, 4> be defined by the standard relations 

(3.4a) 

(3.4b) 

where we have used the notation of (2.13) and (2.14). 
If u is parametrized by the Euler angles, Eq. (2.23), 
D~ .. (u) is just the Wigner rotation function D~ .. (4)e1p). 
We claim that the functions D! .. are real analytic on 
SU(2). At least two proofs of this statement are pos
sible. One proceeds in a similar fashion to that given 
for the Yr on S2. We shall present another. 

Suppose u is near uo. We introduce local coordi
nates as in (3.1) to obtain the relation 

D~iu) = (j,ul U(I3)u(uo) IjA; 

= L (j,ul U(I3) I jv; D~iuo), 

(3.9a) 

(3.9b) 

x = sin e cos 4>, 

y = sin e sin 4>, 

z = cos e. (3.4c) where 
v 

We claim that the function cos e is real analytic on S2, 
but sin e is not. Evidently, both are entire functions of 
e and are therefore real analytic functions wherever e, 
4> form a good coordinate system. To examine their 
behavior at the poles e = 0, 7T (where 4> is undefined), 
we need a different coordinate system. A suitable 
choice is the coordinate pair x, y. It produces two 
coordinate patches, one covering the northern hemi
sphere and the other the southern. It is easily verified 
that these patches are analytically related to those 
provided by spherical coordinates wherever they over
lap. At the north pole, we have 

cos e = +(1 - x2 _ y2)!-, 

sin e = + (x2 + y2)!-. 

(3.Sa) 

(3.Sb) 

We see that cos e has a double Taylor-series expansion 
in x and y, but sin e does not. A similar result holds at 
the south pole. Thus, cos e is real analytic on S2, but 
sin (J is not. 

We shall next demonstrate that all the spherical 
harmonies Yt(e,4» are real analytic on S2. Firstly, 
we already know that Yf is real analytic, since it is 
proportional to cos e. Let us examine 11. We have the 
relation 

(3.6) 

which shows that Yt is real analytic wherever e, 4> are 
good coordinates. At the north pole we have 

Y~ oc x + iy, (3.7) 

which is manifestly a convergent Taylor expansion. A 
similar result holds at the south pole. Thus yt is real 
analytic. The same arguments succeed for y;:-l. Finally, 
since all the Yr can be built up by taking finite sums of 
finite products of the y;" we conclude that all the Yt 
are real analytic. 

We now return to SU(2). Consider the functions 
D! .. (u) defined on SU(2) by the formula 

D~iu) = (j,ul U(u) IjA), (3.8) 

U(I3) = exp (il3. J). (3.9c) 

Here, we have used the representation property (2.15). 
Note that the sum on v in (3.9b) is over a finite range. 
Thus, if we can show that the terms D~'(I3) = 
(J,ul U(I3) Ijv) have a convergent Taylor expansion in 
the components of 13, we will have shown that D~ .. is 
real analytic on SU(2). By definition, we have 

00 

U(I3) = :2 (n lrl(i13 • J)n. (3.10) 
n=O 

Therefore, D!v(l3) is an infinite sum of polynomials in 
the components of 13. We shall show that this sum is 
absolutely and uniformly convergent on any compact 
set and hence analytic in the components of 13. 
Define the matrix A by the rule 

A = il3. J 

and the number IIAII by the rule 

IIAII = max i(j,ul A liv;i. 
p..v 

It is easily verified that 

(3.11 ) 

(3.12) 

(3.13) 

since the matrices J are of dimension (2j + 1) X 

(2j + 1).14 Lastly, the series 

00 

:2 (n l)-1(2j + l)n IIAlln 
n=O 

(3.14) 

is convergent for allllAII. This completes the proof. 
So far, we have defined what it means for a function 

to be real analytic and have discussed some important 
examples. We next define what it means for a function 
Ito be complex analytic. First of all, it must be defined 
on a complex analytic manifold. Secondly, we require 
that / depend on the local coordinates in a complex 
analytic manner. That is, suppose p is some point in 
the manifold and Zl, Z2, ••• , Zn are local coordinates 
which map the neighborhood of p into en, with p 
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having the coordinates Zi = O. We say that f is com
plex analytic at p, ifit has a convergent multiple Taylor 
expansion in the variables Zi' Observe that, forfto be 
real analytic on a complex analytic manifold, it need 
only have a convergent Taylor expansion in the vari
ables Zi and Zi' Thus, complex analytic functions are a 
special subclass of real analytic functions. The impor
tance of complex analytic functions will become 
apparent in Sec. 5. We note that, if a function f is 
complex analytic on a set in SL(2, C) which contains 
SU(2), thenfis automatically real analytic on SU(2). 

Consider the functions D~;,(g) defined on SL(2, C) 
by the rule 

We next use (2.6) to infer the existence of an element 
Ul E SU(2) such that 

exp (la.· a) = u1(exp locO'a)ull. (4.6) 

Combining (4.5) and (4.6), we find thatg has the form 

and 
(4.7) 

',r 

Since U(u) is unitary, we have 

(4.9) 

D~;,(g) ~f (j,ul G(g) Ii).), (3.15) Also, from (2.13a) and (2.21), 

where we have used the notation of (2.20) and (2.21). 
We assert that the functions D~;,(g) are complex 
analytic everywhere on SL(2, C). The proof is straight
forward. If g is any element of SL(2, C) in the neigh
borhood of go, we introduce complex local coordinates 
y as in (3.2). We then follow steps analogous to those 
in Eqs. (3.9)-(3.14), to discover that D~;,(g) has a 
convergent expansion in the components of y as 
required. 

4. INFINITE SERIES 

We have seen that the functions D~;,Cg) are complex 
analytic everywhere on SL(2, C). They, in fact, play 
somewhat the same role as do polynomials on ca. In 
this section, we will consider sums of the form 

r:J) 1 1 

S(g) = ~ ~ ~ (2j + l)a~;,D~;,(g). (4.1) 
1=0 I'=-i ;'=-i 

The sum S will be a complex analytic function in any 
region of SL(2, C), in which it converges uniformly. 
For computational convenience, the term (2j + 1) has 
been explicitly separated out. The reader is reminded 
of the relation for integer j and m3 , 

D~,o(rp, 0, 'IjJ) = [47T/(2j + l)]t( _1)mYjm(o, rp), 

(4.2) 

which shows that the sum (1.1) is a special case of 
(4.1). 

We begin by finding a bound for the functions 
D~).(g). 

Theorem 1: If g is parametrized as in (2.18), then 

I D!;,(g) I ::::;; ,:li(OC), (4.3) 
where 

,:li(oc) = [sinh (j + l)oc][sinh IOCr!. (4.4) 

Proof: Note that the second factor in (2.18) belongs 
to SU(2), so that we may write 

g = exp (ta. • a)u. (4.5) 

Consequently, 
i 

ID~;,(g)1 ::::;; ~ exp OCT = ,:l1(OC). (4.11) 
T=-i 

We remark that ,:li(oc) increases monotonically with 
increasing oc. From (4.11), we have the estimate 

e1a ::::;; ,:li(oc) ::::;; (2j + l)e1a• (4.12) 

A region in which (4.1) converges can now be 
determined by techniques similar to those for Taylor 
series. Consider the sequence of numbers b~;,(oc) 
generated by the formula 

b~;,(oc) = (2j + 1) la!;,1 ,:l1(oc), (4.13) 

as j, ,u, and), range over the values indicated in the 
sum (4.1). We define OCo to be the least upper bound of 
those oc's for which the sequence {b~ ... (oc)} is bounded. 

This definition leads to an explicit formula for OCo. 

Theorem 2: We have the formula 

OCo = -log [lim sup la!;,ll/i], (4.14) 

where the limit superior is taken over allj, ,u, and ). 
indicated in (4.1). 

Proof' Suppose oc < OCo. Then, by the definition of 
OCo, there exists an M such that 

b!;,(oc) ::::;; M. (4.15) 

From (4.12) and (4.15), it follows that 

la~;,1 ::::;; Me- ia
, (4.16) 

whence 
log [lim sup la! ... 11

/;]::::;; -OCo. (4.17) 

Now suppose oc > OCo. Then for any M we have 

b~;,(oc) ~ M, (4.18) 
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for infinitely many triplets j, 1', A. Therefore, we 
have 

la;).1 ~ M(2j + 1)-2e-JIX (4.19) 

for infinitely many j, 1', and A, whence 

log [lim sup la!).II/i) ;;:: -~o' (4.20) 

Comparison of (4.17) and (4.20) verifies (4.14). 

We assert that the quantity oto defines a region of 
SL(2, C) in which the series (4.1) converges. 

Theorem 3: Suppose g is such that its ot [given ex
plicitly by (2.19)] satisfies ~ < otl < oto. Then S(g) 
converges absolutely. 

Proof: We obtain from (4.3) the inequality 

1(2j + 1)a!).D!ig) I =:;; b!k'.). (4.21) 

From the definition of ~o there exists an M such that 

b!i~l) =:;; M, 
whence 

J J /. b,,;.{ot) =:;; M[b,,;.{ot) b;).(otl)]' 

From (4.12) we observe that 

[b!).(ot)lb!.tC~I)] =:;; (2j + 1)e;(IX-IX
1). 

But the comparison series 
0::> 

(4.22) 

(4.23) 

(4.24) 

!M(2j + 1)eJ(IX-a1) = M!(2j + 1)3e;(a-a1) (4.25) 
;,,). ;=0 

converges for ~ < otl . Hence, S converges absolutely as 
advertised. 

Several comments are in order. The first concerns 
the region of convergence found in Theorem 3. We 
saw in Sec. 2 that the topology of SL(2, C) is E3 X S3. 
The condition on a, in Theorem 3, is that its length 
be less than oto • This condition characterizes the interior 
of a ball in E3 of radius ~o which we denote by B3(~0)' 
Under the hypotheses of Theorem 3, the convergence 
of S(g) is independent of the "SU(2) part" of g. Thus, 
the domain of absolute convergence is B3(~O) X sa. We 
shall call this region a superball of radius oto and denote 
it by B6(~O)' 

A second comment is that Theorem 3 can easily be 
extended to show that the convergence of S(g) is uni
form in any superball of radius less than oto. Therefore 
S(g) converges to a complex analytic function within 
B6(otO)' 

A third comment is that Theorem 3 contains within 
it the celebrated result that the region of convergence 
of a Legendre series (more generally a series of Jacobi 
polynomials) is the interior of an ellipse with foci ± 1. 

It is easily checked that a general element in SL(2, C) 
can be written in the form (2.9), provided the numbers 
Xl to X4 are allowed to become complex but still 
subject to the condition (2.10). Reference to (2.25) then 
shows that a general element in SL(2, C) can also be 
parametrized by complex Euler angles. We find, 
using (2.9), (2.19), (2.25), and (2.26), that the ~ for a 
general g is related to its Euler angles by the expression 

2 cosh ot = 11 + cos 01 cosh (21m 0') 

+ 11 - cos 01 cosh (2 1m ~). (4.26) 

We next remind the reader of the relation 

D/n,(cfo01p) = P;(cos 0). (4.27) 

Hence, a Legendre sum is a special case of (4.1), in 
which a~). vanishes unless I' = A = O. In this case, 
S(g) depends only on cos 0 and is independent of ~ 
and 0'. According to Theorem 3, the Legendre sum 
converges absolutely when IX < IXo. Looking at (4.26), 
we see that cos 0 reaches the edge of its domain when 
0' = ~ = 0 [which condition does not change the 
value of S(g»). Hence, the series converges when 

2 cosh IXo > 11 + cos 01 + 11 - cos 01. (4.28) 

The condition (4.28) describes the interior of an ellipse 
in the complex cos 0 plane with foci ± I and semi
major axis cosh IXo. A similar argument can be given 
for sums of Jacobi polynomials. 

The last item to be discussed in this section is some
thing about the region in which the series S(g) di
verges. In the case of a Taylor series in a single variable, 
we know that the series converges everywhere inside 
its circle of convergence, diverges everywhere outside, 
and mayor may not converge at points on the circle 
itself depending upon the detailed nature of its coeffi
cients. The behavior of the Wigner series S(g) is more 
complicated, as will be seen from a well chosen 
example. 

Let us write a general element g E SL(2, C) in the 
form 

(4.29) 

We may view a, b, and c as independent complex 
parameters, and compute d from the constraint 

detg =- 1 (4.30a) 
or 

d = a-l(l + bc). (4.30b) 

Consider the functionf defined by 

00 

f(g) = (1 - Tarl = ! Tna n , (4.31) 
o 
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where T is some number satisfying ITI < 1. We note 
the two relations 

Dli(g) = a, 

i n in 
[DU] = D!n!n' 

Thus,/has the Wigner expansion 

00 

f(g) = 2,T2;Df;(g)· 
;=0 

(4.32) 

(4.33) 

(4.34) 

It is easily verified that I is complex analytic except at 
a = T-1• Indeed, I as a function of a has only a pole, 
and, by (4.32) and Sec. 3, a is an entire function of g. 

Let us compute oc, when g is parametrized by (4.29). 
We find, using (2.19) and (4.30b), that 

2 cosh rt. = lal 2 + IW + 1c1 2 + lal-2 11 + bel 2
• 

(4.35) 

Let us also compute OCo using (4.14). We obtain 

rt.o = -log [lim sup 1(2j + 1)-lT2;11/;] = -2 log ITI. 

(4.36) 

It is evident from (4.31) that the expansion (4.34) con
verges absolutely provided lal < ITI-1. Comparing 
(4.35) and (4.36), we see that there are many points 
outside of B6(rt.O)' where this condition is satisfied 
since Ibl and lei can be arbitrarily large. We conclude 
that a Wigner series may also converge at points, and 
indeed within whole regions, outside'its superball of 
convergence. 

What is the largest superball in which the function I 
of our example is complex analytic? Put another way, 
what is the smallest superball in which I is singular? 
To answer this question, we set a = T-1 and vary band 
e to minimize (4.35). A short calculation shows that 
the minimum occurs when b = e = 0, and we obtain 

(4.37) 

or 
rt.min = -210g \T\. (4.38) 

Thus, in our example, the maximal superball of 
analyticity coincides with the superball of convergence 
for the Wigner series! We shall see in Sec. 5 that this 
is always true. 

Suppose we anticipate this result. We can then show 
that there are cases in which a Wigner series has no 
meaning outside its superball of convergence. What 
we shall show is that there are functions which are 
complex analytic within a given superball, but are not 
analytic anywhere outside the superball and hence 
may not even be defined anywhere else. In the technical 

language of the theory of many complex variables, a 
superball is an envelope of holomorphy.15 

To show that a given superb all is an envelope of 
holomorphy, it is sufficient to show that given any 
point p on the boundary of the superball, there exists 
a function which is complex analytic inside any smaller 
superball, but singular at p.16 Let /o(g) denote the 
function defined by (4.31) using a real value of T with 
T = TO, 0 < TO < 1. The function/o is complex ana
lytic within B6(rxO), where 

rt.o = -2 log TO, 

and is singular at the boundary point 

go = TO = exp GlXoas). ( 

-1 0) 
o TO 

Now consider the function/12 defined by 

f12(g) = fo(u11gu;1), 

(4.39) 

(4.40) 

(4.41) 

where U1 and U2 are any elements in SU(2). It is easily 
verified that the arguments ofh2 and/o have the same 
rt.. Further, any matrix element of the argument of 10 
is an entire function of g. It follows that h2 is also 
complex analytic within B6(rxO)' Finally,h2 is singular 
when g = gs' where 

(4.42) 
or 

(4.43) 

Employing (4.7), we see that, with a proper choice 
of U1 and u2 , g. can be made to coincide with an 
arbitrary point on the boundary of B6(OCO)' 

5. EXPANSION OF ANALYTIC FUNCTIONS 

Suppose I is a function defined on SU(2). Then, 
under certain conditions, I has an expansion of the 
form (4.1). For the most part, we shall be concerned 
with the expansion of functions which are real analytic 
on SU(2) or complex analytic within some superball 
of SL(2, C). (In fact, we shall see that these two con
ditions are equivalent.) However, some discussion is 
given to the case where I possesses a finite number of 
derivatives or is only continuous. 

Consider the set of functions defined on SU(2). 
This set is evidently a vector space under the operations 
of pointwise addition and multiplication by complex 
numbers. If I and g are any two such functions, we 
define a scalar product by the rule 

(f, g) = f duJ(u)g(u). (5.1) 

It is easily verified that this scalar product is real and 
positive definite. 
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Consider the functions D~iu). The reader is re
minded, using the notation of (2.24) and (5.1), that 
they obey the relationa•5 

(D!;., D~,;..) = (2j + 1)-lb;;.bl'l',b;.;.'. (5.2) 

Therefore, ifjhas an expansion of the form (4.1), the 
coefficients are given by the relation 

(5.3) 

Using (5.3), we get an immediate estimate for the 
coefficients a~;. by the Schwarz inequality, 

la!;.1 ::;; (2j + 1)-I(f,f)I. (5.4) 

There still remains the question of whether the 
Wigner functions form a complete set. The answer is 
yes. 

Theorem 4: Supposejis continuous on SU(2); then 
the Wigner series (4.1) for j is Abel summable, in the 
sense that 

lim!(2j + 1)t2ia~;.D!;.(u) =f(u). (5.5) 
t-+l il';' 

Proof: From (4.9) and (5.4), it is evident that (5.5) 
is absolutely convergent for ° ::;; t < I, and hence 
there is something to take the limit of. We shall pro
ceed in a somewhat circuitous manner. We first define 
a "b function" b(u) on SU(2) by the rule 

(5.6) 

for any continuous function! Since the measure du is 
left and right invariant, we have the result 

J dub(uu'-l)f(u) =f(u'). (5.7) 

Thus, proving (5.5) is equivalent to demonstrating 
that 

lim bet, u) = b(u), (5.8) 
t-+l 

where 

Note that 

We first calculate the sum 

Ifu is parametrized as in (2.1), there exists by (2.6) an 
element U1 such that 

U = ul1 exp (tiPO"a)u1 • 

Consequently, 

Tr Di(U) = ! (jAI U-\u 1) exp i{JJaU(u1) IjA) 
;. 

= ! (jAI exp iPJ3 IjA) = ! eiP ). = £1i(iP)· 
). ). 

(5.12) 

The sum (5.9) can now be easily evaluated. We obtain 

00 

bet, u) = ! (2j + 1)t2i£1\i{J) 
o 

= (1 - t2)(1 - 2t cos P/2 + t2)-2. (5.13) 

Evidently, 

lim bet, u) = 0, if {J ¥= 0, 47T or U¥=0"4' 
t-+l 

= 00, if P = 0, 47T or u = 0"4' 
(5.14) 

Thus, bet, u) becomes strongly peaked about U = 0"4 

as t --'> 1. Finally, it is easily checked from (5.9) that 

J duli(t, u) = (Dgo, bet, uJ) = 1 (5.15) 

since, by (5.2), only the first term in the sum contri
butes. Thus, (5.8) is correct. Because b is manifestly 
real, we may also write 

b(UU'-l) = ! (2j + l)bl').D~;.(uu'-l). (5.16) 
il'). 

Insertion of (5.16) into (5.7) and use of the group 
property for the D!). produces the desired Wigner 
expansion for! 

It might be imagined that the convergence of a 
Wigner expansion for a function j depends on how 
"nice" jis. This is indeed the case. We shall see that the 
estimate (5.4) can be improved if j is differentiable, 
and greatly improved if it is analytic. By way of 
definition, a functionj on an analytic manifold is said 
to be differentiable at a point p if it is a differentiable 
function of the local coordinates at p. If j is differenti
able at all points of a manifold, we simply say that it is 
differentiable. 

Suppose j is defined on SU(2) and is differentiable 
at uo. We define three Lie differential operators 'Jk by 
the rule 

i'Jd(uo) = d~ {f[(exp -iiAO"k)UO]}!;'=o. (5.17) 

Let us apply this definition to the Wigner functions. 
We have 

D~;.[(exp -liAO"k)UO] = (j,ul (exp -iAlk)U(UO) ijA), 

(5.18) 
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from which it follows from (2.13) and (5.17) that 

ltaD~). = -flD~;. (5.19) 
and 

(~lt:)D~;. =j(j + I)D~;.. (5.20) 

We assert that the operators It k are Hermitian. That 
is, iff and g are two differentiable functions, then 

We turn now to the case of real analytic functions on 
SU(2). The first tools we shall need are three theorems 
concerning multiple Taylor series. For our needs, a 
discussion of triple Taylor series will suffice. 

Theorem 7: Consider the Taylor series 

T(X1x2Xa) = L a«p/x1 - X{)«(X2 - x~)P(xa - x~y. 
«.P.Y (5.29) 

Theorem 5: The operators ltk are Hermitian. 

Proof: We first show that 

(5.21) Define a number R by the expression 

R-1 = lim sup la«pl«+p+y)-l. (5.30) 

(1, ltd) = 0, (5.22) 

Then T converges absolutely and is analytic in the 
polydisk 

Ix; - x;1 < R, j = 1,2,3, (5.31) 

where 1 denotes the function which is one on SU(2) and diverges when 
and f is uniformly differentiable. By definition, we 
have the relation Ix; - x;1 > R, j = 1,2,3. (5.32) 

f{[exp (-iiAO"k)]U} - feu) = Ailtd(u) + 0(A2). 

(5.23) 

Take the scalar product of both sides of (5.23) with 1. 
The left-hand side gives a vanishing scalar product 
because of (2.22). Division of the right-hand side by 
A and setting A = 0 give (5.22). Next observe that 
ltk is a differential operator, so that 

ltk[fg] = [ltd]g + .f['J~]. (5.24) 

It is also "pure imaginary," 

(5.25) 

Taking the scalar product of both sides of (5.24) with 
1 and using (5.22) and (5.25) give (5.21). 

We are now prepared to state a theorem concerning 
differentiable functions. 

Theorem 6: Suppose f has 2n derivatives. Then the 
coefficients a~;. obey the inequality 

la!;.1 ::;; [j(j + l)rn(2j + l)-!(lt2nj, lt2'Ji, (5.26) 

where 

Proof: A simple calculation gives 

(D!;., (t2nf) = «(t2n D!;., f) 

(5.27) 

= [j(j + l)r(D~;.,f) = [j(j + lWa!;.. 
(5.28) 

Now apply Schwarz's inequality to obtain (5.26),17 

Proof: The proof proceeds along lines similar to that 
for a single complex variable,1s 

Theorem 8: Suppose f(xlx2xa) is analytic in the 
polydisk Ix; - X;I < r. Then f has a convergent ex
pansion of the form (5.29) and R ~ r. 

Proof: Apply Cauchy's theorem three times and 
expand the denominators in a geometric series.1s 

Theorem 9: The radius of convergence R is a con
tinuous function of the expansion point x~, x~, x~. 

Proof: Let x~x~x~ be a fixed point and X 1X 2Xa denote 
a variable point. Consider the polydisk of convergence 
about x~x~x~ with its radius denoted by R(x~x~x~). 
Choose the variable point sufficiently near the fixed 
point, so that 

a 
L Ix; - x;/ < R(x{x~x~), (5.33) 
i=l 

whence 

IXi - x;1 < R(x{x~x~), . i = 1,2,3. (5.34) 

We can now place a polydisk about XIX2Xa which fits 
inside the polydisk about x~x~x~. It follows from 
Theorems 7 and 8 that 

R(X1X2X3) ~ min [R(x{x~x~) - Ix; - x;ll, (5.35) 
i 

whence 

R(X1X2X3) ~ R(x{x~x~) - L Ix; - x;l. (5.36) 
i 

However, the polydisk of convergence about X 1X 2X a 
cannot be too large, for otherwise it would contain the 
polydisk about x~x~x~ which would again violate 
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Theorems 7 and 8. Therefore, we must have 

R(X1X2Xa) ~ max [R(x~x~x~) + IXi - x~IJ, (5.37) , 
whence 

R(XIX2Xa) ~ R(x~x~x~) + I IXi - x~l. (5.38) 
i 

(See Figs. 1 and 2.) Combining (5.36) and (5.38) gives 

IR(XIX2Xa) - R(x~x~x~)1 ~ I IXi - x;j, (5.39) 
i 

which completes the proof. 

We are now prepared to proceed. Suppose thatfis a 
real analytic function on SU(2). At each point Uo we 
introduce local coordinates ~ using (3.1). Then, since 
f is real analytic, we have 

f[(exp ti~ . cr)uoJ = I C;k!fJffJ~fJ~· (5.40) 
;k! 

Compute the radius R of convergence for this series 
using (5.30). By hypothesis, we have R > O. Therefore, 
by Theorem 7, the series (5.40) also converges for 
small complex ~. But elements of the form 

(exp ti~ . cr)uo 

with ~ complex are elements in SL(2, C). We draw the 
important conclusion that a function on SU(2) which 
is real analytic at Uo can be locally extended to a com
plex analytic function on SL(2, C). 

Can these local extensions be pieced together to 
make a global extension? The answer is yes. We first 
show that a certain minimal local extension is possible 
at each point in SU(2). 

Theorem 10: Suppose, given a function f real 
analytic on SU(2), that we make an expansion of the 
form (5.40) at each point u in SU(2). At each u, we 
compute the radius of convergence using (5.30), and 
denote its value by R(u). Then, there exists a number 
r > 0 such that 

R(u) ~ r 

for all elements u E SU(2). 

FIG. 1. The inequality (5.35). 

xi PLANE 

xi PLANE 

FIG. 2. The inequality (5.37). 

Proof: Since SL(2, C) is locally homeomorphic to 
ca and (5.40) is a Taylor series in Ca, we know by 
Theorem 9 that R(u) is continuous. Further, by hy
pothesis, R(u) > 0 at each point in SU(2), since f is 
real analytic. Finally, the group SU(2) is compact. 
This completes the proof, for a continuous positive 
function on a compact manifold must be bounded 
away from zero. 

Theorem 10 states thatfis complex analytic at each 
point u in' a neighborhood satisfying IfJil < r. Take 
the union of all these neighborhoods as u ranges over 
SU(2). It is geometrically evident that this union con
tains within it a superball BG(r') with r > r' > O. We 
now show that the local expansions within .B6(r') can 
be pieced together to produce a function which is 
globally complex analytic in B6(r'). We need two more 
results from the theory of complex variables. 

Theorem 11: Suppose a function f is known to be 
complex analytic at some point p in a complex analytic 
manifold. Then its values in any small neighborhood 
of p determine its values at any other point p', which 
can be reached by analytic continuation along some 
path. 

Proof: This is the uniqueness theorem for analytic 
continuation. IS 

Theorem 12: If a function can be analytically con
tinued along any path in a simply connected region D, 
then the value obtained at any point is independent of 
the path of continuation. 

Proof: This is the monodromy theorem.ls 

We assert that the conditions of Theorems 11 and 
12 are satisfied in our case. First, we already know 
that f is complex analytic at each "SU(2)" point in 
SL(2, C). Secondly, since B6(r') is covered by poly
disks of radius r, it is possible to analytically continue 
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/ along any path in B6(r'). Finally, B6(r') is simply con
nected since it is the topological product of S3 and a 
ball in E3, both of which are simply connected. We 
conclude that / can be analytically continued into 
RI(r') and that its values there are completely deter
mined by its values on SU(2). 

Still more can be said. Applying Theorem 11, we 
may attempt to continue / into a larger superball. If 
we are able to continue into a larger superball, we can 
try continuing along all possible paths within it. If 
we cannot get into a larger superball, we may 
conclude that the original superb all has singularities 
of / everywhere dense on its boundary. (This is a 
possibility, since we saw in Sec. 4 that a superball is an 
envelope of holomorphy.) In either case, we are able 
to completely determine the singularity structure of/ 
in SL(2, C). In particular, there exists for each func
tion / a certain maximal superball (which may have 
infinite radius) inside of which / is free of singularities. 
We conclude that, if/is real analytic on SU(2) , it must 
also be complex analytic on SL(2, C) within a certain 
maximal superball. 

We now have sufficient tools to state and prove 
results about Wigner expansions of analytic functions. 
A key result is the following. 

Theorem 13: Suppose/is complex analytic within a 
superball of radius ro. Then, for any r1 < ro , the coeffi
cients a~;. satisfy the bound 

la~;.1 ~ M(rl)(2j + l)i[di(rl)rl. (5.41) 

Proof: Let u be an arbitrary element in SU(2). Con
sider the element get) defined by 

get) = (exp ito 0 a)u, (5.42) 

where 0 is a real unit vector and t is a real or complex 
number. It is evident that g is contained in a superball 
whose radius (X. is given by 

(5.45) in the symbolic form 

leg) = OCt, D)/(u), 

where oct, D) denotes the operator 

(5.46) 

OCt, D) = exp (-to 0 6). (5.47) 

We say that feu) "admits" the operator OCt, D) for t 
in the disk (5.44), when the series (5.45) converges. 
Note that OCt, D) is Hermitian, when t is real. Now 
define an operator OCt) by the rule 

O(t) = (41T)-lf dOaO(t,D), (5.48) 

where dOa indicates an integration over the surface of 
the unit sphere in "0" space. Evidently, O(t) is 
Hermitian for real t and is admissible on feu) for t 
satisfying (5.44), provided / is complex analytic in 
B6(ro)' Let us apply OCt) to D~;.Cu). We have the rela
tion 

O(t)D~;.(u) = (41T)-lf dOaD~)J(exp ito oa)u]. (5.49) 

But, by the group property, 

D!;.[(exp ito 0 a)u] = I D!v(exp ttD 0 a)D~;.(u). 

v (5.50) 

Also, using (4.6), (2.24), and the unitarity relation 
U(Ul1) = ut(ul ), we have 

(41Tt J dOil.D~vCexp Ito oa) 

= f dUID~v[uI(exp it(3)ul1
] 

= IfdUID~cCUI)D~iexPtta3)D~vCUll) 
c." 

= I c5C • d exp (td)(D:'d' D~c) 
c.d 

= c5pvC2j + l)-ldi(t). (5.51) 

(X. = IRetl. (5.43) Thus, we obtain the remarkable result 

Thus, g will be contained within B6(ro), if 

It I ::;; r1 • (5.44) 

By .hypothesis,Jis complex analytic in B6(ro)' Hence, 
it can be continued analytically along any path given 
by (5.42) as t varies over a path in the complex t plane, 
starting at t = 0, provided (5.44) is obeyed. Therefore, 
we may write 

00 

f[g(t)] = I cmtm (5.45) 
o 

with the assurance that (5.45) is absolutely convergent 
in the disk (5.44). Using (5.17), we may also write 

O(t)D!;.(u) = (2j + l)-ldi(t)D~;.(u). (5.52) 

The verification of (5.41) is now straightforward. We 
have 

(D~;., O[rdf) = (O[rl]D~;.,f) 

= (2j + l)-ld i (rl)(D!;.,f) 

= (2j + l)-ld i (rl )a!;.. (5.53) 

Application of the Schwarz inequality gives 

M(r1) = (0[r1]/, O[rl]!)!' (5.54) 

Theorem 13 has several immediate consequences. 
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Theorem 14: If/has B6(ro) as its maximal superball 
of analyticity, then its Wigner series converges and is 
complex analytic within B6(ro)' Further, the Wigner 
series converges to the function f. Conversely, if the 
Wigner series for a functionfon SU(2) has B6(rxO) as 
its superball of convergence, then f can be analytically 
continued into B6(lXo), its continuation is complex 
analytic within B6( lXo), and its continuation agrees 
with its Wigner series. 

Proof" Apply the results of Sec. 4 to (5.41) to see that 
the Wigner series converges and is complex analytic. 
Then use Theorem 4 to conclude that/agrees with its 
Wigner series on SU(2). Finally, use Theorem 11 and 
the discussion following it to show that, since f agrees 
with its Wigner series on SU(2), it must agree with its 
Wigner series in B6(ro). 

6. NEW FORMULAS 
A. Functions on SU(2) 

In Sec. 5 we saw that the coefficients a~A in a Wigner 
expansion of a function / can be computed from (5.3). 
Formula (5.3) involves an integration off over SU(2) 
using the measure duo In part A of this section, we will 
see that, iffis real analytic on SU(2) and hence com
plex analytic in some superball in SL(2, C), then the 
coefficients a~A can also be computed in terms of 
contour integrals off over SL(2, C). When available, 
formulas involving contour integrals are often to be 
preferred because contours may be deformed to ex
ploit various analytic properties of the integrand. 
Part B will be devoted to analogous results for func
tions on S2. 

The functions D~A can be explicitly expressed in 
terms of Jacobi functions. 5 We use the Euler param
etrization (2.23) and introduce a variable w by the 
expression 

w = cos O. (6.1) 

One finds, using a standard notation,l the relation 

D~;.( tfoO"P) = C(jp).)e-lliC 4>Htp) 

X (1 - W)!IIl-AI(1 + W)!IIlHI 

X p~~;;;AI.IIlHJ)(w), (6.2a) 
where 

m = max {I,ul, IAI} (6.2b) 

and C( ;,uA) is a constant whose magnitude can be 
determined from (5.2) and the normalization of 
Jacobi polynomials. 

Let us substitute (6.2) into (5.3). We find, using 
(2.24) and (5.1), 

a!A = (167T2)-lC(j,uA) fldW(1 - W)IIl-AI(1 + W)IIlHI 

X p~~;;;AI.IIlHP(W)g(w), (6.3a) 

where g(w) is given by 

g(w) = (1 - W)-!IIl-AI(1 + W)-!IIlHI 

X f"dtfo f"d"PeiCIlHAtp'i. (6.3b) 

The apportioning offactors of (I - w) and (1 + w) in 
(6.3) may appear a bit strange. It has been done in the 
way indicated because of the following result. 

Theorem 15: Suppose g(w) is analytic in a region R 
of the w plane which includes the interval [-1, 1]. 
Then the integral (6.3a) can be rewritten as a contour 
integral in the form 

a£A = (167T2)-1C(j,uA)( 7Ti)-1 

x fcdW(W - l)IIl-AI(w + l)IIlHI 

X Q~~;;;AI.IIlHJ)(W)g(w), (6.4) 

where C is any contour in R which encloses the inter
val [-1, 1] in a counterclockwise direction and Q is a 
Jacobi function of the second kind. 

Proof" The Jacobi function Q}~~IlI,IHIlI>(w) is ana
lytic in the w plane when it is cut along the interval 
[-1,1]. Along the interval [-1,1] it obeys the rela
tion 

[(w - 1t(w + l)bQ~a.b)(w)]I~!:~ 
= -7Ti(l - w)a(1 + w)bP~a.b)(w), (6.5) 

when a, b, and c are integers. [Note that the quantities 
1.1. ± ,ul,j - m are always integers.] Indeed, Q~a,b) has 
the integral representation19 

2(w - l)a(w + l)bQ~a.b)(w) 

= L:(W - t)-1(1 - t)a(1 + t)bp~a.b)(t) dt. (6.6) 

This information is sufficient to verify (6.4). For fur
ther details, see SzegiP 

We will have achieved our announced goal if we can 
show that g(w), as given by (6.3b), is analytic in a 
neighborhood of [-1, 1]. This is indeed the case if/ 
is real analytic on SU(2). 

Theorem 16: Suppose f is real analytic on SU(2). 
Then g(w) as defined by (6.1) and (6.3b) is analytic in 
a neighborhood of [-1, 1]. 

Proof: From (2.25) we see that tfo, 0, and "P provide 
a good coordinate system on SU(2) except at (j = 0 
and 7T. Hence, f must be an analytic function of (j on 
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the open interval (0, 'IT). The inverse of(6.1), 

O(w) = cos-l (w) = -i log [w + i(1 - W2)!], (6.7) 

shows that 0 in turn is an analytic function of w on the 
open interval ( -1, 1). Therefore,f must be an analytic 
function of w on the open interval ( -1, 1). At the end 
points, w = ± 1, O(w) has branch points. However, at 
these branch points 0 = ° or 'IT, which is precisely 
where the Euler angle coordinates fail. Next observe 
thatg(w) involves a 4>, "p integration overfand multi
plication by powers of (1 - w) and (1 + w). The1atter 
factors are also analytic in w on the interval (-1, 1). 
We conclude thatg(w) is analytic on (-1, 1), but that 
the status of the points w = ± 1 is still unclear. 

We will now show thatg is also analytic at w = ± 1. 
For brevity, we shall only treat the point w = + 1. 
The argument for w = -1 is similar. Let us rewrite 
(2.25) using (2.26) and (6.1). We find 

Xl = [(1 - w)J2]! sin b , 

X2 = - [(1 - w)J2]! cos b, 

Xa = - [(1 + w)/2]! sin a, 

X4 = [(1 + w)/2]! cos a. 

(6.8a) 

(6.8b) 

(6.8c) 

(6.8d) 

Thus, near w = 1, Xl and X2 ~ 0, and Xa and X4 are 
nearly on the unit circle. A good coordinate system 
at these points is given by the variables Xl' X2, and a. 
Since f is real analytic at these points, we may make 
the convergent expansion 

00 

feu) = ~ ajk(a)s~s~, (6.9a) 
i.k=O 

where 

(6.9b) 

and the coefficients aik depend on a. Inserting (6.8a) 
and (6.8b) into (6.9), we find 

f = ~ aiia)[(1 - w)/2](i+k)/2e-i~(k-j). (6.10) 
i.k 

Next observe that we may write 

ei (I'4>+).IJl) = eiCT(I'+).)ei~(I'-.l.). (6.11) 

Employing (6.10) and (6.11) and using t5 and a as new 
variables of integration [see (2.27)], we find 

g(w) = 2(1 - wr!II'-.l.I(1 + w)-!1 I'+).1 

X ~ [(1 - w)/2]<i+k)/2 50
2
'" daaik(a)eia(I'+A) 

(6.12) 

A simple integration gives 

(6.13) 

Thus we need to consider the sum 

S(a w) = ~ a [(1 - w)/2](i+k)/2() . , k ik I'-.l..k-,' 
1.k 

Three cases need to be distinguished: 

(6.14) 

ft - A < 0, for which j = k + 1ft - AI, (6. 15a) 

ft - A = 0, for which j = k, (6.l5b) 

ft - A > 0, for which k = j + 1ft - AI. (6.15c) 

For these cases S becomes 

S = fa;.k[(1 - w)/2]!II'-.l.I[(1 - w)/2]\ (6.16a, b) 
k=O 

or 
00 

S = 2ai.k[(1 - w)/2]!II'-.l.I[(1 - w)/2Y. (6.16b, c) 
;=0 

Note that in all cases the sum is over only one index 
since the remaining index is constrained by (6.15). 
Examination of (6.16) shows that (1 - w)-!II'-.l.1 X S 
is always analytic at w = 1. This completes the proof 
that g( w) is analytic at w = 1. 

In summary, we may rewrite the contents of Theo
rems 15 and 16 to obtain the new formula 

a~.l. = (16'IT~-IC(jftA)('lTi)-l 

X fcdW(w - 1)1I'-.l.I(w + 1)1I'+).1 

X Q~~;;;.l.LII'HIl(w)g(w), (6.17a) 

where 

X f'" d() f'" daei~(I'-.l.) eia(I'+).>,t. (6.17b) 

Initially, the contour C is near [-: 1, 1]. However, 
since Q~a.b)(w) and the terms involving (1 ± w) are 
analytic off the interval [-1, 1], the contour C may be 
deformed at will provided one does not encounter 
singularities off. By suitably deforming contours and 
using the behavior of Q~a.b)(w) for large w, it should 
be possible to obtain and perhaps even sharpen the 
bound (5.41). We shall not pursue this intriguing 
question any further here. Instead we shall explore 
another implication of (6.17). 

Suppose we insert (6.2) and (6.17) into the sum (4.1). 
We obtain the relation 

feu) = f dw' db' da'f(u')K(u, u'), (6.18) 
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where 

K(u, u') = (81T3
i)-1 ~ (2j + 1) ICU,LtA)1 2 

i.I'A 
x (1 - w)!II'-;'I(l - w'r!II'-;'1 

x (1 + w)tll'+J.I(l + w')-tII'H' 

X (w' - l)'I"-;"(w' + 1)II'HI 

X Q~~;;,I.'I'HP(W')p~~;;:;;'I.JI'HIl(w) 
x ei (I'-;')(cl'-o)eiII'H)(a'-a). (6.19) 

Thus, K(u, u') is a reproducing kernel which relates 
values off on SU(2) to its values on SL(2, C), and 
(6.18) may be regarded as an integral representation 
forf. 

The sum (6.19) is absolutely convergent for u 
sufficiently near 0'4' and can be explicitly evaluated by 
first summing overj and then over,Lt, A. The sum over 
j can be evaluated from the relationl 

00 

2! h-1(n, a, b)Q~·b'(W')p~,b)(w) 
n=O 

= (w' - l)-a(w' + 1)-h(W' - wr\ (6.20) 

where h-1 is proportional to (2j + 1) IC(j,LtA)1 2
• The 

remaining sums over ,Lt, A are geometric series and thus 
trivial. Sparing the reader algebraic details, we find the 
simple result 

K(u, u') = -(321T3i)-1(W - w') 

x [(s+ - s~)(s_ - s~)(t+ - t~)(C - t~)]-l, 
(6.21) 

that (Ll) converges absolutely in the domain 

2 cosh oc~ > cosh (1m cP)[l1 + cos 01 + 11 - cos 01]. 
(6.25) 

The manifold S2 may be viewed as a coset space of 
SU(2). To see this, note that (2.6b) can also be written 
in the form 

Rjk = i Tr (O'jUO'kU-1
). (6.26) 

Now set k = 3 and define quantities Xl' X 2 , and Xa 

[not to be confused with the Xi of (2.9) and (2.25)] by 
the rule 

Xj(u) = Rja • (6.27) 

It is evident that the Xj are the components of a vector 
obtained by applying a rotation to a unit vector in the 
3 direction and hence must satisfy 

x~ + x~ + x~ = 1. (6.28) 

Further, if we replace u by the element u exp (ti1jl0'a), 
we see from (6.26) and (6.27) that the values of the Xj 

are unchanged. Elements of the form exp (ii1jlaa) 
form a U(l) subgroup of SU(2). Thus, the quantities 
Xj depend only on the cosets of SU(2) with respect to 
a particular U(l) subgroup. We denote this coset space 
by SU(2)jU(I). Finally, using the Euler-angle param
etrization (2.23), we obtain the explicit relations 

Xl = sin 0 cos cP, 
X 2 = sin () sin cP, 
xs = cos o. 

(6.29) 

where s± are given by (6.9b) and 
Equation (6.29) shows that the relation between the 

(6.22) cosets of SU(2) and points on S2 is 1-to-I and bicon

Putting everything together, we obtain a version of 
Cauchy's theorem for SL(2, C): 

l f21T f21T 
feu) = -(321T3i)-1 J dw' Jo do' Jo da'f(u')(w - w') 

X [(s+ - S~)(L - s~)(t+ - t~)(C - t~)J-l. 

B. Functions on S2 
(6.23) 

We shall end our discussion with a special considera
tion of spherical-harmonic expansions using the 
functions Y{,,(O, cP). Many of the results obtained so 
far for Wigner expansions can be applied to Y!!' ex
pansions simply by setting ), = 0 and using (4.2). For 
example, given the expansion (1.1), we may compute a 
number oc~ from the formula 

(6.24) 

and then use the discussion leading to (4.26), bearing 
in mind that t is now independent of 1p, to conclude 

tinuous. We summarize these conclusions by writing 

SU(2)jU(I) ~ 82, (6.30) 

where the symbol "~" denotes topological equiv
alence. 

Suppose thatfis a real analytic function on S2. We 
may extendfto SU(2) by giving it the same value on 
all elements belonging to a given coset and assigning 
to each coset the value offat the corresponding point 
in S2 given by (6.26), (6.27), and (6.29). We claim that 
the f obtained in this fashion is real analytic on SU(2). 
The proof is straightforward. We identify the triplet 
(XIX2XS) with (xyz) and note that, at any pointp on 8 2 , 

a good local coordinate patch can be obtained by 
dropping perpendiculars from the sphere to the tan
gent plane through p. Thus, at any point p, there are 
two appropriate linear combinations of x, y, and z 
which can serve as good local coordinates, and t, since 
it is real analytic on S2, must have a convergent Taylor 
expansion in these two linear combinations. Also, we 



                                                                                                                                    

2328 B. L. BEERS AND A. J. DRAGT 

know from (4.2) and relations like (3.7) that any linear 
combination of x, y, and z is a linear combination of 
the functions D~,o(u) [with m = 0, ± 1] and hence our 
local coordinates are in turn real analytic functions on 
SU(2). Therefore, by the chain rule, f is also real 
analytic on SU(2). 

With the conclusion of the previous paragraph in 
mind, we may apply the methods of Sec. 5 to conclude 
that the coefficients aZm must obey a bound similar to 
(5.41). The only difference arises from the lack of a 
(2j + 1) factor in (1.1) and its presence in (4.2). 

A little reflection shows that what we have in essence 
been doing is taking the real analytic manifold S2 
defined by (6.28), and letting the quantities x; become 
complex but still subject to the constraint (6.28). The 
resulting manifold, which we denote by S2C, is easily 
shown to be complex analytic. The function f, which 
was originally real analytic on S2, becomes complex 
analytic on S2C in the neighborhood of S2. Finally, the 
behavior of the series (1.1) is governed by the "singu
larity structure" off on S2C. 

The last topic we shall consider is the analog of 
(6.23) for functions on S2. Theorem 15 can immedi
ately be specialized to the S2 case simply by setting 
A = 0 and making appropriate changes in factors of 
(2j + 1). The resulting integral expression for the 
coefficients aZm can then be inserted into (Ll) and, as 
before, the sum can be explicitly evaluated. We find 
the integral representation 

fee, c/» = -(4172i)-1 f dz'f"dc/>'f(6', c/>')(z + z') 

where 
X [(x+ - x~)(x_ - x~)r1, (6.31) 

x± = x ± iy (6.32) 

and the integration contour encloses [-I, 1]. Equa-

tion (6.31) may be viewed as a Cauchy formula which 
relates values off on S2 to values on S20. 

* Supported in part by the U.S. Air Force Office of Scientific 
Research under Grant AFOSR 68-1453A. 
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T~e equivale~ce pri~ciple (through .the mechanism of the gravitational red shift) allows one to set up a 
c!assical for~ahsm .wIth t~e prope~ tIm~ as an ex~ra degree of freedom, independent of the coordinate 
tIm~, and. wIth an I~medlate rhysical l~terpretatIO~. ~hen proper time and mass occur as conjugate 
vanabl~ I~ ~ canomcal formahs~,. l~admg to a gravitatIOnal theory of particles with variable mass. The 
nonrelatlVlstIc t~e?ry and a rel~tlvistic vector theory of gravity are described as models. The theory is 
capable of provldmg a dynamical framework for cosmological models with the creation of matter. 
Some simple examples are discussed, including the steady-state universe with continuous creation where 
the correct relation between the density of matter and the Hubble constant appears automatically, ~ith no 
free parameters. 

INTRODUCTION 

Conservation of mass is deeply imbedded into the 
formalism of nonrelativistic classical physics. The so
called "changing mass" problems one encounters, 
such as rocket or falling chain problems, actually 
involve a redistribution of mass, not a creation or 
destruction of it. Even classical relativity theory, which 
can handle the kinematics of a particle decaying into 
several others, has no natural means for providing a 
mechanism for such decay. 

Yet the phenomenon of creation and destruction of 
mass does arise in practice, in the most widely di
vergent scale of events possible. On the one hand, 
elementary particles freely change into each other, 
and all the standard techniques such as field theory, 
S-matrix theory, bootstraps, etc., have absolutely no 
classical analogs to appeal to.1 And on the other hand, 
the possibility of continuous creation exists in cosmol
ogy.2 Even if the "perfect como logical principle" 3 is 
untrue4 the possibility of such creation is still open, but 
the only known way to provide for such a theory is to 
corrupt Einstein's field equations in a clever but ad 
hoc manner. 5 Again there is no classical guide, even 
within general relativity. 

The purpose of this paper is to point out that the 
principle of equivalence actually provides a rather 
natural take-off point, not only for general relativity, 
but also for a classical gravitational theory which 
includes the possibility of particles changing their 
masses. The theory is "natural" in the sense that, while 
new phenomena enter, no new ad hoc parameters are 
needed in the classical theory. In this paper we shall 
treat the theory as a mathematical exercise, as none of 
its physical implications have yet been tested. However 
such a theory, if true, has some important conceptual 
consequences, which are experimentally verifiable, 
and in the following papers we will point out some of 
them. 

First we discuss the rationale for the theory, namely 
that the equivalence principle allows one to introduce 
the proper time of a particle as an independent degree 
of freedom, independent of coordinate time. This is 
not a purely formal procedure, but has a direct 
observational significance. The proper time enters the 
canonical formalism as any other coordinate would, 
and mass plays the role of its canonically conjugate 
variable. The theory is then developed for the non
relativistic case and for a relativistic field and particle. 
The equivalence principle enters the formalism in a very 
specific manner. Next some simple examples are 
solved, including the case of an expanding steady-state 
universe with continuous creation, and it is shown 
that the model leads to the correct relation between 
the rate of expansion and the density of matter, with 
no free parameters. 

The important point here is not the numerical agree
ment, which arises automatically, but the fact that the 
theory provides a dynamics which can be incorporated 
into models with mass creation. The usual steady
state theory is not actually a theory at all, but only the 
boundary condition on a theory, so its results may be 
worked out without a specific model, if one accepts the 
perfect cosmological principle. However,if the perfect 
cosmological principle is not valid, which is probably 
the case, then one cannot alter the steady-state theory 
to produce a theory of, say, partly continuous creation 
and partly "big bang," or any other variation of this 
type, unless one has a specific dynamics. The usual 
steady-state theory provides no guide along these lines, 
while the present theory offers a complete dynamics. 

We also make some preliminary remarks concerning 
the 2-body problem within the theory. 

1. RATIONALE 

The main idea of the present theory is the elevation 
of the proper time, as read by a clock located on a 

2329 
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particle, to the role of a new independent internal 
coordinate, or degree of freedom, and it is the 
principle of equivalence that makes this possible. 
(There are other theories in five dimensions7 making 
formal use of proper time, however we will impart to 
it an immediate physical reality and observability.) 

First, we must say a few words about the question 
of what determines the number of degrees of freedom 
in a problem. The question has strong philosophical 
and psychological overtones, but, for a physicist, the 
answer to the question of whether a particular variable 
is an independent degree of freedom depends on the 
mathematical role it plays in the formalism being used. 

For example, we could treat the problem of a point 
mass confined to motion in a plane, by either of the 
following mathematical expedients: First, we could 
set up a Hamiltonian with two independent variables, 
and never acknowledge the existence of a dimension 
outside the plane; and second, we could imbed the 
problem in 3-space, with a constraint imposed on the 
motion. In the latter case, the reward for the extra 
complexity involved is that one can solve for the con
straining forces. However, if there were no possibility 
of ever observing motion in the third dimension, the 
distinction would be an arbitrary mathematical one, 
and the idea of constraining forces merely a useful 
fiction. The "reality" of the third dimension rests 
on our ability to relax the constraint. 

In our formalism the variable conjugate to the 
proper time is the mass (rest energy) of the particle, 
and by relaxing the constraint connecting proper time 
to coordinate time, the extra "forces" one observes 
can change the rest mass of the particle. However, 
even if one is not particularly interested in treating 
particles of changing mass, the very possibility has 
important implications in quantum mechanical dis
cussions of the localization and rigidity of inertial 
frames, and we shall touch upon these in Paper U.6 

But there is a further role that an independent degree 
of freedom plays in the setting up of a mechanics 
problem, and this to some degree determines the 
physical significance of the concept. Since the laws of 
motion are second-order differential equations, we 
have the freedom to set up two independent experi
mental parameters for each degree of freedom, the 
initial position ro and velocity Vo. Then the future 
behavior of the system is uniquely determined from its 
initial state (r 0' Vo) at time to, and all its previous 
history is irrevelant. This ability to mathematically 
prescribe arbitrary initial conditions acquires physical 
significance from the circumstance that we are in fact 
physically free to interfere with the system (at least in 
principle) and to alter these initial conditions,8 and it is 

of course crucial that the future behavior of a spring, 
once we have released it, does not depend on the physi
ological machinations required to set it up initially, 
prior to to. 

In classical nonrelativistic physics, the proper time 
as registered by a clock on a particle at rest is the same 
as that on a clock in the laboratory. Special relativity 
partly transcends this restriction. For, even if a particle's 
proper time is set to coincide with that of the labora
tory, once it has been accelerated it will disagree with 
the laboratory clock, even after it has again come to 
rest in the laboratory. The proper time cannot be 
eliminated by writing T = T(r, t), a single-valued 
function of the coordinates, since it depends on the 
trajectory (i.e., the past history) of the particle. But 
once the particle returns to rest in the laboratory, its 
subsequent behavior will be independent of how its 
clock came to differ with that in the laboratory. In this 
sense we can say that we have reset the clock, as we 
could an independent coordinate. However dTjdt = 
(1 - V2/C2)! is a single-valued function of the coordi
nates, since the velocity is, and thus the clock rate is 
uniquely determined at every instant, which is why T 

is not an independent degree of freedom. 
In general relativity the situation is different. 

Imagine two small laboratories, as in Fig. 1. One is 
located inside a hollow spherical mass shell at PI and 
the other at infinity, i.e., at P2(r),where r» R. Both 
of them are in a force-free region of space, and both of 
them can determine that they are inertial frames, even 
over a finite spatial extent. And in fact they can deter
mine by local measurements that all their local laws of 
physics are identical. However, when they communi
cate, pointP2 will notice a red shift in the signal from 
PI' due to their different gravitational potentials. Thus, 
although they observe identical local physics, their 
clocks run at different rates. We see, then, that local 
physical laws do not depend on what rate local 
proper time runs, relative to some prescribed coordi
nate time. (Because of the arbitrary nature of coordi
nates in general relativity, we should perhaps be more 

"--+-1---------1" Pit (r) 
r» R V2 ..... 0 

FIG. 1. Setting Proper Time. Two laboratories, PI inside a 
spherical mass shell and P2, very far away at r »R, are both 
in essentially force-free regions, yet at different potentials. Their 
rest clocks run at different rates. 
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specific. In our example, because of the static nature 
of the field, clocks can be synchronized everywhere,9 
thus setting up a universal coordinate time t, say by 
using radiation from a standard atom located at P2• 

Then the observer at PI will see that the same atom at 
rest in his laboratory runs at a different rate T, i.e., it 
has dT/dt ~ 1. Alternatively, this can be converted to 
a description wherein every observer uses local atoms 
to set his clocks, in which case it would be coordinate 
time that changes.) The rate dT/dt is merely a measure 
of the distribution of masses in the universe and can be 
taken as an arbitrary initial parameter, a different 
initial value corresponding to a different mass distri
bution. But one need not know the details of how this 
mass distribution was set up-their effect is summed 
up in the value of dT/dt. 

Thus, in principle, one can affect the value of both 
T and dT/dt relative to local coordinate time, and, 
after choosing initial values, the subsequent motion of 
the system will be independent of the past historylO 
prior to to. It only remains to be said that T can be 
fitted into a canonical formalism, in the same manner 
as the coordinate r, and we will assume that it is a 
universal, internal degree of freedom, to be associated 
with any mass point. (In fact, one parameter may not 
be enough, but we are not going to develop the theory 
in its most general form.) 

2. NONRELATIVISTIC THEORY 
The theory we shall develop is both a theory of 

gravity and of mass creation. Actually, one can de
velop an entire hierarchy of theories along these lines, 
and we will ultimately be concerned with a tensor 
theory, which will be a generalization of general
relativity. However, in this paper we will develop only 
the nonrelativistic theory, and a relativistic generaliza
tion to a vector theory, as this is easier than the tensor 
theory and introduces the principle ideas and com
plications, including nonlinearity. 

In the nonrelativistic limit, we consider a single 
particle with coordinates qi' proper time T, velocities 
qi' + (where the overhead dot, as usual, indicates the 
derivative with respect to t), situated in an external 
potential CP(qi' T), and having a Lagrangian 

L=L(qi,qi,T,+,t). (2.1) 

We shall assume that the coordinate T enters the 
canonical formalism in the same way as any other 
degree of freedom, and that the momentum conjugate 
to T will be the mass of the particle, which physical 
interpretation will be confirmed by its role in the 
theory. The canonical momenta are defined by 

oL 2 oL 
Pi = oq.' me = 0+ . (2.2) 

(Note that what we have called "mass" actually has 
the units of energy-c being a constant conversion 
factor.) 

In choosing the coordinates and momenta for the 
canonical formalism the following convention will be 
assumed: all the coordinates are independent of the 
mass; and the momenta are linearly dependent on it, 
i.e., of the form mf(qi' (j;). There will exist a Hamil
tonian 

H(qi,Pi' T, m, t) = pi/; + c2m+ - L, (2.3) 

and Hamilton's equations will be satisfied: 

oH . 
;- = qi' 
UPi 

2 0H . e - =T am ' 

oH . -=-p. ::l to 
uqi 

oH . 2 
- = -me. 
OT 

(2.4) 

We can already prove at this stage an important 
theorem characterizing the role of the principle of 
weak equivalenceu in this theory. According to this 
principle any two particles released in an external 
gravitational field with the same set of initial coordi
nates and velocities will follow identical trajectories, 
i.e., the trajectory will be independent of the masses of 
the particles. It follows from this that the total energy 
will depend linearly on the mass [since the kinetic, 
potential, and rest energies are all of the form 
mf(x, v)]. 

Then, since H depends on m only through the mo
menta Pi and m itself, we have, from Euler's theorem 
for a linear homogeneous function, 

oH oH 
H=Pi- + m-. 

OPi om 
But, from Eqs. (2.4), this gives 

H = Piqi + e2mi, 

which implies from Eq. (2.3) that 

L= O. 

(2.5) 

(2.6) 

(2.7) 

Thus, in our theory of a single particle in an external 
field, the principle of equivalence is guaranteed by the 
condition L = 0 (which follows from the equations 
of motion and is not an identity). The condition L = 0 
also guarantees that the theory obeys scale invariance12 

though we will not exploit this fact in this paper. 
However, we will use the fact that L = 0 to help 

construct a Lagrangian for the theory. In general 
relativity we note that the Lagrangian Lo is propor
tional to the proper time, 

j Lo dt = -moe
2 j dT = -moe

2j(gl'.Xl'xv)i dt. (2.8) 
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The only components of g". that contribute in the 
nonrelativistic limit are 

goo ~ 1 + 2cp/e2
, (2.9) 

where cp is the gravitational potential, and the other 
diagonal components, 

gii ~ -1/e2 , i = 1,2,3. (2.10) 
Then 

J Lo dt ~ -moe
2J (1 + ~~ - ~)! dt 

~ J( -moe
2 + tmov

2 
- mocp) dt. (2.11) 

Since L = 0 in our theory, we will take 

2· L I 2) 2 [. ( ." 'V)!] L = e OC(T + 0 moe = e oc l' - g",x x 

~ e2oc(+ - 1 + v2/2c 2 
- cp/e2

), (2.12) 

where oc is some function of the coordinates, and 
possibly velocities, 

(2.13) 

which we need not specify in detail. It will be deter
mined by the equations of motion. Thus, 

L = c20:X, X = (+ - 1 - cp/c2 + v2/2c2), (2.14) 

and, in taking derivatives, we will anticipate the fact 
that by virtue of the equations of motion, 

X=O. (2.15) 

For the momenta we have 

oL OOC 
Pi = - = OCVi + X - = OCVi, oVi OVi 

2 oL 2 2 00: 2 me = - = o:c + Xc - = o:c 
0+ 0+' 

(2.16) 

so that m = 0:, and is not necessarily a constant. If we 
assume that cp is some given function cp(x, 1', t), then 
the equations of motion are 

. oL ocp ocp 
p.=-= -0:-= -m-, 

• oXi oXi aXi 

2 • oL ocp ocp 
c m = - = -0: - = -m -. 

aT aT aT 
(2.17) 

Thus it is explicitly the T dependence of cp that gives 
rise to a varying mass for the particle. 

We can then introduce the Hamiltonian 

R = PiVi + c2mf - L 

= mv~ + c2m+ - (mc2f - mc2 
- mcp + lmv~) 

= mc2 + imv: + mcp 

= mc2 + p;/2m + mcp. (2.18) 

The Hamiltonian equations of motion are 

oR Pi 
Vi = - =-, 

api m 

. oH ocp 
p.= -- = -m-, 

, oX
i 

oXi 

1 oH 2 2 cp cp v: + = - - = 1 - l.p./mc + - = 1 + - --
c2 om 2 , c2 c2 2e2 ' 

2 • oH ocp 
em = - - = -m -. (2.19) aT 01' 

We see from this that X = O. Also, the equation for the 
Pi can be expressed in terms of the Vi' 

. . +. ocp 
Pi = mVi Vim = -m -, 

OXi 

. ocp V acp 
V· = - - + --, (2.20) 
, oX

i 
c2 aT 

and we see that the trajectory is independent of the 
mass of the particle. The fact that in mechanics L = 
T - V, while H = T + V, is reflected here by the fact 
that m appears explicitly in the numerator in L and in 
the denominator in H. 

The last term in Eq. (2.20) is the correction to the 
motion due to the changing particle mass. It is a 
l/c2 correction to the equation of motion. To this same 
order there are kinematical corrections from special 
relativity, and also corrections from general relativity, 
which are not included. We have written a Newtonian 
theory, with nonconstant mass. 

The potential cp(X,T) is not purely arbitrary, but 
must be restricted by a gauge condition (5.1). We will 
also note in passing that the form of the terms in the 
Lagrangian 

(2.21) 

is very suggestive of the conformal line elementI3 and 
we believe that this theory should be helpful in pro
viding a guide to the interpretation of conformal 
theories. 

3. RELATIVISTIC THEORY-FIELDS 

In a full relativistic theory of gravity, the external 
field cp of the previous section would presumably be 
related to the component goo of the metric tensor. 
However, in this paper we are going to construct a 
vector theory, as it is much easier to work with, has an 
analog in electrodynamics, and yet contains all the 
essential complications of the full theory. 

We are seeking a vector potential B/t(xv , T) to be 
coupled to a matter field 'Y(xv , 1'). We can construct 
the theory by noting that it contains a type of gauge 
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invariance, insofar as the forces do not depend on the 
actual value of T at any point. Thus we can change T 

independently at every point in space 

T - T' = T - gO'(x), (3.1) 

where g is a coupling constant,14 and cancel this effect 
by introducing a gauge transformation in the field 
BIl . This is quite similar to the problem of making a 
gauge change in electrodynamics (EM case), a main 
difference being that in EM theory we have a 1-
parameter transformation, the phase of the wave
function, while for this case we have a continuous 
parameter T, on which the potential may depend, and 
which may be changed independently at every point. 
The technique is due to Yang and Mills.Is It was 
elaborated by Utiyama16 for an arbitrary Lie group, 
and the continuous parameter case was treated by 
Greenberger,12 from which paper the following theory 
is taken. 

The second main difference between this and the 
EM case is that in the EM case the transformation is a 
pure gauge transformation, at a particular point in 
space-time, while here the transformation (3.1) in
duces a combination coordinate and gauge trans
formation. Under the transformation (3.1) the matter 
field 'Y transforms as 

'Y(x, T) - 'Y'(x, T') = 'Y(x, T). (3.2) 

The field BIl(x, T) acquires a gradient under this trans
formation, 

Bix, T) - B~(x, T') = Bix, T) - allO'. (3.3) 

The "minimal" gauge-invariant coupling is produced 
by the recipe 

all - (all - gBIl :J == DIl · (3.4) 

Then, since 

all'Y'(x, T') = (all)r''Y'(x, T') - g(aIlO') a'Y'(x, T') (3.5) 
(17' 

and 

(3.6) 

it follows that 

( a,. - gB;(T') ~)'Y'(T') 
OT' 

= {all - g[BiT) - allO'] a:,}'Y'(T') 

= (a,. - gBiT) !)'Y(T). (3.7) 

These formulas are analogous to those used to 

introduce the EM field, in which case 

'Y _ 'Y e-iea(",), 

All - All - allO', (3.8) 

all-a,. - ieA,.. 

In the EM case there is no coordinate transformation 
induced in 'Y, whereas in our case the point (x, T) 
becomes (x, T'). 

In the EM case the field A" is restricted by the gauge 
condition 

allAIl = 0, (3.9) 

while the phase function 0' must be a solution of the 
equation 

00' = 0. (3.10) 

The gauge-invariant field tensor is 

F,.. = o,.A. - a.A,.. (3.11) 

Analogous formulas hold in our case. If we choose the 
gauge condition 

a aB" 
"B,,- gB,,- = D"B" = 0, 

aT 
(3.12) 

then 0' can be consistently restricted to be a function of 
x alone, i.e., 0' :;6 O'(T), and will then also be restricted 
to solutions of Eq. (3.10). 

The invariant field tensor in this case is 

F,.. = allBy - ayB" - g(BI' aB. _ B. aB,.) 
aT OT 

= DI'By - D.B,.. (3.13) 

The quantities 'Y, DI'BI' , and F,.. all transform as 

f(x, T) - f'(x, T') = f(x, T), (3.14) 

while B,. itself is not invariant but transforms according 
to Eq. (3.3). However, when B" is properly coupled, 
via the recipe of Eq. (3.4), then the Lagrangian 
density L{x, T) also transforms as 

C'(x, T') = C(x, T). (3.15) 

The action A, given by 

(3.16) 

is invariant under the transformation, and leads to the 
field equations 

o [~J + ~[ oC ] - ac - ° 
I' o(oI'U) aT O(OU/OT) au - , 

U = 'Y, Bv' (3.17) 

We should point out two important distinctions 
between our equations and those of EM theory. 
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First, in EM theory, (3.8) give 

(0Il - ieA~)':Y' = e-ieU(oli - ieAII)':Y, (3.18) 

and in order to make the action an invariant, the phase 
factor must be killed. So':Y must be a complex field to 
carry charge, and must be coupled quadratically, such 
as through terms '¥*':Y, in order to insure charge con
servation. In our case the action is invariant auto
matically, so that even a I-component field will couple 
to gravity. Second, the EM field couples through the 
universal constant e. Our field has a derivative cou
pling to 7", and this derivative plays the role of the mass 
operator, so that our coupling is proportional to the 
mass of the matter field. For the simple 7" dependence 

(3.19) 
we have 

D",'¥ = eimT(oli - igmBII)':Yo (3.20) 

and the field appears similar to a Maxwell field, but 
with the coupling proportional to the mass of the 
particle. 

If we choose for the free-field Lagrangian corre
sponding to BII , the expression 

(3.21) 

then the free-field equation generated by Eq. (3.17) is 

DIIFlly - 2g(O;1' )FlIy = O. (3.22) 

The example of BII interacting with a Dirac field is 
treated in Ref. 12. In the presence of a matter field Eq. 
(3.22) is altered to the form 

DIIFlly - 2ge;; )FlIy = -41Tg6v' (3.23) 

We can write these equations out in an explicit 
metric. We will use the following conventions: Latin 
letters run from 1-3, Greek from 1-4, and 

(3.24) 

Keeping track of covariant vs contravariant indices, 
we define 

(3.25) 

and introduce the potentials 

Bi == A, B4 == cp. (3.26) 

Then from Eq. (3.13) we have 

H = V x A - gA x Af, 

E = -Vg; - A + gAcp' - gcpA', (3.27) 

where the superscript primes denotes the (partial) 
derivative with respect to 7", the overhead dot denotes 
the partial derivative with respect to t, and c = 1. 

The gauge condition (3.12) becomes 

V • A + if; - gA • A' + gg;g;' = o. (3.28) 

The inhomogeneous equations of motion (3.23) be
come 

V x H - gA X H' - 2gA' x H - E - gg;E' 

- 2gg;'E = 41TgJ, 

V . E - gA ·E' - 2gA' • E = 41Tgp. (3.29) 

The homogeneous field equations 

!E ).IIV"OIl F Y
" = 0 

are identical to Maxwell's 

V x E = -iI, 
V x H = O. 

(3.30) 

(3.31) 

One important caution must be made concerning 
this model, namely that we do not know whether the 
forces between particles are attractive or repulsive. In 
analogy with Maxwell's equations we can write the 
equations of motion to make like particles either attract 
or repel. The reason why like particles must repel in 
EM theory is because the requirement of a positive
definite energy demands it. In our nonlinear theory we 
have not worked out the details of the energy' tensor 
because we do not intend to take the specific model 
seriously. If our example of continuous creation in 
Sec. 6 actually predicts a contracting universe, with 
repulsion, then the tensor form of the theory will 
correct it. The important point of our continuous
creation calculation will be to show that the mech
anism exists and automatically predicts the correct 
order of magnitude. 

One more point should also be noted. It appears 
that one solution to our equations is for there to be no 
7" dependence at all, in which case the equations reduce 
to Maxwell's equations. This is only true if there are 
no gravitating fields around. In the presence of a 611 , 

7" becomes a complicated path-dependent noninte
grable function of XII' If one could write -r = -r(x,.), 
then one could eliminate the 7" dependence and it 
would have no physical effect. This is similar to the 
statement that in EM, if one could integrate J A • dI, 
one could eliminate the vector potential. The physics 
is present because of its nonintegrability. Although we 
have only considered an external potential BII , the 
presence of gravitating bodies also produces the 7" 

dependence of BII , and therefore mass nonconser
vation. The question of current conservation is 
treated in Ref. 12. 
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4. RELATIVISTIC THEORY-CLASSICAL 
PARTICLE 

If instead of a classical matter field 'Y, we have a 
classical particle whose coordinates are (xJL' T), we 
can easily determine the coupling equivalent to Eq. 
(3.4). If we define the Poisson bracket of two functions 
F(x,p, T, m) and G(x,p, T, m) as17 

{F G} = (aFaG _ aFaG) 
, aXi api api aXi 

1 (aF aG aF aG) (4.1) 
+ d! aT am - am aT ' 

so that 
aF 

{pi,F}=-a-' 
Xi 

1 aF 
{m,F} = - \i-a ' 

c T 

which is to be compared to the commutator 

aF 
[ai' F] = -. 

aXi 

(4.2) 

(4.3) 

So we see that the Poisson bracket for a function 
F(x, T), 

{PJL - gmc2BJL' F} = - (aJLF - gBJL ~:) = -DJLF, 

(4.4) 
is the analog of the commutator 

[DJL' F] = DJLF. (4.5) 

Thus for a classical particle, the recipe analogous to 
Eq. (3.4) is 

PJL ---* pJL - gmc2BJL' (4.6) 

which is linear in the mass, as required by equivalence. 
We can construct a particle Lagrangian as in the 

nonrelativistic case, by noting that our theorem L = 0 
is still valid. By analogy with special relativity, 18 we 
choose 

A = c2f(X(dT - dA + ~BJLdXJL), (4.7) 

where dA is the time element which would be an in
variant in special relativity, i.e., 

dA = (1 - ~)! dt. (4.8) 

In our theory it is still an invariant with respect to 
homogeneous Lorentz transformations, but not in
homogeneous ones. 

In noncovariant form, 

f ( ( V2)! gig ) A = c2 
(X + - 1 - - + - - v • A - - r dt. 

c2 c2 
C c2 

(4.9) 

As before, we have 

(4.10) 

We can invert the last equation to get 

(1- ~:r!= ~J(p- g; Ar+(mc)2r· (4.11) 

The Hamiltonian then takes the form 

H = P • v + mc2+ - L 

mv2 gm 2. 
= ! + - v • A + mc T 

(1 - V
2
/C

2
) c 

- [ mc
2+ + g; v· A - mgr - mc2( 1 - ~:tJ 

mc2 

= + mgr 
(1 - V2/C2)! 

= c[ (p - g; A)2+ (mc)2r + mgr. (4.12) 

Hamilton's equations become 

Vi (l)aH [p - (gm/c)A]i (4.13) 
~ = ~ api = {[p - (gm/c)A]2 + (mc)2}! ' 

which is equivalent to Eq. (4.10), and 

1 aH 
T= --

c2 am 

1 c{mc2 - (g/c)A. [p - (gm/c)A]) gr 
=- +-

c2 {[p - (gm/c)A] 2 + (mc)2}! c2 

= (1 - ~)! - (~)v. A + g~ , (4.14) 
c2 c3 c" 

. laH 
m=---

c2 aT 

== _ !.. H' = gmA'. [p - (gm/c)A] _ gm r' 
c2 {[p _ (gm/c)A]2 + (mc)2}! c2 

= (g;)A' . v - (~7) r', (4.15) 

Pi = - aH = gm(aiAi)[p - (gm/c)AL _ mgar 
aXi {[p - (gm/c)A]2 + (mc)2}! • 

= (g;)vjaiA j - gmair. (4.16) 

If we introduce the parameter A from Eq. (4.8), then 
we can write the previous equations "covariantly." 
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We define 

dt == I' = (1 _ ~)-t 
dA c2 

' 
(4.17) 

. dx i 
. 4 

U· = dA = V'y, U = cy. (4.18) 

Then, from Eq. (4.10), 

pf _ (gmjc)Ai = mui, (4.19) 

and, from Eq. (4.12), 

function/(x, T), 

Thus 

df _ of dx/l of dT 
dA - ox/l dA + aT dA 

= of u/I + Of(1 _ .K u/lB ) 
ox/l aT c3 /I 

= U/l(o -.KB ~)f+ of 
/I c3 /I aT aT 

= u/lD/lf+ /'. (4.28) 

H - gmcp = C[p4 - (gmjc)B4] = mcy = mcu4, d(muV) _ gm u oVB/I _ ~ d(mBV) 
(4.20) dA - c /I c dA 

so that 

(4.21) 

Thus 

(4.22) 

(4.23) 

(4.24) 

To complete the last equation, we note that 

from the equations of motion, and since the only 
explicit time dependence can be in B/I' 

= gm u,,04B'', 
I' 

dp4 = gm U 04B/I 
dA c" 

(4.26) 

and, therefore, 

(4.27) 

The above equation can be converted into an equa
tion for the acceleration by noting that, for any 

= gm U oVB/I _ !f. dm BV 
c /I c dA 

_ gm(U/lD/lBV + OBV) 
c aT 

= gm U/I(OVB/I _ 1. B/I'Bv _ D/lBV) _ gm oB
v 

c ~ c ~ 

or 

du
V 

= _ ~ u/lF/lV _ ~ B V
' _ .K uVu/lB/I'. (4.30) 

dA C C c3 

Once again the mass has dropped out of the equation 
of motion, as it should. 

Again it should be noted that it is the explicit T 

dependence of B/I that causes the mass to change. 
However, this explicit dependence, because of our 
gauge condition (3.12) and (3.28), generally means 
that B/I also has an explicit t dependence, which implies 
that H will not be a constant. 

In the nonrelativistic limit, Eq. (4.30) becomes 

cp' 
a = -gVcp + gv-

c2 

On the right-hand side of this equation, the first term 
is the lowest-order force term, the second term is the 
correction due to changing mass and is of higher order. 
The terms in the final parentheses are special relativistic 
kinematical corrections of the same order, and which 
are not present in the nonrelativistic case (2.20). 

5. A SIMPLE EXAMPLE 

As an illustration of the theory we will work out 
two simple examples: first, the case of a decaying 
particle at rest, and second, the case of an expanding 
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steady-state universe with continuous creation of 
matter. 

Before we begin, we must be able to solve our 
nonlinear gauge condition. For our examples, both 
taken in the nonrelativistic limit, we will be able to 
assume that A = 0. The gauge condition (3.28), for 
cp alone, becomes 

acp + !. cp acp = 0, (5.1) 
at c2 aT 

keeping powers of c2• If we introduce the notation 

?p = (g/c2)cp, 

this condition becomes 

a?p + ?p a1p = 0, 
at aT 

and we seek a potential of the form 

?p = ?per, t, T). 

(S.2) 

(5.3) 

(5.4) 

While the condition (5.3) is nonlinear in ?p, it may be 
inverted to read 

(5.5) 

Thus the gauge condition is linear if interpreted as 
defining 

T = T(r, t, ?p), 

and the general solution is 

T = t?p + fer, ?p). 

(S.6) 

(5.7) 

This is the most general solution under the assumption 
that a?p/OT ~ 0; otherwise we have the simple solution 

?p = ?per), (5.8) 

which gives no mass creation. 
Now we will consider the problem of a particle at 

rest at the origin, but decaying under the influence of 
an external potential ?p = ?p(t, T). In this case, the 
Eqs. (2.19) and (5.7) reduce to 

T = t?p + f(?p), (S.9) 

+ = 1 +?p, 

rh/m = -'1//. 

(5.10) 

(5.11) 

Here the dot means the total time derivative. 
Taking the derivatives dldt and a/aT of Eq. (5.9) 

gives 

1p' = (t + ~~rl, (5.12) 

1jJ = (i - 1jJ)(t + ~~rl = (+ - 1jJ)1jJ'. (5.13) 

From Eqs. (S.lO) and (5.11), this gives 

1jJ = ?p' = -rh/m 
and, therefore, 

(5.14) 

(5.15) 

If we assume that m = met) is known and we seek 
a potential 1jJ(t,T) which can produce such a decay, 
then from Eqs. (S.14) and (S.15) we see that ?pet) and 
1jJ'(t) are known, and we can determinef(?p) by invert
ing Eq. (5.12). 

As a particular case, assume exponential decay 

Then 
?p(t) = 1p'(t) = +oc 

and 
?pet) = oct. 

From Eq. (S.12), we have 

of 1 1?p 
-=--t=---, 
o?p?p' oc oc 

and, therefore, 
f(?p) = 1jJ/oc - ?p2/2oc. 

This determines ?pet, T) from Eq. (5.9): 

T = ?pt + 1jJ/oc - ?p2/2oc, 

(5.16) 

(5.17) 

(5.18) 

(5.19) 

(5.20) 

1p(t, T) = I + oct - [(I + oct)2 - 2OCT]!. (5.21) 

The negative root must be chosen to be consistent with 
the equation for T{t). From Eq. (5.10), 

7- = 1 + oct, 

(S.22) 

and this is consistent with Eq. (S.21), which then gives 

[(1 + oct)2 - 2OCT]! == ~ = 1, 

?pet, T(t» = oct, (5.23) 

1jJ' = oc/~ = oc. 

Thus Eq. (5.21) represents the potential?p(t, 1') which 
causes the exponential decay of Eq. (5.16). 

In this example, we have worked out the mathe
matical details for a particle decaying into the void. 
Of course this violates energy conservation, and, in 
any other coordinate system moving with constant 
velocity, it would also violate momentum conserva
tion. However this is not an objection to the theory 
since the external field, which in mechanics must 
absorb the momentum change of the particle, must 
here also absorb the energy change. In a more realistic 
example, the particle should be coupled to other 
particles, so that over-all energy and momentum can 
be conserved. 
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We will not consider the question of interacting 
particles here within the vector formalism; however, 
we will point out some characteristics of an interacting 
theory. If two nonrelativistic particles are coupled 
through a potential that depends on (T2 - 'T1)' then, 
if we write the potential energy as 

(5.24) 
we see that 

ml oq; 
-= -m2-, 

m1 O'T1 

m2 oq; oq; 
-=-ml-=m1-· 
m2 O'T2 O'T1 

(5.25) 

This in turn implies that 

m1 + m2 = 0, m1 + m2 = const, (5.26) 

and the total mass will be conserved. This result will be 
true for any number of interacting particles if the po
tential is of the form 

Vii = m;miq;( 'Ti - 'Ti)· 

In that case we would obtain 

L m i = const. 

(5.27) 

(5.28) 

Without giving a detailed treatment of the 2-body 
problem, we will point out, however, that the problem 
must be reparametrized differently from the usual 
formulation. Normally there are two sets of canonical 
variables, one for each particle, with Poisson brackets 

{Xli' PIi} = {xu, P2;} = bii , etc. (5.29) 

In our case the Poisson brackets are defined as in Eq. 
(4.1), except that the sums run over the variables of 
both particles. We can then introduce, as in the usual 
case, center of mass and relative coordinates: 

R = (m1IM)rl + (m2IM)r2, P = PI + P2' 

r = r1 - r2 , P = (m21M)Pl - (m1/M)p2' (5.30) 

M=m1+ m2, 

which obey the rules 

{Ri' Pi} = {ri' Pi} = bii , etc. (5.31) 

However in our case there are two other sets of 
variables 'T1' ml and 'T2, m2 which obey the rules 

{'T1' m1} = {'T2' m2} = 1, etc. (5.32) 

and it is easy to see that these variables do not com
mute with the center of mass and relative coordinates 
because of the masses in their definition. For example, 

{'T1' R} = {'Tl' [m1/(m1 + m2)]r1 + [m2/(m1 + ma)]r2} 

= (m2/M2)r, 

{'T1' p} = {TI' [ma/(ml + ma)]Pl - [ml/(ml + m2)]P2} 
= -(m2IM2)P. (5.33) 

Nonetheless, we can introduce a set of canonical 
variables for the problem, which then obey all the 
usual commutation rules: 

M = m1 + ma, T = (m1IM)'T1 + (mJM)'Ta, 

L\ = (m1 - m2)/2M, b = Mh - 'T2) + p. r, 

(5.34) 

{T, M} = {b, L\} = 1, {T, R} = {T,p} = 0, etc. 

(5.35) 

Then if the Hamiltonian is a function of b (which 
depends on 'T1 - 'T2), but not of T, then the total 
mass M will be conserved. 

6. CONTINUOUS CREATION 

As a further example of the theory we will calculate 
in the nonrelativistic limit the case of an expanding 
steady-state universe, with continuous creation. Since 
the vector theory will be inaccurate when the velocity 
of expansion v approaches that of light anyway, we 
will lose little by the nonrelativistic restriction, and 
gain simplicity. The main point is to show that the 
theory provides a reasonable model for the phenom
enon, and yields a relation between the rate of 
expansion and the average mass density of the universe, 
which is in order of magnitude agreement with obser
vation, with no free parameters. A tensor calculation 
would yield the same order of magnitude agreement, 
so that the theory is capable of providing a theoretical 
basis to steady-state cosmologies. It is of course also 
compatible with a big-bang theory-though then not 
necessary-or with any combination of the two. 

In accord with the perfect cosmological principle, 
we assume that the expansion is everywhere uniform, 
both in space and time. This implies that if we choose 
an arbitrary origin, then the expansion will be radial, 
with 

v = exr, (6.1) 

where ex is related to Hubble's constant T, the "age of 
the universe," by ex = lIT. Thus, 

(6.2) 

for any small aggregation of matter moving along with 
the general expansion. 

The density p must satisfy 

p = const, (6.3) 

because of the steady-state condition. Then, if we 
follow the surface of a sphere growing with the general 
expansion, the amount of matter contained inside is 

(6.4) 
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Since the problem is purely radial, if there were a 
vector potential it would be radial and would give rise 
to no field and could therefore be "gauged away." 
Therefore, we seek a solution 

Bi = 0, JJ4 = rp. (6.5) 

Then our solution must satisfy Eqs. (2.19), (2.20), 
(5.1), and (5.7), which take the form (withg = c = 1) 

aq; I -+ q;q; =0, 
at 

T = trp + fer, rp), 

(6.6a) 

(6.6b) 

(6.6c) 

and from Eqs. (6.8) and (6.6e) we get 

if; = -3IX + 6IXbrv = q;'(1 - 2brv). (6.11) 

Equation (6. lOa) can be integrated to give 

ag 1 1 2 - = - -(1 + 3IXt) = - -(1 + 3IXbr - q;), 
aq; 30c 3IX 

and 

rp rp2 
g(r, q;) = - - - bl q; + -

3IX 6IX 

ag 
- = -2brq;. 
ar 

(6.12) 

(6.13) 7- = 1 + q; - tv2, 
. arp I 

V= --+vm 
ar r' 

(6.6d) This then determines rp(r, t, T) from Eq. (6.9). Equa
tion (6.9) then gives 

m/m = - rp' = 3oc. (6.6e) 

The second equation above is the solution to the first, 
the gauge condition. The total time derivatives refer 
to motion comoving with the expanding distribution. 

Since in this problem the potential is generated by 
the mass distribution itself, we must also have, from 
Eqs. (3.27) and (3.29), 

V2 rp = !. !( r2 aq;) = -47Tp, 
r2ar ar 

Ir; .,aq; 4 (6 ) q; v rp = rp - = 7TpV. .7 
ar' 

We seek functions cp(r, t, T), T(r, t), and ret). In 
analogy with the electrostatic case we assume that 
cp(r, t, T(r, t» :; cp(r, t) will be of the form 

rp(r, t) = -3oct + 3ocbr2, (6.8) 

where the first term must be independent of r, and has 
been chosen so that T will turn out to be equal to t plus 
corrections. In line with this we shall also rewrite Eq. 
(6.6b) more explicitly, as 

T = tcp + g(r, rp) - yr2, (6.9) 

with y = const. In Eqs. (6.8) and (6.9), the constants 
band yare assumed to be of the same order as IX and 
in all our calculations we will work to the lowest order 
of <X necessary. 

From Eq. (6.9), we get 

1 = (t + :;)rpl, (6.10a) 

7- - rp = 1 + ( -2br - 2yr + ~!)v = 1 -iv2. 

(6.14) 

The term in aglar here is of higher order (oc2) and may 
be omitted. Then 

-!v = (-2b - 2y)r = -!IXr, 

b + y = f<x. (6.15) 

The equation of motion, Eq. (6.6d) gives 

. ,(ag 2 ) v = rp ar - yr + v . (6.16) 

Again the term aglar may be omitted and we have 

<x2r = -3IX( -2y + IX)r, 

y = fIX, (6.17) 

Thus Eq. (6.9) reads 

T = trp - (rp/3<x) - br2cp + (rp2J6<x) - yr2, 

which can be inverted to give 

rp(r, t, T) = -3<x( + 3<xbr2 + 1 - ~, 

; = [( -3IXt + 3br2 + 1)2 + 6OC(T + yr2)]1, 

(6.18) 

with y and b given by Eq. (6.17). This equation is 
consistent if the square root equals unity, 

; = 1, (6.19) 
which is equivalent to 

T = _rp2(r, t)16<x - rp(r, t)J3oc - yr2, (6.20) 

. if; (ag 2 ) T - rp = rp' + ar - yr v, 
(6.10b) which is true and may be checked for consistency with 

Eqs. (6.lOb) and (6.14). 

a~ ,(ag ) 
ar = - rp or - 2yr , 

To lowest order, Eq. (6.19) becomes 
(6.10c) 

(6.21) 



                                                                                                                                    

2340 DANIEL M. GREENBERGER 

Finally, using Eqs. (6.19) and (6.18) we may calculate 
p and) from Eqs. (6.7) and we find, to lowest order, 
that 

p = 18ay/47T, 

pv!c = 18ay2r. (6.22) 

Experimentally, the relation between p and Hubble's 
constant T = l!a is given by one of Eddington's 
"magic relations," 3 

GpT2"" 1, between 10-2 and I, (6.23) 

while Eq. (6.22) gives (putting back a g2 = G) 

GpT2 = 3/7T. (6.24) 

We note that this result is obtained with no free 
parameters to fix. From Eqs. (6.6e) and (6.7) we see 
that the current caused by the expansion produces a 
T dependence in rp just sufficient to generate the 
correct mass production. (However one should note 
the cautionary statement at the end of Sec. 3.) 

The most significant aspect of this calculation is not 
the numerical agreement, but the fact that the theory 
provides a dynamical basis for performing such calcu
lations. 

It should be pointed out that the amount of con
tinuous creation needed in the steady-state theory is 
exceedingly small, so that the classical theory exhibits 
no gross effects on a less than cosmological scale, 
except perhaps in the interior of stars. However, the 
very possibility of variable mass leads to some im
portant qualitative results in the quantum domain, 
which will be discussed in the Paper II. 

1 This circumstance has even led practitioners to wonder exactly 
what the connection is between bootstraps and more conventional 
physics. See G. F. Chew, Science 161, 762 (1968). 

2 H. Bondi and T. Gold, Monthly Notices Roy. Astron. Soc. 108, 
252 (1948). 

3 H. Bondi, Cosmology (Cambridge U.P., London, 1961). 
4 Apparently, the existence of black-body radiation from the 

primordial "fireball" may be irreconcilable with a steady-state uni
verse. See P. Thaddeus, Bull. Am. Phys. Soc. 12, 1031 (1968). 

5 The best known attempt is F. Hoyle, Monthly Notices Roy. 
Astron. Soc. 108, 372 (1948); 109, 365 (1949). 

6 D. M. Greenberger, J. Math. Phys. 11, 2341 (1970), hereafter 
referred to as Paper II. 

7 One such approach was started by E. C. G. Stuckelberg, Helv. 
Phys. Acta 14, 322 (1941); 15,23 (1942). Some more recent refer
ences to this work can be found in J. H. Cooke, Phys. Rev. 166, 1293 
(1968). A different theory, using coordinate time as a dynamical 
variable, has been recently proposed by P. Pearle, Phys. Rev. 168, 
1429 (1968). 

• This assumes that one's equations do not describe every object 
in the universe, or else one can open a philosophical Pandora's Box. 

9 L. Landau and Eo Lifshitz, The Classical Theory of Fields 
(Addison-Wesley, Reading, Mass., 1951), Chap. 10. 

10 This whole argument depends on the gravitational red shift, 
which in turn depends on the principle of equivalence, and not on the 
details of general relativity. 

11 "Weak" equivalence refers only to the fact that acceleration in 
an external gravitational field is mass independent. "Strong" equiv
alence is a generalization to cover the form of all the laws of 
physics. See R. Dicke, The Theoretical Significance of Experimental 
Relativity (Gordon and Breach, New York, 1964). 

12 D. M. Greenberger, Ann. Phys. (N.Y.) 25, 290 (1963). 
13 Some important references, with lists of further references on 

conformal theories are T. Fulton, F. Rohrlich, and L. Witten, Rev. 
Mod. Phys. 34, 442 (1962); H. A. Kastrup, Phys. Rev. ISO, 1183 
(1966); Ann. Physik (Leipzig) 9, 388 (1962); J. A. Schouten, Rev. 
Mod. Phys. 21, 421 (1949). A recent work on the physical significance 
of such theories is J. Rosen, Ann. Phys. (N.Y.) 47, 468 (1968). The 
classic attempt at a theory along these lines is that ofWeyl, H. Weyl, 
Space-Time-Matter (Methuen, London, 1922). 

14 If G is the gravitational constant, then g = Gt, so that the 
appearance of G will generally be kept explicit in the relativistic 
theory. 

15 C. N. Yang and R. Mills, Phys. Rev. 96, 191 (1954). 
16 R. Utiyama, Phys. Rev. 101, 1597 (1956). 
17 In this section, c ;t 1. 
18 See, for example, Ref. 9. 
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The formalism of the previous paper, in which mass and proper time are treated as independent 
dynamical variables in a canonical formalism, is shown to imply certain physical consequences. There 
will exist a mass vs proper time uncertainty relation; trajectories and proper time will be exactly deter
minable in an external gravitational field, while mass will be determinable in an external electromagnetic 
field; and conventional quantum mechanics will imply that equivalence is invalid for low-lying quantum 
states. This leads to a second possible way to quantize a system in a gravitational field, which introduces 
a fundamental length. It is shown that it is possible to test for quantum interference effects of gravitational 
systems with present technology and conventional techniques, using the earth's gravitational field. 

INTRODUCTION 

In the preceding paper, 1 we have shown that the 
principle of equivalence can be used to justify a for
malism where the proper time of a particle, and its 
mass, enter as two additional independent variables. 
In the present paper, we show that, if one accepts this 
postulate of an additional degree of freedom in 
physical problems, then there are certain physical 
consequences that follow, and these provide a definite 
insight into the underlying quantum significance of the 
principle of equivalence. Our discussion is free of the 
details of the specific mathematical model of the 
Paper I, and as a prerequisite requires only a knowl
edge of the general idea of the theory, as presented 
there in Secs. 1 and 2. 

In Sec. 1, we point out that if proper time and mass 
are independent variables, they must satisfy an un
certainty relation, and we give several examples, em
phasizing how this uncertainty relation differs from 
that between energy and coordinate time. However, 
it is possible to proceed further, and we show that, 
because of the equivalence principle, one can actually 
measure the trajectory of a particle in an external 
gravitational field, and thus determine the proper 
time along the particle path exactly, while one learns 
nothing of the mass of the particle. In an external 
electromagnetic (EM) field, the exact· opposite is 
true-one can measure the mass of a particle exactly, 
without learning its trajectory or proper time. 

One then sees that the two classical situations, an 
external pure gravitational field (where !:im = 00), 
and a pure electromagnetic field (!:im = 0), are repre
sented by the two extreme poles of the mass-proper 
time uncertainty relation in much the same way as the 
classical wave-particle division is represented by the 
extremes of the !:ix, !:ip relation. Thus, the idea of 
mass and proper time as dynamical variables leads to 
the idea of a duality between gravity and electricity as 

two classical extremes of a unified quantum mechani
cal entity. 

In Sec. 2, we show that for low-lying states quantum 
mechanics is incompatible with the equivalence 
principle, or more precisely, is irrelevant to it, and 
then, in Sec. 3, we point out that there exists a second 
method of quantizing a system in an external gravita
tional field which is consistent with equivalence. We 
also show that the quantum interference effects of the 
earth's gravitational field are large enough to be 
measured in the laboratory, and describe an experi
ment wherein this may be done. 

1. THE MASS-PROPER TIME UNCERTAINTY 
RELATION 

Since mass enters our theory as an operator con
jugate to proper time, we might expect that there will 
be an uncertainty principle ,Satisfied between rest 
energy and proper time, i.e., 

!:iErest • Ll T = c2!:im . Ll T > ii, (1.1 ) 

and, in fact, the existence of the uncertainty principle 
between other pairs of conjugate variables forces this 
conclusion on us. We examine some simple cases in 
order to show how this comes about, and also to 
illustrate the difference between Eq. (1.1) and the 
similar appearing equation2 

LlE . !:it > ii, (1.2) 

which one usually sees in quantum mechanics. 
The most significant difference between the two 

equations above is that !:it in Eq. (1.2) represents a 
time interval, as measured in a particular coordinate 
system, while !:iT expresses an uncertainty in one co
ordinate system of the reading of a clock at rest in 
another system, even though an observer in the rest 
system might read it exactly. This uncertainty can arise 
from an uncertain gravitational potential, or from an 
uncertain velocity in the kinematical factor (1 - v2fc2J! 

2341 
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of special relativity. The energy uncertainty in Eq. 
(1.2) is generally due to the kinetic or potential energy 
of the body, rather than its rest energy. 

As an illustration of Eq. (1.1), imagine an attempt 
to determine the mass M of a heavy body by gravita
tionally scattering off of it a light body of known mass 
m with m« M, and known velocity v (see Fig. 1). If j 
the initial velocity of the light body is known accu- a 
rately, then 

FIG. 2. The Ein
stein-Bohr experi
ment. A box of 
photons is weighed 
(ml) in the earth's 
gravitational field. 
Then a trap door is 
opened at a preset 
time, releasing a pho
ton packet. Next, the 
box is reweigh ted 
(ms) so that both the 
photon energy 

() ""' Px/ P '" IF dt/mv, (1.3) 

where F is the gravitational force exerted by M, 

F ,...., GMm, IF dt ........, GMm . (1.4) 
x2 xv 

Thus, 

() "'"' GM/XV2, M,...., xv2()/G "'"' xvPx/mG. (1.5) 

If the momentum transfer Px is measured to within 
!l.px, so that 

!l.m ,....., xv!l.PlljmG, (1.6) 

then the distance of closest approach x cannot be 
known to within the amount 

!l.x . Ap ,....., Ii. (1.7) 

However, while passing M, the particle m also 
exerts a gravitational force upon it, the potential of 
which is uncertain, at M, to the extent 

(1.8) 

Over the period of closest approach T,....., x/v, we have 

TArp ,....., (Gm/xv)!l.x (1.9) 

and the reading T of a clock on M will be uncertain 
to an observer in the laboratory by an amount 

AT""'" T!l.rp/c2 ,....., (Gm/xv)!l.x, (1.10) 

even if the clocks reading t and T were synchronized 
in the laboratory before the experiment, and even if an 
observer on M were continuously monitoring his own 

mv=p 

® 
m« M 

8«1 

FIG. 1. Gravitational scattering experiment. A light particle m, of 
known mass and velocity, is gravitationally scattered off a heavy 
particle, to determine its mass M. 

clock. Thus, 

- ..I\IIr- - and proper time of 
the box are deter
mined. This can 

Screen be transformed into 
a laboratory time by 
predicting when the 
photon will strike a 
screen at rest in the 
laboratory. 

!l.T· c2!l.M = (xv!l.Px/mG)(Gm/xv)Ax > Ii. (1.11) 

This result follows from the existence of the uncer
tainty relation (1.7), and needs no further assump
tions-an accurate mass measurement depends on an 
accurate momentum determination, which precludes 
an accurate proper-time knowledge, and vice versa. 

Similar to this experiment, except that the clock on 
the observed particle is actually read during the experi
ment, is the famous example discussed by Bohr and 
Einstein.3 In that experiment, a box contains a gas of 
photons which is weighed accurately (in the earth's 
gravitational field) before the experiment see (Fig. 2). 
Inside, a clock is programmed to open a trap door at 
a specific time, for a specific interval, and a train of 
light is emitted. Afterward, the box is weighed again 
and the energy emitted, E, is determined. Ignoring 
gravity, these independent, accurate measurements of 
E and t would violate the uncertainty principle. 

Bohr argued that to measure M accurately, the 
scale must be at rest. If the reading takes time T, then 
the uncertain momentum impulse imparted by the 
reading process must be less than gAmT, where g is 
the earth's field, to yield an accuracy !l.m. Then 

!l.x > Ii/!l.p > 1i/(g!l.mT). (1.12) 

But the gravitational potential is then uncertain, and 

(1.13) 

from which Eq. (1.1) follows. 
This uncertainty results from the inability of the 

laboratory observer to know the rate at which the 
clock in the box is running. The experiment can be 
converted into one for which Eq. (1.2) holds by predict
ing in advance when the emitted photon train will 
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strike a screen, at rest in the laboratory, a known 
distance away. Then tlt represents an interval in the 
laboratory where the observer, after the weighing, 
cannot know exactly when the trap door will open.4 

As an example where the time scale uncertainty is 
due to kinematical effects of special relativity, we 
consider the determination of the mass of a particle by 
use of the Aston mass spectrometer (Fig. 3). In this 
device, an ion beam is sent along the z axis through 
parallel static electric and magnetic fields, directed 
along the y axis. Then the deflections are given by 

y = eEV/2mv2, x = eHL2/mcv, (1.14) 

where T = Llv is the time of flight. The velocity 
spread of the beam will cause the trace on the screen 
to be parabolic, where 

(1.15) 

The slope of the parabola then gives m. 
If we choose to determine m by an accurate measure 

of y and x, then, since m ,...., y/x2, we have5 

I tl: I = I L1: I + 2\ ~x I > I L1: \ + I L1: \. (1.16) 

From the measurements, m and v can be fairly 
accurately determined. However, there will be a re
sulting inaccuracy in the transverse momenta, 

and since 

then 

Therefore, 

But 

so that 

tlx . mtlv", > Ii, 
L1y. mL1vy > Ii, (1.17) 

v", ,....., x/T, Vy ""'" y/T, (1.18) 

(L1x/x)mTv",L1v", > Ii, 
(L1y/y)mTvy tlvy > Ii. (1.19) 

E,H 

(1.20) 

(1.21) 

(1.22) 

FIG. 3. The Aston 
mass spectrometer. 
Parallel E and H 
fields cause a 2-
dimensional deflec
tion pattern, the 
accuracy of which is 
controlled by the un
certainty principle Eq. 
(1.1), even with grav
ityabsent. 

and because the proper time uncertainty is just 

tlT ,....., Ttlv2jc2, (1.23) 

Eq. (1.1) follows, where L1T refers to time as read by a 
clock on a particle in the beam. 

In this experiment, we can determine m very 
accurately. The price we pay for this is that tlv and L1p 
are very large after the experiment, so that we lose all 
further knowledge of the trajectory of the particle, 
and therefore T. 

This loss of knowledge of T is a general feature of 
mass determinations made in nongravitational ex
ternal fields. We can approximate this situation by the 
equations 

tlm ,.....,0, L1T""'" 00, !:l.x "",0, !:l.v"", 00, 

(1.24) 

In words, an accurate mass determination precludes 
an accurate knowledge of the subsequent trajectory, 
as L1x and L1v cannot both be small. Therefore, L1T is 
large. 

More specifically, in the special case of an electro
magnetic field, the different components of the 4-
velocity do not commute, 

(1.25) 

from which it follows that T cannot be accurately 
determined. For, in a magnetic field, we cannot know 
all the components of the velocity, and therefore the 
trajectory, accurately, so that T is uncertain. And in an 
electric field, we cannot know both v and y, so again 
T is uncertain. 

The situation in an external gravitational field is 
very different. Here the motion in the field gives no 
knowledge concerning the mass of the particle, be
cause of equivalence, and we can use this to determine 
T very accurately. 

As an example, consider a particle released from 
rest in an external gravitational field. If we arrange 
the initial situation such that approximately 

!:l.m "'" 00, !:l.T roo..! 0, tlx,....., 0, L1v""" 0, 

L1p ,....., 00, (1.26) 

then the trajectory x(t) can be calculated exactly even 
though the mass is unknown. Then, since the po
tential cp(x) will also be known, a laboratory observer 
can calculate T for the particle. 

This type of experiment, where L1m ,....., 00, L1T ,....., 0, 
can always be done in gravitational fields. Another 
example would be a planet moving around the sun 
in a circular orbit, for which the relation 

(I.27) 

allows one to determine T by computation from the 
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earth-laboratory period, though the mass of the planet 
is completely undetermined. 

The opposite set of conditions (1.24) and (1.26) on 
m and 7" which pertain to non gravitational and gravi
tational fields, respectively, are brought about by the 
equivalence principle, which we believe provides an 
important clue to the quantum behavior of systems, 
which will be examined further in Sec. 3, even though 
we show in the next section that equivalence has no 
meaning for low-lying quantum states. 

The conditions (1.26) are realized only in an ex
ternal gravitational field. If the particle can interact 
with the source of the field, as in the scattering experi
ment described at the beginning of this section, then of 
course the experiment goes beyond equivalence, and 
then the mass of the particle can be determined, to 
within the limits determined by Eq. (Ll). 

2. EQUIVALENCE AND QUANTUM 
MECHANICS-MACRO-EQUIV ALENCE 

Within the framework of ordinary quantum me
chanics, the principle of equivalence has no unambig
uous meaning for low-lying quantum states,S no 
matter how important equivalence may be in classical 
gravitational theory. In this section, we briefly re
capitulate some of the arguments for this. 

The (weak) equivalence principle asserts that any 
particle released in an external gravitational field with 
a given initial position ro and velocity Vo will follow the 
identical trajectory, regardless of its mass. However, 
when we quantize such a system, even if we consider 
mass to be a fixed parameter, we find that for low
lying quantum states, radii, frequencies, accelerations, 
etc., depend on the mass of the particle. For example, 
a particle of mass m bound to the gravitational po
tential GmMjr, will have quantized average orbits, 
frequencies, and accelerations 

Ji2n2 (GM)2m3 

(r)n = GMm2 ' (w)n = Ji3n3 ' 

2 (GM)3m4 

(a>" = (w r>" = n4 Ji4 (2.1) 

The reason for this is dimensional, and quite 
general. Bohr orbits are defined by the relation 

f p dq = nh, (2.2) 

so that velocities and radii, which classically would be 
mass independent, are quantized in units of 

f vdq = nh/m. (2.3) 

This functional dependence can be seen in Eqs. (2.1). 

The way in which the mass disappears in the limit of 
high orbits is given by the recipe that, for high n, n is 
proportional to m. In other words, if a particle of 
mass m1 and another of mass m2 = Kml are confined 
to the same region I1r, with the same velocity M and 
velocity spread I1v, then the heavier one, m2 , will have 
more momentum (P2) = K(Pl) and a greater momen
tum spread 11P2 = KI1P1. Also, since I1r2 = I1rl' then 
if I1Pl . I1r = nli, it follows that 11P2 . I1r = Knli. It is 
easy to show in detail that all these relations are 
simultaneously satisfied by the recipe 

for n» I, m2 = Kml implies n2 = Knl' (2.4) 

and the whole wavepacket representing particle 2 is 
scaled up in momentum space accordingly. Specifi
cally, for a potential of the form V = mcp(r), the 
wavefunctions 

and 

"P2 = "P(Km1 , r) = .2 anU Kn(Kml, r), (2.6) 
n 

where the Un are the eigenfunctions of the Hamiltonian, 
have the properties that 

(r)1 = (r)2' I1rl = I1r2, 

(P)2 = K(P)l, I1P2 = KI1Pl' (2.7) 

This is how equivalence enters in the classical limit 
for wavefunctions. 

However, for low-lying states ii,...., 1, the above 
recipe breaks down and, for "minimal" states with 

I1p . I1r '" Ii, (2.8) 

it is impossible to satisfy equivalence, as the velocity 
spread I1v = I1p/m will then be mass dependent, if 
I1r is not. Also, such states do not travel in well
defined trajectories, so that the conditions required 
for classical equivalence are not unambiguously 
established. (There are also other arguments, given in 
Ref. 6, which we do not go into.) 

The above arguments are presented under the 
assumption that mass is not a variable. If the mass is 
considered to be a variable, in the sense of this paper, 
then one can go somewhat further. In that case, one 
can construct states with large 11m, but small I1v and 
I1r, so that trajectories are well defined in the classical 
sense, and these states obey equivalence-however, 
they also are superpositions of states with large n
so that here too, states obeying equivalence have 
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n» 1. This is because I1r '" a, the size of the system, 
for states with n '" 1. To construct a wavepacket 
with a well-defined trajectory, then I1r « a, for which 
one needs a superposition of many states (in fact, 
approximately a/l1r of them). 

To sum up, regardless of whether mass is considered 
a dynamical variable or not, to construct states with 
well-defined trajectories, one must have n » 1. In this 
classical limit, one can satisfy the equivalence prin
ciple. However, for bound states with n '" 1, there is 
no analog of equivalence, and radii, etc., are mass 
dependent. For this reason, it was proposed in Ref. 6 
that the equivalence principle be called "macro-equiv
alence." 

3. AN ALTERNATIVE QUANTIZATION SCHEME 
FOR GRAVITY MICRO - EQUIVALENCE 

Quantum mechanics was developed with the laws of 
electrodynamics in mind, but there is no reason to 
believe that it is less applicable to strong and weak 
interactions. However, in the case of gravity, while 
there is no evidence that quantum mechanics does not 
apply, there are circumstances that make it fair to 
raise the question of whether it can be expected to 
apply unaltered, or will instead have to be modified. 

We have seen that standard quantum mechanics 
forces upon us the view that the weak equivalence 
principle has no applicability for low-lying quantum 
states. This view is certainly self-consistent-however, 
it leaves one with the unpleasant feeling that equiv
alence is then merely a "classical accident." Because 
equivalence is the basis for the entire philosophy of the 
geometrization of space and time, and specifically of 
general .relativity, it raises the question of whether 
gravity has any geometrical implications in the micro
scopic domain, or is in fact "just another force." 

This is certainly possible. However, if one accepts 
the possibility that mass is an independent degree of 
freedom, then there arises quite naturally a second 
way to quantize a system in an external gravitational 
field-a way which is in some sense compatible with 
equivalence on the microscopic level. We call this 
alternate quantization scheme "micro-equivalence." 

From our point of view, the usual quantum me
chanics would hold in nongravitational fields, while 
the new scheme would hold in purely gravitational 
fields. We cannot yet present a theory covering the 
entire range of possibilities, when both gravitational 
and non gravitational forces are present; however, the 
two extreme situations form the opposite poles of a 
continuum of situations, which we can help place into 
perspective. 

We have seen in Sec. I that, in an external gravita
tional field, no information is available concerning the 
mass of the particle; however, the trajectory, and the 
proper time along it, are determinable, i.e., 11m '" ro, 
I1T '" O. In an external electromagnetic field, on the 
other hand, masses can be determined, while trajec
tories and therefore proper times along them cannot 
be, i.e., time measurements are confined to the labora
tory system, and 11m '" 0, I1T "-' roo 

We would suggest that these two extremes define a 
situation of complementarity between classical electro
magnetic and gravitational fields in much the same way 
that the extremes of I1p = 0 and I1x = 0 define com
plementarity between classical wave and particle 
descriptions.Io And just as one cannot simultaneously 
determine the particle and wave properties ofa system, 
so one cannot simultaneously determine m and T, and 
to the extent that 11m is neither 0 nor ro, but 0 « 
11m « ro, one cannot separately isolate the electro
magnetic and gravitational properties of an external 
classical field. This would tend to imply that these 
two classical fields, electromagnetic and gravitational, 
form extreme projections of a more complicated 
unified field that can only be understood in full on a 
quantum level, and one should realize the unique role 
played by the equivalence principle in creating this 
interpretation. Thus, the proposal we are about to 
make for altering quantum mechanics should be taken, 
not as contradicting quantum mechanics, but rather 
as complementing it when applied to gravitational 
fields. 

To begin with, while it is true that there is no 
evidence that the usual quantum mechanics fails to 
hold in a gravitational field, it is also true that there 
is no evidence that it does hold. Furthermore, the 
numbers that the usual quantization scheme yields for 
microscopic particles are rather absurd. For example, 
the lowest Bohr orbit for two gravitationally bound 
neutrons is about 1026 cm from Eq. (2.1), which is 
roughly the size of the universe. The energy is about 
10-69 eV. Even if such a bound system existed, were it 
to decay from its first excited state to its ground state, 
the neutron would have to travel for 109 years (at the 
speed of light, not at the incredibly small speed it 
actually has) just to locate its new orbit. While such 
numbers may merely indicate that we are unlikely to 
identify such states experimentally, they also tend to 
undermine the credibility of the theory, as well as 
raise important epistemological questions concerning 
its interpretation. 

Because the motion of a particle in an external 
gravitational field is independent of its mass, the whole 
classical formalism can be rewritten so that the mass 
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does not enter. If the potential is of the form 

VCr) = mcp(r), (3.1) 

where cp is independent of the mass, then we can define 
a canonical velocity 

Vi == Pi/m, 

and a "reduced" Hamiltonian 

(3.2) 

Je == H/m = tv2 + cp(r) = E. (3.3) 

Both v and Je (= E) are independent of the mass. 
Hamilton's equations become 

. aJe. aJe 
x·=- v·=-. ~'. ~, 

uVi UXi 
(3.4) 

and we can introduce a "reduced Poisson bracket," 

{Xi' V;} ==! [(aXi) (aV;) _ (aV;) (aXi)] = b;;. 
k aXk aVk aXk aVk 

(3.5) 

Thus, the entire formalism exactly parallels the usual 
one, except that the mass never enters. Here the veloc
ity plays the role of a generator of displacements, and 
the adiabatic invariants are the integrals of the form 

(3.6) 

However, while the classical theory is mass inde
pendent, the usual quantized theory is mass dependent 
because the mass enters through the commutation 
rules 

[Pi' Xi] = Ii/i, 

for if we define the operator 

(vi)op == (Pi)Op/m, 
then we have 

[Vi' Xi] = Ii/im. 

(3.7) 

(3.8) 

(3.9) 

Thus, it is only at the stage of quantizing the theory 
that the mass enters. 

But may we not ask whether we can carry our 
classical mass-independent formalism just one step 
further and introduce a quantum scheme that is also 
mass independent? For this we need a new fundamental 
constant, of dimension Ii/m, which we write as CAo so 
that the theory automatically introduces a scale .1.0 into 
physics ,11 which plays the same role here as the funda
mental action does in the usual quantum mechanics. 
Then, as suggested by Eqs. (3.5) and (3.6), we have 

(3.10) 

and the entire quantum formalism, as well as the 
classical one, is mass independent, and the justification 

for Eq. (3.10) in a gravitational field is certainly no. 
weaker than the usual law which quantizes the action 
in a nongravitational field. 

As to the size of the fundamental length .1.0 , we have 
as yet no idea. From the other physical constants it is 
possible to construct a "length" 

(3.11) 

but there is no reason to expect that Ao will be of this 
magnitude. Using the mass of the neutron, another 
length from the other physical constants is the "classi
cal radius of the neutron," 

(3.12) 

about which the same caution should be exercised. 
To drive home the point that extreme caution is 
needed in anticipating numerical constants, we might 
try to guess the speed of light c' by recombining these 
constants into a "fundamental velocity." One good 
attempt would be 

C' = Gm2/1i '" 10-28 cm/sec, (3.13) 

which turns out to be much closer to the speed of 
darkness! 

The proposal (3.10) or its semiclassical analog 

J i = f Vi dXi = ncAo , (3.14) 

should be taken as a suggestion, rather than a unique 
quantization scheme, in the absence of an exact theory. 
For example, the proposal 

J; = C
2f i dx = ncAo, (3.15) 

would also fulfill our requirements, and reduce to 
(3.14) for a free particle. At this stage, we would only 
request an open mind on the subject. 

Even without a detailed th~ory, however, there are 
certain experimentally observable conclusions which 
can be drawn concerning such a theory. One is that the 
phase factor exp (-iEI/Ii) of the usual quantization 
scheme is mass dependent, while that of the new 
scheme exp (-iEtfcAo) would not be. This means that 
in a gravitational interference experiment, while the 
usual theory predicts that the center of the beam will 
follow the classical trajectory, (i.e., will be mass 
independent) it also predicts that interference effects 
will be mass dependent. With the new theory, all these 
effects will be mass independent, which is why the 
proposal is called "microequivalence" (although an 
exact microscopic trajectory is still not defined). 
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One way to observe these effects would be to per
form a Stern-Gerlach experiment, splitting a beam of 
particles with spin in an inhomogeneous magnetic 
field and then coherently recombining it, and observ
ing the effect of the earth's gravitational field while the 
beam was split. The magnitude of the effect is sur
prisingly large (from the usual theory) and such an 
experiment is actually being prepared at this university 
with the aid of Professor K. Rubin. If the experiment is 
done with K39, one can use the large electronic mag
netic moment to split the beam, while monitoring the 
gravitational interference effect on the much smaller 
hyperfine structure. If the two beams of K39 are split 
coherently by z "-' 10-4 cm in a strong magnetic field 
of about 103 G, the frequency corresponding to the 
gravitational difference is Wg = mgz/Ii ,....., 7 X 103 rad/ 
sec. This is much smaller than the I· J hyperfine split
ting, Whyp ,....., 109 rad/sec, and also smaller than the 
rate of nuclear precession in a field of 103 G, Wn ......, 

2 X 106 rad/sec. However, if the inhomogeneity of the 
splitting field is about 103 Glcm, then the two beams 
will be in H fields that differ by about 1/10 G, so that 
their relative frequency will be only Llwn ,....., 200 radl 
sec, which is smaller than the gravitational effect. The 
experiment must be done so as only to see the relative 
frequency, rather than the much larger precessional 
frequencies themselves. The details of the experiment, 
together with a more detailed discussion of micro
equivalence, will be presented elsewhere. 

In conclusion, we would like to reiterate our belief 
that the principle of equivalence contains considerably 
more physics than has been already exploited. Besides 
being the take-off point for relativity, it can provide the 

basis for a classical theory containing proper time as a 
new degree of freedom, all the conceptual features of 
which are capable of experimental verification. 

At any rate, one should not be surprised that, if 
there exists an ultimate structure of space-time, 
characterized by a fundamental length, this should 
show up in a gravitational theory, and be related to 
equivalence. For the very fact that this length and any 
related phenomena are mass independent is an indica
tion that they transcend any particular dynamical 
theory and are providing clues to the underlying 
geometry and topology of space itself. 

1 D. M. Greenberger, 1. Math. Phys. 11, 2329 (1970), hereafter 
referred to as Paper 1. 

2 For the standard interpretation of this equation, see, for ex
ample, the text of A. Messiah, Quantum Mechanics (Wiley, New 
York, 1962). 

3 See Bohr's discussion in Albert Einstein-Philosopher, Scientist, 
P. A. Schlipp, Ed. (Tudor, New York, 1951). 

• This was Bohr's interpretation of the experiment. He did not 
discuss Eq. 1.1. 

5 More correctly, the relation for products of independent events 
involves the squares of these quantities. However, the results are 
identical. 

6 See D. M. Greenberger, Ann. Phys. (N.Y.) 47, 116 (1968). A 
relevant publication, using a special wavepacket calculation (Ref. 7), 
as well as other examples of the gravitational Bohm-Aharanov 
effect (Refs. 8, 9), also exist. 

7 S. Epstein, Phys. Letters 11, 233 (1964). 
• .T. S. Dowker, Nuovo Cimento 52B, 129 (1967). 
9 Y. Aharanov and D. Visnivesky, Ann. Phys. (N.Y.) 45, 479 

(1967). 
10 A classic treatment of complementarity is W. Heisenberg, 

Physical Principles of the Quantum Theory (Dover, New York, 1930). 
See also D. Bohm, Quantum Theory (Prentice Hall, Englewood 
Cliffs, N.J., 1951). 

11 Other theories have been proposed introducing a fundamental 
length, usually with the hope of eliminating divergences in field 
theories. A recent attempt, which does not use a discrete space-time 
is Tung-Mow Yan, Phys. Rev. 160, 1182 (1967); K. Ford, Phys. 
Rev. 175, 2048 (1968). 
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This paper shows how to obtain exact, closed-form expressions for various moments and correlation 
functions of the solutions of the stochastic, ordinary differential equation 

d2u 
dz 2 + pal + 1)T(z)]u = 0, 

where T(z) is the so-called "random telegraph" wave and f3~ and 1) are positive real constants. These 
moments and correlation functions are calculated by two different methods, one a phase space .method 
and the other a matrix method familiar from optics. It is found that the moments are sums of exponen
tials. The first-order moments decay exponentially but the second-order moments grow exponentially. 
The correlation functions are also sums of exponentials and show that the solutions do not form a 
stationary process. An important application of these results is obtained in the problem of a plane 
electromagnetic wave normally incident on a randomly stratified dielectric plate. It is shown that, 
if TI is the amplitude transmission coefficient of the plate, then <1 /TITI*) can be expressed in terms of the 
second-order moments of the solutions and derivatives of solutions of the stochastic differential equation. 

1. INTRODUCTION 

This paper shows how to obtain exact, closed form 
expressions for various moments and correlation 
functions of the solutions of the stochastic, ordinary 
differential equation 

d 2u 
-2 + pg[1 + 1}T(z)]u = 0, (1.1) 
dz 

where T(z) is the so-called "random telegraph" wave1 

and p~ and rJ are positive real constants. 
Equation (1.1) is interesting for a number of reasons. 

In the first place, several problems in the propagation 
of electromagnetic waves through a randomly 
stratified dielectric medium can be reduced to a 
solution of (1.1). These problems include the effect 
of the random stratification of the dielectric constant 
on the modes in a dielectric waveguide and on the 
transmission coefficient for a plane wave normally 
incident on a dielectric slab. Equation (1.1) also 
describes a harmonic oscillator with a spring con
stant which varies randomly. The slab problem will 
be carefully formulated in Sec. 2 of this paper. We 
will show that (1/T!>T!>*) can be expressed exactly in 
terms of various second-order moments of the solu
tions of (1.1), where T!> is the amplitude transmission 
coefficient of the slab and ( ) denotes the stochastic 
average. The slab problem has been the subject of 
numerous investigations,2-4 but we believe the results 
presented here are new. The formula for (l/b"b*) 
is important, for it suggests experiments from which 
the correlation length of the random irregularities of 
the dielectric can be estimated. 

Since we can calculate exactly various moments 
and correlation functions of the solutions of (1.1), 
the equation provides a valuable model on which 
various approximate methods of solution can be 
tested. We are especially interested in using this 
equation to test the "smoothing method" 5 for 
obtaining approximate solutions of stochastic equa
tions. This technique has been exploited in the study 
of wave-propagation problems by Keller,6-9 and has 
been studied extensively by a number of other 
authors.lo. In particular, Bourretll- 13 has shown in
directly by diagram techniques that, if the method of 
smoothing is applied to (1.1) to calculate (u(z», the 
answer obtained is exact. However, some care must 
be applied in calculating higher-order moments and 
correlation functions of (1.1) by the smoothing 
method, since wrong answers can easily be obtained, 
as we show in a separate paper,t4 in which we con
sider some of the problems of applying the method 
of smoothing to (1.1) wherein T(z) is an arbitrary, 
stationary process. 

In Sec. 2 we will define the random telegraph 
process, describe carefully the mathematical problem, 
and derive the relationship between (l(b'b*) and 
various second-order moments of initial value solu
tions of (1.1). 

The remainder of the paper will be devoted to 
calculating the first- and second-order moments and 
the correlation functions of the initial-value solutions 
of (Ll) by two different methods. In Sees. 3 and 4 
we show how phase-space methods can be used to 
solve the problem, and we give some of the details of 
the calculations in Appendices A-C. In Secs. 5 and 6 
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we briefly show how the same results can be obtain:d 
by matrix methods, and we give some of the detaJls 
of the calculations in Appendix D. 

2. FORMULATION OF THE PROBLEM 

The random telegraph process is an ensemble of 
functions {T(z)} defined as follows1•1l- 13 : A given 
function of the ensemble, T(z), can assume only the 
values ± 1, and as a function of z it makes independent 
random traversals from one value to another. For 
fixed z, a sample function chosen at random will equal 
1 or -1 with probability t. The probability that a 
given sample function makes n traversals in an interval 
of length z is given by the Poisson distribution 

pen, z) = [(bz)n/n!)e-IIz
, n = 0, 1,2, .. " (2.1) 

where b is the average number of traversals per unit 
length. In all that follows, T(z) will always denot~ a 
sample function of the random telegraph process. 

A straightforward calculation yields l 

(T(z» = 0, (T(y)T(z» = e-211
/1I-

Z
/, (2.2) 

where here and in aU that follows <) denotes the 
ensemble average. It follows that {T(z)} is a wide 
sense stationary Markov process. From the expression 
(2.2) for the autocorrelation function, we see that the 
correlation length I is 

1= 1/(2b). (2.3) 

Each sample function T(z) defines on ° S z < 00 

two new real functions Um(Z) , m = 1, 2, which are 
the linearly independent solutions of 

d2u 
-.!!! + P~[l + 1jT(z)]um = 0 (2.4) 
dz2 

which satisfy the nonstochastic initial conditions 

u1(0) = u~(O) = 1, u{(O) = U2(0) = 0, (2.5) 

where Po and 1j are fixed, positive constants. The 
ensembles of functions {um(z)}, m = 1, 2, form 
two random processes which are the subject of this 
paper. Throughout this paper we will use the notation 

and 

vm(z) = u;"(z) = dum(z) , m = 1,2, (2.6) 
dz 

(2.7) 

To motivate our interest in these random processes, 
we consider the important physical problem of 
computing the average retlection and transmission 
coefficients of an ensemble of randomly stratified 
dielectric sIabs.2- 4 Each slab occupies the region 
- 00 < x, y < 00, 0 S z S L, and its dielectric 

constant is 

K(z) = n~[1 + 1jT(z)], (2.8) 

where we assume 0 < 'YJ < 1. The mean and auto
correlation function of the ensemble {K(z)} are 

(K(z» = n~, (K(y)K(z» = n~(l + 1j2e-2b lll-Z/). 

(2.9) 

Thus each slab can be thought of as formed by a stack 
of plates having alternately the dielectric constants 
nW ± 1j), where the number and thic.kness of the 
plates is determined by the sample functl~n T(z): The 
regions z < 0 and z > L are filled wIth umform 
dielectric media having the dielectric constants ni 
and ni, respectively. 

Let a plane, monochromatic, electromagnetic wave, 
polarized in the y direction and propagating in the 
positive z direction, be normally incident on the slab 
from the left. Part of this incident wave will be 
reflected and part transmitted. If we denote the 
amplitude reflection and transmission coefficients by 
:R and 1"), respectively, and suppress the common time 
factor eiwt , then the total electric field in z S ° is 
in z 2. Lis 

and in ° S z S L is 

ey = A1u1(Z) + A2U2(Z). 

In these expressions 

Pi = koni' j = 0, 1,2, 
where 

(2.10) 

(2.11) 

(2.12) 

(2.13) 

(2.14) 

is the free-space wavenumber. Equation (2.12) holds 
since the spatial part of the electric field must satisfy 
(2.4) with Po given by (2.13). 

The electromagnetic boundary conditions require 
that ell and dell/dz be continuous at z = 0 and z = L. 
Applying these conditions, we obtain four linear 
equations from which the unknowns A l , A2 , 1"), and :R 
can be determined. The power transmission coefficient 
is found to be 

1")1")* = 4PH2PIP2 + vi(L) 

+ [P~u~(L) + Piv:(L») + P;P:u:(L)}-I, (2.15) 

and the power reflection coefficient is related to this 
by 

(2.16) 

In deriving (2.15) we have made use of the fact that 
the Wronskian of (2.4) is identically 1: 

U1(Z)V2(Z) - v1(z)ua(z) == 1. (2.17) 
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In Eq. (3.10) we will introduce a joint probability 
density function p(UI , VI' U2' V2, z) which is given in 
terms of the solutions of a pair of first-order partial 
differential equations. In terms of this density func
tion we have 

('bb*) = L: 'bb*P(UI' VI, U2, V2, L) dUI dVI dU2 dV2, 

(2.18) 

but we have been unable to calculate P explicitly. 
However, from (2.15) we do have the relationship 

4f3~(1/'bb*) = 2f31f32 + M(L» + f3:(u~(L» 
+ f3~(v:(L» + f3:f3~(u:(L», (2.19) 

and all the second-order moments appearing in (2.19) 
can be calculated explicitly. 

In fact, we will show in Sec. 3 by a phase space 
method that each second-order moment of the form 
(Ui(Z)Uk(Z» , (Ui (z)viz», and (Viz)viz» , j, k = 1,2, 
can be written as L;=o c1)e"pz. Here the c1)' P = 
0, ... ,6, are constants, So = 0, and the remaining 
s1) are the roots of the equation Ll(s) = 0, where 
Ll(s) is a sixth-degree polynomial given in (AI4). The 
constants c1) are not given explicitly, but a simple 
prescription is given for their calculation. For small 
enough 'f}, one of the s1) has a positive real part. In 
particular, this implies that lim (I/'bb*) = 00, as 
L~ 00. 

In Sec. 4 we show by the phase-space method and 
in Sec. 6 by the matrix method that each correlation 
function of the form (ui(z + ')uk(z», etc.,j, k = 1,2, 
where z, , ~ 0, can be written as 

6 4 

L LC1).re8PZ+"'~. 
p=Or=l 

Here the Cr p are constants and the ar are the roots of 
the equatio'n d(a) = 0, where d(a) is a fourth degree 
polynomial given in (eI7). Again the cp •r are not 
given explicitly, but can be simply calculated. For ° < 'f} < 1, all the ar have negative real parts. From 
these expressions, it can be seen that the processes 
um(z) and vm(z) are neither stationary nor wide-sense 
stationary. 

Section 5 is devoted to calculating the moments 
(ui(z» and (viz» j = 1,2, by the matrix method. 
The results (which have been obtained earlier by 
BourretU - 13) show that each first-order moment is 
of the form L:=l are"". 

The striking difference between the growth behavior 
of the first- and second-order moments as z ~ 00 can 
be explained on the basis of phase cancellation. For 
each choice of sample function T(z), the solutions of 
(1.1) will be oscillatory with either bounded or un-

bounded amplitude as z ~ 00. However, on taking 
the stochastic average of all these solutions, cancella
tions occur between oscillatory solutions which are 
out of phase, and so the average decays exponentially 
as z ~ 00. However, if these solutions are squared 
before averaging, the cancellations cannot take place, 
and so the average of the squares increases exponen
tially as z ~ 00. 

3. MOMENTS BY THE PHASE-SPACE 
METHOD 

In this section we show how phase space methods 
developed by Frisch and LloydI5 in their study of 
electron levels in a I-dimensional random lattice can 
be used to calculate various moments of the solutions 
of (2.4). We remark that the combined process 
[um(z), vm(z), T(z), m = 1, 2] is a Markoff process, 
since a knowledge of um(zo), Vm(zo) , m = 1,2, and 
T(zo) determines the process for all z ~ Zo via the 
differential equation and the fact that T(z) itself is 
a Markoff process. However, T(z) is not a diffusion 
process but a jump process; hence, the joint process 
[Um(z) , Vm(z) , T(z)] is not a diffusion process and so 
cannot be described by a Fokker-Planck equation. 

We define the conditional probability density 
functions 

Pk(U1 , VI, U2, V2' z) dUI dVI dU2 dV2 
= Prob {Um ~ um(z) ~ um + dUm' 

Vm ~ vm(z) S Vm + dVm' 
(m = 1,2) I T(z) = (_l)k-I}, (3.1) 

with k = 1,2. We derive a pair of partial differential 
equations which PI and P2 satisfy. Let there be a small 
decrement (Jz in z, and consider the conservation of 
points in phase. Let us assume that T(z) = + I. Then 
there are three possibilities to be considered. (i) With 
probability 1 - bCJz + o«(Jz), T(z - (Jz) = + 1, and 
T does not change in the interval (z - (Jz, z). In this 
case, from (2.4) 

um(z - (Jz) = um(z) - vm(z)(Jz + o«(Jz), 

vm(z - (Jz) = vm(z) + f3!u m(z)(Jz + o«Jz), (3.2) 

and, in particular, 

O(Um(Z - (Jz), vm(z - (Jz» = 1 + o«(Jz). (3.3) 
o(um(z), vm(z» 

(ii) With probability bCJz + o«(Jz), T(z - (Jz) = -1, 
and there is just one change in T in the interval 
(z - (Jz, z). In this case, 

um(z - (Jz) = um(z) + O«(Jz), 

vm(z - (Jz) = vm(z) + O«(Jz), (3.4) 
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and 

O(Um(Z - <5Z), Vm(Z - <5Z») = 1 + O(!5z). (3.5) 
o(um(z), vm(z» 

(iii) With probability o(<5z) there is more than one 
change in T in the interval (z - <5z, z). 

By combining these three cases and dividing by 
dUl dVl dU2 dV2' it follows that 

PI(UI' VI' U2, V2, z) 

= (1 - MZ)PI(U I - vI!5z, VI + f3!u I<5z, 

U2 - v2<5z, V2 + f3!U2<5Z, Z - ~z) 

+ b~ZP2(UI' VI, U2 , V2, z) + o(~z). (3.6) 

Subtracting PI (U1, VI' U2, V2' z) from each side of 
(3.6), dividing by ~z, and letting <5z -->- 0, we find 
thatI6 

(3.7) 

Similarly, 

OP2 + VI OP2 + V2 OP2 
OZ OUI OU 2 

- f3- UI- + U2- + b(P2 - PI) = O. 2 (OP2 OP2) 
OVI OV2 

(3.8) 

The initial conditions, from (2.5) and (3.1), are 

h(UI , VI' U2' V2, 0) = O(UI - 1)O(VI)O(U2)O(V2 - 1), 

k = 1,2. (3.9) 
Now, let 

2 

P(UI' VI, U2, V2, z) = l!Pk(UI , VI, U2, V2, z). (3.10) 
k=l 

Then, from (3.1), since T(z) = ± 1 with probability 
t for each sign, 

p(U1 , VI' U2, V2, z) dUI dVI dU2 dV2 

= Prob fUm ~ um(z) ~ Um + dUrn, 

Vrn ~ vm(z) ~ Vrn + dVm' (m = 1, 2)}. (3.11) 

We have been unable to solve these equations 
explicitly for h(Ul' VI, U2' V2, z), k = 1,2, but (3.7) 
and (3.8) have the remarkable property that from them 
one can derive finite systems of constant coefficient, 
first-order, ordinary differential equations for the 
moments which can be solved explicitly. To define the 
moments, let 

and denote by A(r) the r fold Kronecker product of 
the matrix A with itselfY Then, in matrix form, the 
rth-order moments of Pk are given by 

(F(z)(rl)k = L: L: L""""f:""F(rlpk(UI , VI, U2, V2, z) 

X dU I dV I dU 2 dV2, (3.13) 

and the moments of P are defined analogously. Thus, 
from (3.10), we have 

2 

(F(z)(rl) = t~ (F(z)(rl)k' (3.14) 
k=l 

[Some of the elements of F(z)(rl are equal to each 
other, but this is still a convenient way to define all 
the moments.] The equations for the rth-order 
moments are obtained by multiplying (3.7) and (3.8) 
by the elements of F(rl and integrating with respect to 
Ul' VI' U2, V2 from - 00 to 00. Because of the homo
geneity of (3.7) and (3.8) in the u's and v's, the 
equations for the rth-order moments are uncoupled 
from the equations for different order moments. 

The details of the calculation for the second-order 
moments are given in the Appendices, but the tech
nique can be applied to moments of all orders. There 
are twenty second-order moments in all, but there is 
considerable uncoupling of the equations. Equations 
are first given in Appendix A for (U~(Z»k' 
(um(z)Vm(Z»k' and (V~(Z»k' The equations for m = 1 
are uncoupled from those for m = 2, and both are 
uncoupled from the equations for (UI(Z)U2(Z»k' 
(UI(Z)V2(Z»k- (VI (z)U2(Z»k, and (VI (z)V2(Z»k' as is 
evident from (3.7) and (3.8). The equations in 
Appendix A are solved by means of Laplace trans
forms. We denote the Laplace transform of fez) by 

Cu) = i""e-s'i(z) dz. (3.15) 

Expressions are derived for C«u~», C( (umvm», and 
C«v~», for m = 1,2, and are given by (AIS)-(AI7), 
(A22) , (A25), and (A27), where /). is given by (AI4). 
Note that, from (A22), 

(U~(z» = M(z». (3.16) 

Also, from (AI6) and (A24), 

~ (u~(z» = 2(u 2(z)V2(z», ~ (u~(z» = 2(u l (z)V1(z», 
dz dz 

(3.17) 
since, from (2.5), 

(3.18) 

Since vm(z) = dum/dz, the results of (3.17) are not 
surprising. 
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Coupled equations are given in Appendix B for 
the quantities (UI (Z)U2(Z»k' (UI (Z)V2(Z»k' (VI (z)U2(Z»k' 
and (V1(Z)V2(Z»k' These equations are also solved by 
means of Laplace transforms and expressions for 
L«U1V2» and L«V1U2» are given in (B25) and (B26). 
From the first equation in (B24) it follows that 

since, from (2.5), (U1(0)U2(0» = O. Again, this is not 
a surprising result in view of the definition of vm(z). 
The second equation of (B24) is a consequence of the 
Wronskian of the solutions of (2.4), i.e., (2.17). 
Finally, from (BI8) and (B21), it follows that 

(U1 (Z)U2(Z» = (U2(Z)V2(Z» , 

(V1(Z)V2(z» = (U1(Z)V1(z». (3.20) 

We can summarize these results by writing 

6 

(F(z) X F(z»k = 2: Cp.kesPz, (3.21 ) 
p=o 

where the Cp •k , P = 0, ... , 6, k = 1, 2, are constant 
4 X 4 matrices, the sP' P = 1, ... , 6, are the six roots 
of 6.(s) = 0, with 6.(s) given in (AI4), and So = O. 
We have not evaluated the matrices Cp •k explicitly. 
They are calculated from the residues of the Laplace 
transforms of the moments at the roots of s6.(s) = O. 
It is easily verified that for small 'fj, 6.(s) = 0 has one 
root with a positive real part, so 'that the second 
moments grow exponentiallylB as Z -+ 00. This is in 
marked contrast to the first-order moments which, as 
we shall see in Sec. 4, all decay exponentially as 
Z -+ 00, for 'fj < 1. 

4. CORRELATION FUNCTIONS BY THE 
PHASE-SPACE METHOD 

We now turn our attention to the use of phase
space methods to calculate the correlation functions 
of the solutions and the derivatives of the solutions 
of (2.4). For this purpose, we define the conditional 
probability density functions, with m, j, k = 1, 2, 

Qm.ik(U, V, , , z) dU dV 

= Qm.ik(U, V", Uu VI' U2 , V2 , Z) dU dV 

= Prob {U:::;; Um(Z + 0:::;; U + dU, 

V:::;; Vm(Z + n :::;; V + dV, 

T(z + '> = (_1)1-1 , Uz(z), Vz(Z), 

(I = 1,2), T(z) = (_I)k-l}, (4.1) 

where we assume that , ~ O. Then, since the events 

T(z + '> = ± 1 are mutually exclusive, 

Prob {U :::;; um(z + ') :::;; U + dU, 

V :::;; vm(z + ') ~ V + dV , ub), vb), (l = 1,2), 
T(z) = (_l)k-l} 

2 

= 2: Qm.ik(U, V", Z) dU dV. (4.2) 
i=1 

Hence, from the definition of h(U1 , VI' U2 , V 2 , z) in 
(3.1), we have 

Prob {U ~ u,nCz + 0 ~ U + dU, 

V ~ vm(z + 0 ~ V + dV, 

U1 ~ uz(z) ~ Uz + du l , Vz ~ vz(z) ~ VI + dvz, 

(l = 1, 2)} 
2 2 

=!2: 2:Qm.ik(U, V", z) 
k=l j=l 

X piu1 , Vb U2, V2' Z) dU dV dU l dV l dU 2 dv2, 

(4.3) 

since T(z) = ± 1 with probability ! for each sign. 
This result enables us to obtain the correlation 
functions. 

Thus, we define the first-order moments of 
Qm.ik(U, V, , I z) as 

(Umm I Z)ik = Loooo L: UQm.iiU, V,, I z) dU dV, 

(4.4) 

(Vmm I Z)ik = L: L:VQm,ik(U, V, 'I z) dU dV. 

(4.5) 

As is evident from (4.1), these moments depend on 
uzCz) and vl(z), I = 1, 2. Let 

(<<1-(,) I z)ik = (U1m I z)ik (U2m I Z)ik). (4.6) 
(VIm I z)ik (V2m I Z\k 

Then, from (3.12) and (4.3)-(4.6), we can write the 
correlation matrix as 

(F(z + ') x F(z» 

= ! kt L: Loooo L: L: (~I(<<I-(') I z)ik x F) 
X PiUl, VI' U2, v2, z) dUI dVl dU2 dv2. (4.7) 

For fixed m and k, the conditional probabilities 
Qm.ik,j = 1,2, satisfy two coupled, first-order partial 
differential equations which are very similar to Eqs. 
(3.7) and (3.8) satisfied by the h. These equations are 
given in Appendix C. We have been unable to solve 
them explicitly, but these equations again have the 
property that from them one can derive finite systems 
of first-order, constant-coefficient, ordinary differ
ential equations for the moments which can be solved 
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explicitly. These equations, satisfied by (U m (~) I z) jk 
and (Vma) I Z)jk' are also derived in Appendix C. 
The equations for these latter quantities are solved by 
means of Laplace transforms. The Laplace transform 
of a matrix A(~) is denoted by 

A[A] = LX) e-a~Aa) d~. (4.S) 

It follows from (CI4) that 

(4)>(0 I Z)jk = (4)>(0 10)jkF(z). (4.9) 

Hence, from (3.13), (4.7), and (4.9), 

(F(z + n x F(z» 

= tJJ (il(4»(~) I O)jk x I)(F(Z) x F(Z»k} (4.10) 

Expressions for A[(4)>(O / O)jk] follow from (Cl3), 
(CIS), and (CI7)-(CI9). In view of (3.12), expressions 
for the elements of C«F(z) x F(z»k) may be deduced 
from (A9) , (A 13) , (AIS), and (AI9) and (BlO), 
(BII), (BI6), (BI9), (B22), wherein S, B, and E are 
given by CA8). 

Let us now consider the meaning of the elements of 
2 

1<4»(~) I O)jk' 
j=1 

i.e., of 
2 2 

I(Um(O / O)jk and 1 (Vm(O /O)jk, 
}=1 j=1 

as defined by (4.4) and (4.5), with Z = O. But 
2 

IQm.ik(U, V, '1 0) 
j=1 

is given by (4.2), with Z = O. Since ul(O) = c5l,l and 
vl(O) = c51,2' I = 1,2, are prescribed in any event, it 
follows that 

2 

I(UmW / O)ik = (U m(') / T(O) = (-It-I), 
}=1 

2 

1 <Vma) I O\k = (vma) I T(O) = (_I)k-I). (4.11) 
;=1 

From (4.11) we see that we have obtained the first 
moments as a by-product of the correlation function 
calculation, since 

2 

(Um(O) = t!(Um(O I T(O) = (_1)k-1) 
k=1 

2 2 

= t! I(Um(O/O)ik , 
k=1 j=1 

2 

(Vm(D) = t 1 (vm(n I reo) = (_1)k-l) 

k=1 
2 2 

= tll(Vm(O IO)ik' 
k=l }=1 

(4.12) 

Thus, from (3.12) and (4.6), it follows that 

2 2 

(F(D) = t! ! (4)>(0 I O)ik' (4.13) 
i=1 k=l 

To illustrate these results more clearly, from the 
results of Appendix C, we write 

4 

(4)>(0 I O)ik = !Ar.ike<Tri", (4.14) 
r=1 

where the A r •ik are constant 2 x 2 matrices and the 
ar , r = 1, ... , 4, are the four roots of the equation 
d(a) = 0 given in (CI7). We have not evaluated the 
matrices A r •ik explicitly, but they are the residues of 
the matrices given in (CIS) and (CI9) at the roots of 
d(a). The polynomial d(a) is a biquadratic in a + b 
and d( a) = 0 can be solved easily, so that it can be 
shown explicitly that Re (O"r) < 0 for r = 1, 2, 3, 4, as 
long as r; < 1. Thus the first moments all decay ex
ponentially. 

By employing (3.21), (4.10), and (4.14), we can 
write 

(F(z + ~) x F(z» 
2 2 6 4 

= .1 '" '" '" "'(A . x I)C e8pZ-t<TrI. (4.15) 2 k k k k r"k p.k 
}=1 k=1 p=Or=l 

The processes um(z) and vm(z) are not stationary or 
wide-sense stationary. 

5. FIRST-ORDER MOMENTS BY MATRIX 
METHOD 

In the previous two sections we have shown how 
various moments and correlation functions of the 
processes umCz) and vm(z) can be calculated by phase
space methods. In this section we show that matrix 
methods commonly used to study wave propagation 
in stratified media19 can be used to calculate the 
expected value of the fundamental solution matrix 
(3.12) corresponding to (2.4) and (2.5). The procedure 
is to write down the fundamental matrix for a given 
sample function of the ensemble {T(z)}, and then to 
directly average over th~ ensemble. 

Since T(z) = ± 1, (2.4) is an equation with constant 
coefficients in any interval in which T(z) does not 
change sign. It is a straightforward matter to show 
that in such an interval the fundamental solution 
matrix satisfies 

(5.1) 

where Zo is in the interval and 

N±(z) = ( cos (f3~) (f3±)-1 sin (f3~»), (5.2) 
-f3± sin (f3~) cos (f3~) 
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according as T(z) = ± l. Now F{z) is continuous at 
the points of discontinuity of T(z). It follows that, if 
there are n crossings of T(z') in the interval 0 S 
z' S z, at the points Zm' 1 S m S n, with 0 < Zl < 
Z2 ••• < Zn < z, then 

F(z) = N(_l)n+k-l(Z -- zn) 

x N(_I)'Hk-2(Zn -- Zn-l) ••• N(_l)k-l(ZI), 

if T(O) = (_l)k-l, (5.3) 

since, from (2.5), (2.16), and (3.12), F(O) = I. 
We first calculate the conditional expectation value 

of F{z) given that there are n crossings in (0, z) and 
T(O) = (-1 )k-l. Since the joint distribution of the n 
random points, ordered as above, has a uniform 
density distribution20 n! z-n dZ1 ••• dzn , this con
ditional expectation value is just 

x N<_un+k2-(Zn -- Zn_l) ••• N<_l)k-l(ZI) 

x dZ I ••• dZ n_ 1 dzn • (5.4) 

The integral in (5.4) is a multiple convolution and, 
following Darling,20 we take the Laplace transform of 
zn.'f n.r.:(z), as in (3.15). Then, 

r.[zn.'f n,r.:(z)} 

= n! YJ<_I),,+k-1(S)YJ(_I),,+k-2(S) ... YJ<_I)k-1(S), 

where 

YJis) = £[N±(z)] = 2 1 2 ( S 2 1). 
(s + f3±) --f3± s 

(5.5) 

(5.6) 

Now, the probability that T(z') has n crossings 
in the interval 0 S z' S Z is pen, z), as given by (2.1). 
Also, T(O) = ± 1 with probability ! for each sign. 
Hence, the average value of F(z) over the ensemble is 

For j = 1,2 and k = 1,2, we define 

00 (bz)2r+li-k l 
(F(Z»ik = e-

b
",t;o(2r + Ii __ kl)! .'F2r+1i-kI.iz). (5.8) 

Then, 
2 2 

(F(z» = i:2 2(F(z»jk' (5.9) 
7<:=lj=1 

We shall see shortly that 

(F(mir.: = (4)>(~) I O)jr.:, (5.10) 

where (4)>a) 10)1k is given by (4.1) and (4.4)-(4.6). 
This result is consistent with (4.13) and (5.9). 

Now, from (5.5) and (5.8), it follows that 

<Xl 

r.«F)u) = 2YJ+(s + b)[b2YJ_(s + b)YJ+(s + b)]+r 
r=O 

= YJ+(s + b)[1 - b~_(s + b)YJ+(s + b)]-l. 

(5.U) 
Similarly, 

r.«F)22) = YJ-(s + b) 

x [I - b~+(s + b)YJ_(s + b)]-l, (5.12) 
and 

r.«F)12) = bYJ+(s + b)YJ_(s + b) 

x [I -- b~+(s + b)YJ_(s + b)rt. (5.13) 

r.«F)21) = bYJ_(s + b)YJ+(s + b) 

x [I -- b2YJ_(s + b)YJ+(s + b)r1
• (5.14) 

Let 

!D = [VI (s + b)]-l = (5 + b) -1) (5.15) 
± "± f3! (s + b) , 

from (5.6). It should be noted that !D± is just D± of 
(Cll) evaluated at a = s. From (5.11)-(5.15), 

r. (F)u (F)12) 
(F)21 (F)22 

= (!D_(!D+!D_ - b21)-1 
b(!D+!D_ -- b21)-1 

b(!D_!D+ - b2I)-1 ). 
!D+(!D_!D+ - b21)-1 

(5.16) 

It is now seen, from (4.8), (Cll), (CI3), (CIS), 
(3.15), (5.15), and (5.16), that (5.10) holds. 

We return to the definition of (4l<') I 0)1k' as given 
by (4.6) with Z = 0, and show by a simple probability 
argument why (5.10) should hold. Thus, from (4.1) 
and (4.4), since uz(O) and v/(O) are prescribed in any 
event, 

(UmW I O);k 

= L:L:uprob{U~Um(n~ U+dU, 

V ~ vm<') S V + dV, 

T(~) = (-1)1-11 T(O) = (_l)k-l} dU dV 

= ~oL: L: U Prob {U ~ um(,) S U + dU, 

V ~ Vm(~) S V + dV,(2r + Ij - kl) 

crossings in (0, 0 I T(O) = ( -1 )k-l} dUd V. 

(5.17) 
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An analogous result holds for (Vmm I O)ik' But 

Prob {U ~ uma) ~ U + dU, V ~ vma) ~ V + dV, 

(2r + Ij - kl) crossings in (0, ~) I T(O) 

= (_1)k-1} 

= Prob {U ~ um(O ~ U + dU, V ~ vm(O 

~ V + dV I (2r + Ii - kl) crossings in (0, ~), 

T(O) = (-1)k-1}p(2r + Ii - kl, 0, (5.18) 

where p(n, ~) is the probability of n crossings in (0, O. 
However, :F n.i~) is just the expectation value of 
Fa), given that there are n crossings in (O,~) and 
T(O) = (_1)k-1. Hence, from (2.1), (3.12), (4.6), 
(5.8), (5.17), and (5.18), the relationship (5.10) 
follows. 

6. CORRELATION FUNCTIONS BY MATRIX 
METHOD 

We now consider the calculation of the correlation 
function by the matrix method. Thus, suppose that 
there are n + m crossings of T(z') in the interval ° :5: z' ~ z + ~, at the points z7J' 1 ~ P ~ m + n, 
where 

° < Z1 < ... < Zn < Z ~ Zn+l 

< ... < Zn+m < Z +~. (6.1) 

Then the fundamental solution matrix, evaluated at 
z, is given by (5.3) and, evaluated at Z + ~,is given by 

F(z + 0 = N H )·!+m+k-l(Z + ~ - zn+m) ... 

N<_l)n+k-l(zn+l - z)F(z), (6.2) 

if T(O) = (_1)k-1. Let 

N±(z) x N±(z) = N~)(z). (6.3) 

Then, with F(z) and F(z + ~) given by (5.3) and (6.2), 
it follows, on rearranging the Kronecker products, 
that 

F(z + ~) x F(z) 

= ([N<_1)n+m+k-1(Z + ~ - zn+m) ... 

N<_on+k-l(Zn+l - z)] x I} 
x {N):i)n+k-1(Z - zn) 

x NI~1)n+k-.(zn - Zn-1)' .. N«:)1)·-1(Z1)}' (6.4) 

We first calculate the expectation value of 
F(z + ~) x F(z) over the positions of n + m crossings. 
Now the distribution of the n random points z 7J' 1 ~ 
P ~ n, is independent of the distribution of the m ran
dom points zn+a' 1 :5: q :5: m. The uniform density 
distribution of the n points is n! z-n dZ1 ... dzn , 
and that of the m points is m! ~-m dZn+1 ... dzn+m . 

In carrying out the integration of the expression 
in (6.4) over the m points, the change of variables 
zn+a = Z + ~a' 1 ~ q ~ m, is made. This leads to the 
expectation value as the product of an m-fold integral 
and an n-fold integral, namely [:F m.n+ka) X I]&n.iz), 
where :F n,1.(z) is given by (5.4) and 

&n.k(Z) = ---=- . . . N~~on+k-1(Z - zn) n'IZi
zn 

i
Z2 

zn 0 0 0 

x Ni:i)n+k-2(Zn - zn-1) .. . 

X NI~1)~-1(z1) dZ1 ... dzn . (6.5) 

Now, the probability that T(z') has n crossings in 
the interval ° ~ z' ~ z and m crossings in the interval 
z ~ z' ~ z + ~ is p(n, z)p(m, ~), where p(n, z) is given 
by (2.1). Also, T(O) = ± 1 with probability! for each 
sign. Hence the average value of F(z + ~) x F(z) 
over the ensemble is 

(F(z +~) x F(z» =!! .i ,i(b,)m e_b{(bz)n 
k=1 m=O n=O m! n ! 

x e-bZ[:F m.n+k(O X I]&n.k(z). (6.6) 
In particular, 

(F(z) x F(z» = t i ,i(bz)n e-bZ&n.iz). (6.7) 
k=1 n=O n! 

For j = 1, 2 and k = 1, 2 we define 

00 (bZ)2r+li-kl 
(F(z) x F(z»ik = e-

bz ~ . &2r+li-kl.iz). 
r=0(2r + IJ - kl)! 

(6.8) 
Then, 

2 2 

(F(z) x F(z» =!~ ~<F(z) X F(Z»;k' (6.9) 
k=1 i=1 

We proceed to simplify the expression in (6.6). 
First note, from (5.4), that 

:F m.2r+Ii-kI+km = :F m.im, (6.10) 

since 2r + Ii - kl + (k - j) is even. Also, from (5.8), 

2 00 (b,)m 
~(F(mij = e-b{~ - :Fm.;(~), j = 1,2. 

i=1 m=O m! 
(6.11) 

Hence, from (6.6), (6.8), (6.10), and (6.11), 

(F(z + 0 x F(z» 
2 00 2 00 (b,)m 

=tL ~ LL-
k=1 m=O i=1r=0 m! 
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But we have already established the relationship 
(5.10). Hence for the consistency of (4.10) and (6.12) 
it remains to show that 

2 

I (F(z) X F(z»jk = (F(z) x F(z»j, j = 1,2, 
k~1 

where, from (3.13), 

(F(z) x F(z»; 

= L:L:L:L:(F x F) 

(6.13) 

From (3.9), the initial conditions are 

(U;'(O»k = bm.l , (um(O)Vm(O»k = 0, 

(V;'(O»k = bm.2. (A 7) 

We take Laplace transforms, as in (3.15), of 
(AI)-(A6), and use (A7). It is convenient to introduce 
the matrices 

S = (S + b) -b), 
-b (s + b) 

(AS) 

X Pj(U1 , VI' U2' V2, Z) dU I dVI dU2 dv2, (6.14) and 

with p; defined by (3.1) and F given by (3.12). Note 

B = ({3! 0) E =. (1) o (3~' 1 ' 

that (6.9) and (6.13) are consistent with (3.14). 
In Appendix 0 we establish (6.13) and also derive 

expressions for the Laplace transforms of 

(F(z) X F(z»jk' 

which are given by (09), subject to (07). 
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APPENDIX A 

With the definitions of (3.12) and (3.13), it follows 
from (3.7) and (3.S), after some integrations by parts, 
that 

Then, the transformed equations for m = 1 can be 
written as 

SXI - 2Yl = E, BX1 + SY1 - ZI = 0, 

2BY1 + SZI = 0, (A 10) 

and those for m = 2 can be written as 

SX2 - 2Y2 = 0, BX2 + SY2 - Z2 = 0, 

2BY2 + SZ2 = E. (All) 

From (3.12), (3.14), and (A9), we have 

C«u;'» = tE'Xm' C«umvm» = tE'Y m' 

C«v;'» = tE'Zm' (A12) 

where E' is the transpose of E. 
We first consider the case m = 2. Then, from 

(All), it follows that 

Y2 = lSX2, Z2 = (B + tS2)X2' 

(BS + SB + lS3)X2 = E. (A 13) 

The calculation of (BS + SB + tS3)-1 is straight
forward, but tedious, and we omit the details. Letting 
~ = det [2(BS + SB) + S3], we find, using (2.7), 
that 

~ == ~(s) = {s(s + 2b)(S2 + 4{3~)[(s + 2b)2 + 4{3~] 
- 16?}2fJ~(s + b)2}. (A14) 

Then, from (AI2) and (A 13) , it is found, after some 
reductions that 

C«U~» = (2/il)(s + 2b)[(s + 2b)2 + 4fJ~], (AIS) 

C«U2V2» = (s/il)(s + 2b)[(s + 2b)2 + 4fJ~] 
= isC«ui», (A16) 
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and 

C«vi» = (l/a){(s + 2b)(S2 + 2~~)[(s + 2b)2 + 4~~] 
- Sr/f3~(s + b)}. (A 17) 

Now consider the case m = 1. From (A 10) , we 
have 

Y1 = HSX - E), Zl = [(B + tS2)Xl - tSE] 

(A18) 
and 

Thus, 

But Band S are symmetric matrices. Hence, trans
posing the product of matrices on the right-hand side 
of (A20), which is scalar, we find that 

E'XI = E'(B + !S2)(BS + SB + tS3)-lE' = E'Z2' 

(A2l) 
from (A13). Thus, from (A12), 

C«ui» = qM»· 
From (AlS), since, from (AS), 

E'S = sE', E'E = 2, 
it follows that 

(A22) 

(A23) 

2C«U1V1» = sC«ui» - 1. (A24) 

Thus, from (A14), (A17), (A22), and (A24), 

d(UIV·2)1 2 
--'--':.....:::....:: - (VIV2)1 + ~+(UIU2)1 

dz 

+ b«U1V2)1 - (U1V2)2) = 0, 

d(UIV2)2 2 
-- - (VIV2)2 + f3-(U1U2)2 

dz 

+ b«U1V2)2 - (U1V2)1) = 0, 

d(V1U2)1 2 
--'-.::.......::~ - (V1V2)1 + f3+(UIU2)1 

dz 

+ b«V1U2)1 - (V1U2)2) = 0, 

d(VIU 2)2 2 
~ - (V1V2)2 + f3-(U 1U212 

+ b«VIU2)2 - (VIU 2)1) = 0, 

d(V1V2)1 2 2 ----;J;- + f3+(U 1V2)1 + f3+(V1U2)1 

+ b«V1V2)1 - (V1V2)2) = 0, 

d(V1V2)2 2 2 -a;- + f3-(U 1V2)2 + f3-(V1U2)2 

+ b«V1V2)2 - (V1V2)1) = O. 

From (3.9) the initial conditions are 

(Ul(0)U2(0»k = 0, (U1(0)V2(0»k = 1, 

(B3) 

(B4) 

(BS) 

(B6) 

(B7) 

(BS) 

(V1(0)U2(0»k = 0, (V1(0)V2(0»k = O. (B9) 

C«U1V1» = (f3~/a)(s + 2b){4'1']2f3~(S + b) We take Laplace transforms of (Bl)-(BS) and use 

_ s[(s + 2b)2 + 4f3m. (A2S) (B9). Let 

Finally, from (AIS) and (A19), 

Z1 = (B + !S2)(BS + SB + tS3)-1 

x (B + tS2)E - !SE. (A26) 

After some reductions, the details of which we omit, 
it is found, from (A12), that 

C«vi» = (2/Mf3~(s + 2b){[(s + 2b)2 + 4f3~] 
+ r/[s(s + 2b) - 4f3m. (A27) 

APPENDIX B 

G = (C«U1U2\»), H = (C(U1V2\»), (BlO) 
C( (u1 U2)2) C( (u1 V2)2) 

J = (C( (V1U2>t») , K = (CC (V1V2)1»). (B 11) 
C( (V1U2)2) f.( (V1V2)2) 

Then, with S, B, and E as defined in (AS), the trans
formed equations can be written as 

SG - (H + J) = 0, BG + SH - K = E, 

BG + SJ - K = 0, B(H + J) + SK = o. (B12) 

With the definitions of (3.12) and (3.13), it follows Also, from (3.12), (3.14), (BIO), and (B11), 

from (3.7) and (3.S), after some integrations by parts, C«U
1
U

2
» = tE'G, C«U

1
V

2
» = tE'H (B13) 

that and 

d(U1U2)2 
-""--- - (V1U2)2 - (U1V2)2 

dz 
+ b«U1U2)2 - (U1U2)1) = 0, 

(Bl) 

(B2) 

C«V1U2» = tE'J, C«VIV2» = tE'K. (BI4) 

Eliminating Hand J from (B12),we obtain 

(2B + S2)G - 2K = E, BSG + SK = o. (BlS) 

Hence, 
[2(BS + SB) + S3]G = SE. (BI6) 
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Thus, we have Finally, from (BI2) it is clear that s + 2b does not 

E'G = E'[2(BS + SB) + S3]-ISE appear in the denominator ofK. 

= E'S[2(BS + SB) + sa]-IE = E'Y2 , (BI7) APPENDIX C 

transposing and using (A 13). It follows from (AI2) We first give the equations satisfied by 
and (BI3) that 

(BI8) 

Next, from (BlS) and (BI6), We omit the derivation, since it is similar to that in 

K = -S-IBS[2(BS + SB) + S3]-ISE. (BI9) Sec. 3 for Pk(Ul, VI' U2 , v2 , z), but simpler. It is found 
that 

But, from (AIS) and (AI9), we have 

E'Yl = tE'[S(BS + SB + tS3)-I(B + tS2) - I]E 

= -tE'S(BS + SB + tS3)-ISBS-lE 

= -tE'S-lBS(BS + SB + tS3)-ISE = E'K, 

(B20) 

transposing and using (BI9). Thus, from (AI2) and 
(B14), 

C(Vl V2» = C«UtVt». (B21) 

Finally, from (BI2), 

(H + J) = SG, S(H - J) = E. (B22) 

Hence, multiplying both equations by E' and using 
(A23), we obtain 

E'(H + J) = sE'G, sE'(H - J) = 2. (B23) 

It follows from (BI3) and (BI4) that 

C(UtV2) + (VtU2» = sC«ut u2», 
C«UtV2) - (Vl U2» = l/s. 

Then, from (AI4), (AI6), (BIS), and (B24), 

C«UI V2» = (l/s~){s(s + 2b)(S2 + 2P!) 

(B24) 

x [(s + 2b)2 + 4P~] - 8r/Pt(s + b)2}, (B25) 
and 

A straightforward calculation shows that the 
determinant !D(s) of the coefficient matrix in Eqs. 
(BI2) is 

!D(s) = s(s + 2b)~(s). (B27) 

However, we now show that the factor s + 2b does not 
appear in the denominator of the expression for G, 
H, J, and K. First, from (B16) we see that only ~(s) 
occurs in the denominator of G. Then, from (B22) , 
H + J has the same denominator as G, and 

H - J = S-lE = s-1E. (B2S) 

OQm.lk + V OQm.lk _ p2 U OQm.lk 
a, oU + av 

+ b(Qm.lk - Qm.2k) = 0 (CI) 
and 

OQm.2k + V OQm.2k _ p2 U OQm.2k 
a, au - av 

+ b(Qm.2k - Qm.lk) = O. (C2) 

From (4.1) the initial conditions are 

Qm.ll(U, V, 0 I z) = b[U - um(z)]b[V - vm(z)] 

= Qm.22(U, V,O I z) (C3) 
and 

Qm.12(U, V,O I z) = 0 = Qm.21(U, V, 0 I z) (C4) 

since T(z) is not equal to + I and -I simultaneously. 
From (4.4), (4.5), and (CI)-(C4) it follows, after 

some integrations by parts, that 

d(Um)1k 
d~ - (Vm)lk + b«Um)1k - (Um)2k) = 0, (CS) 

d(Um>2k 
d~ - (Vm)2k + b«Um>2k - (Um)1k) = 0, (C6) 

with initial conditions 

(Um(O) I z)ll = um(z) = (Um(O) I Z)22 , 

(V m(O) I z)ll = vm(z) = (V m(O) I Z)22 , (C9) 

(Um(O) I Z\2 = 0 = (Um(O) I Z)21' 

(V m(O) I z)12 = 0 = (V m(O) I Z)21' (ClO) 

We take Laplace transforms, as in (4.8), of (C5)
(C8) and use (C9) and (ClO). It is convenient to 
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introduce the matrices 

D = (0' + b) -1) (Cll) 
± P! (a + b) . 

Then, from (3.12) and (4.6), 

(
D+ -bI)A(cIt I Z)11 (cit I Z\2) = (F(Z) 0) 
-bI D_ (cit I Z)21 (cit I Z)22 0 F(z)' 

(CI2) 
But, from (2.5) and (3.12), F(O) = I. Hence 

A(cIt I 0)11 (cit I 0)12) = (D+ -bI)-I. (C13) 
(cit I 0)21 (cit I 0)22 -bI D_ 

Thus, from (C12) and (C13), 

(
cIt(O I Z)11 (clta) I Z\2) 

(clta) I Z)21 (cltW I Z)22 

= (clta) I 0)11 (cltW I 0)12) (F(Z) 
(cltW I 0)21 (cIt(O I 0)22 0 

0). (CI4) 
F(z) 

Now, 

( 
D+ -bI)-1 
-bI D_ 

= (D_(D+D_ - b2I)-1 b(D_D+ - b2I)-1 ). 
. b(D+D_ - b2I)-1 D+(D_D+ - b2I)-1 

(CIS) 
We note that 

D+(D_D+ - b2I)-1 = (D_ - b2D:;::1)-1 

= (D+D_ - b2I)-lD+, 

D_(O+D_ - b2I)-1 = (0+ - b2D=1)-1 

= (D_D+ - b2I)-ID_. (CI6) 

It is a straightforward matter to calculate the matrix 
elements on the right-hand side of (CIS); thus we 
omit the details. Let 

d(a) = (a + b)4 + 2(P~ - b2)(a + b)2 

+ (b 2 + P!)(b2 + p:). (C17) 
It is found that 

(D D _ b2Irl = _l_([O'(a + 2b) - P!] 2(a + b) ) 
± l' d(a) -2p~(a + b) [a(O' + 2b) - P~] , 

(C18) 

and 

D (D D _ b2I)-1 __ 1_( (a + b)[a(a + 2b) + P~] [(a + b)2 + b
2 + P~]) (C19) 

l' ± l' - d(O') _[P!p: + p!(a + b)2 + p~b2] (0' + b)[O'(a + 2b) + P~] . 

APPENDIX D 

We first show by a simple probability argument 
why (6.13) should hold. Accordingly, we introduce 
the conditional probability density functions 

qik(U 1 , VI' U2' V2, z) dUI dVl dU2 dV2 

= Prob {u m :5: um(z):5: um + dUm' 

vm :5: vm(z) :5: vm + dVm' (m = 1,2), 
T(z) = (_1)i-1 1 T(O) = (_l)k-l}, (D1) 

with j = 1, 2, and k = 1, 2. Proceeding as at the end 
of Sec. 5, we may rewrite (DI) in the form 

00 

= ~Prob {u m :5: um(z):5: Um + dUm' 
r~O 

Vm :5: vm(z) :5: Vm + dVm' (m = 1,2), 
I (2r + Ii - kl) crossings in (0, z), 

T(O) = (_1)k-l}p(2r + Ii - kj, z), (D2) 

where pen, z) is the probability of n crossings in (0, z). 
But tn.iz) is just the expectation value of F(z) x 
F(z) , given that there are n crossings in (0, z) and 
T(O) = (-1)k-1, as is seen from (5.3), (6.3), and (6.5). 

Hence, from (2.1), (6.8), and (D2), 

x q ii U1, VI' U2, V2, z) dUl dVl dU 2 dV2 
= (F(z) X F(z»ik' (D3) 

But, T(O) = ± 1 with probability t for each sign. 
Hence, from (DI) 

2 

t~qik(Ul' VI' U2, V2, z) dUl dVI dU2 dV2 
k~l 

= Prob {u m :5: um(z):5: um + dUm, 

vm :5: vm(z) :5: vm + dVm' (m = 1,2,) 
T(z) = (_V-I} 

= tp;{U1, VI, U2' V2, Z) dUl dVl dU2 dv2, (D4) 

from (3.1), since T(z) = (-I)i-l with probability t. 
Thus, from (6.14), (D3), and (D4), the relationship 
(6.13) follows. 

We now consider the determination of the quantities 
(F(z) x F(z»ik' Proceeding as in Sec. 3, we find 
that the pair of functions (qlk, q2k), for k = 1 and 
k = 2, satisfy the same partial differential equations as 
the pair of functions (PI' P2)' as given by (3.7) and 
(3.8). The initial conditions, however, differ in that, 
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from (2.5), (2.6), and (Dl), Then it is found that 

Qll(Ul, Vl' u2 , V2 , 0) = (l(U1 - 1)(l(vl)(l(u2)(l(V2 - 1) 

= Q22(Ul , Vl , U2 , V2 , 0), (D5) 
but 

-bl) C (F X F)ll (F x F)l2) = (10 0
1
) . 

C_ (F X F)21 (F X F)22 

q12(Ul, Vl, U2 , V2 , 0) = 0 = Q21(Ul , Vl, U2 , V2' 0). (DS) 

(D6) It follows that 
Ordinary differential equations, with constant coeffi
cients, are obtained for (F(z) x F(Z»jk from (D3) and 
the equations for Q jk' The initial conditions follow 
from (D5) and (D6). The equations are solved by 
means of Laplace transforms, but we omit the details 
and give the results. 

Let ('+ b) 
-1 -1 0 

P! (s + b) 0 
-1 ) 

C± = P! 0 (s + b) -1 

0 P! P! (s + b) 

(07) 

from (5.2) and (6.3). The result in (09) then follows 
from the fact that 

(011) 
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We study the use of the "smoothing method" to calculate the second-order moments of solutions of 
stochastic, ordinary, linear differential equations. We consider in detail the equation 

d2u 
dz2 + .8~[1 + nN(z)]u = 0, 

where N(z) is a real, zero mean, wide-sense stationary stochastic process and .80 and n « 1 are positive 
constants. We show that, for one choice of N(z), the conventional use of the smoothing method yields 
correct first-order moments of the solutions, but badly incorrect second-order moments. We develop 
what we believe is a better way to use the smoothing method to calculate second-order moments. For the 
special choice of N(z), this method yields exact results. The method can be extended to the calculation of 
moments of all orders for arbitrary stochastic, ordinary, linear differential equations. 

1. INTRODUCTION 

In this paper, we investigate how the "smoothing 
method" can be used correctly to calculate second
and higher-order moments of the solutions of sto
chastic, ordinary differential equations. We do this by 
calculating approximately the various second-order 
moments associated with the solutions of a specific, 
stochastic, second-order, ordinary differential equa
tion. However, the technique can be applied to the 
calculation of higher-order moments of ordinary, 
linear differential equations of any order. 

Let {N(z)} be a real, wide sense stationary stochas
tic process with 

(N(z» = 0, (N(y)N(z» = r(y - z), (1.1) 

where ( ) denotes the ensemble average. Each sample 
function N(z) defines two new real functions Um(z) , 
m = 1, 2, on 0 ~ z < 00, which are the linearly inde
pendent solutions of 

d2um 2 
dz 2 + Po[1 + tJN(z))um = 0 (1.2) 

satisfying the nonstochastic initial conditions 

u1(O) = u~(O) = 1, u{(O) = u2(O) = 0, (1.3) 

where Po and tJ « 1 are positive constants. The en
sembles of functions {um(z)}, m = 1, 2, form two 
real random processes which we study in this paper. 
We assume that almost all the sample functions N(z) 
are smooth enough so that the solutions um(z) of (1.2) 
exist. Throughout the paper, we use the notation 

() 
dUm(z) , 

Vm Z = ~ = um(z), m = 1,2. (1.4) 

The smoothing method1 for calculating various 
moments of the solutions of stochastic differential 
equations has been extensively developed by Kellerl - 5 

and Bourret,6-10 and it has been used by a number of 
other authors.l1·12 We follow Keller and give an out
line of the development of the technique in Sec. 2. We 
apply the smoothing technique to calculate (um(z» and 
(vm(z», m = 1,2. These results are not new; they 
have already been obtained by Bourret.9 However, we 
show that the use of these first-order moments to 
calculate the second-order moments by a widely used 
technique can lead to an incorrect answer. We are able 
to do this because an exact solution of the second
order moments of the solutions of (1.2) is available 
when {N(z)} is the random telegraph process.13 

In Sec. 3, we apply the smoothing technique to a 
system of ordinary differential equations whose solu
tions are the products UrnUn ' UmVn ' VmVn ' m, n = 1, 2. 
For the case when {N(z)} is the random telegraph 
process, this procedure yields the correct answer, 
regardless of the magnitude of tJ. This suggests that the 
method of using the smoothing technique presented 
here is the correct one. Keller has suggested using the 
smoothing method in a different fashion to calculate 
the second-order moments of solution of partial 
differential equations.14- 16 

As an application of the smoothing technique, we 
consider the interesting problem of calculating the 
average of the inverse of the power transmission 
coefficient of a randomly stratified dielectric slab. We 
assume that the dielectric slab fills the region 0 ~ Z ~ 
L and that its dielectric constant is 

K(z) = n~[l + tJN(z)), 

2361 
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where N(z) is a real stochastic process satisfying (1.1), 
n~ is the average dielectric constant of the slab, and 
o < 'YJ « 1 is constant. The regions z < 0 and z > L 
are filled with non stochastic dielectric media having 
the dielectric constants n~ and n~, respectively. Let a 
plane-polarized monochromatic electromagnetic wave 
of frequency w be normally incident on the plate from 
the left. Then we have shown13 that 

4P~(I/'b'b*) = 2P1P2 + (vi(L» + P;(ui(L» 

+ PiM(L» + PiP~<u~(L», (1.5) 

where 'b is the amplitude transmission coefficient. In 
(1.5), 

pj = konj' j = 0, 1,2, (1.6) 

where ko = W(,uOEO)t is the free-space wavenumber, 
and Urn and vrn , m = 1, 2, are the solutions of the 
Eqs. (1.2)-(1.4). In Sec. 3, we use the smoothing 
method to calculate (1/'b'b*) to order 'YJ2 for the 
case where r(z) = e-2b /z/ and also to show that, for a 
large class of r(z), the quantity (1/'b'b*) grows expo
nentially as L ---+ 00 for small enough 'YJ. 

2. THE SMOOTHING METHOD AND FIRST
ORDER MOMENTS 

We begin this section with a brief review of Keller's 
formulation of the smoothing method.3 Consider a 
linear, stochastic (ordinary or partial) differential 
operator M and the stochastic equation for u, 

Mu=g, (2.1) 

where g is a known nonstochastic function. We assume 
that M has an expansion in powers of a small, positive 
parameter 'YJ, so that we can write (2.1) as 

(2.2) 

where Lo is a nonstochastic operator, while L1 and L2 
are stochastic operators. We denote the stochastic 
average of u by (u), and we define the incoherent part 
of the solution Cu:::> by 

Cu:::> = u - (u). (2.3) 

An immediate consequence of definition (2.3) is 

(Cu:::» = O. (2.4) 

Then the smoothing method yields the equation for 
the average solutionS 

{Lo + 'YJ(L1) + 'YJ2[ (L1)L;1(L1) 

- (L1L;lL1) + (L2)]}(u) = g, (2.5) 

where terms of order 'YJ3 have been neglected and L01 
is the inverse operator to Lo. The incoherent part of 

the solution is related to the average solution by the 
relation3 

Cu:::> = -'YJL01{ L1 - (L1> }(u), (2.6) 

where terms of order 'YJ2 have been neglected. This 
whole formalism is valid when M, u, and g are matri
ces. Finally, if (un) and Cun:::> , n = 1, 2, are two solu
tions of (2.5) and (2.6) corresponding to the same 
inverse L;I, one can use the identities 

(unum) = (un)(urn> + (Cun:::>cum::J), n, m = 1,2, 

(2.7) 
to obtain the formula 

(UnUm) = ,un)(um) + 'YJ 2([Lo1{L1 - (L1) }(un)] 

X [L;1{L1 - (L1) }(urn)]), 

n, m = 1, 2. (2.8) 

In (2.8), the implication is that the second term is of 
order 1]2 and only terms of order higher than 1]2 have 
been neglected. 

These equations, in one guise or another, have been 
widely used in the study of stochastic differential 
equations. Since all derivations of (2.5), (2.6), and 
(2.8) are strictly formal, considerable interest attaches 
to their validity. To gain some insight into this last 
consideration, we apply the smoothing method to the 
stochastic equation (1.2) with the boundary conditions 
(1.3). 

In this case, we have 

d2 

Lo = dz2 + P~, L1 = P~N(z), 

(L1) = 0, L2 = 0, g = O. (2.9) 

From (1.3), we get the initial conditions 

(2.10) 

CUm(O):::> = cu:"(O)::J = 0, m = 1,2, (2.11) 

where 6m •n is the Kronecker tJ. The inverse operator 
L;1 is given by means of a Green's function g(z, ') 
satisfying 

d2g 
-2 + p~g = 6(z - ~). (2.12) 
dz 

If cUrn(z):J given by (2.6) is to satisfy the initial condi
tions (2.11), then we must have 

g(O, n = dg(O, n = O. (2.13) 
dz 

The solution of (2.12) satisfying (2.13) is 

g(z, ') = 0, 0 ~ z ~ " 
= POl sin Po(z - n, ~ z. (2.14) 
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Equation (2.5) now becomes 

(::2 + P~)(Um(Z» 
= 1]2p~J:sin Po(z - or(z - ~)(umm) d~, 

m = 1,2, (2.15) 
while (2.6) becomes 

cum(z):::> = -1]PofSin Po(z - ONW(um(m dt 

m = 1, 2. (2.16) 

As Bourret9 has shown, the Laplace transforms of the 
solutions of (2.15) are readily obtained. We define 

C(f) = 1"" e-s"f(z) dz (2.17) 

and 
yes) = qr). (2.18) 

Then it follows directly from (2.15) that 

{S2 + P~ - (1]2pgj2i)[y(s - iPo) - yes + iPo)]}C«u m» 
= s2-m, m = 1,2. (2.19) 

It is also true that 

C«vm» = sC«um» - bm•1 , m = 1,2. (2.20) 

We now consider in more detail the important case 
where 

In this case, 

and 
yes) = (s + 2br1 

(2.21) 

(2.22) 

C«u m» = S2-mJ(S + 2b)2 + P~]/d(s), (2.23) 
where 

des) = (S2 + P~)[(s + 2b)2 + P~] - 1]2p~. (2.24) 

It follows that 
4 

(Um(Z» =~am,iea;z, m = 1,2, 
;=1 

(2.25) 

where the (/j are the four roots of the equation des) = 
o and the am.; are the residues of the rational func
tions defining C«um» at s = (/;. 

Now, if N(z) is the random telegraph process,8.10.17 
it has zero mean and its correlation function is given 
by (2.21). But it was shown generally by BourretlO 

that, for the random telegraph process, the smoothing 
method gives the exact result, and this is borne out by 
(2.23), (2.24), and our exact calculations.13 It can be 
shown by standard methods18 that, if 0 < 1] < I, all 
the roots of des) have negative real parts, so that 
(um(z» as given in (2.25) decays exponentially as 
z- 00. 

We now turn to the calculation of (um(z)un(z» by 
means of (2.8) for the special case when r(z) is given 

by (2.21). The second term on the right of (2.8) is now 

1]2P~tl ~lam.;an'k f fSin Po(z - ~) 
X sin Po(z - ;)e-2bIHI+ai,+ak; d; d~. (2.26) 

The evaluation of the integrals in (2.26) is elementary 
but laborious, and we omit writing down the answer. 
However, the moment (um(z)un(z» calculated in this 
fashion is a sum of the form !~'!.o Ajle'pz, where '0 = 
o and the remaining' jI take on the values (/i + (/k' 

±ipo - 2b + (/;, j, k = 1,2,3,4. Now, in the case 
where N(z) is the random telegraph wave, the second
order moments have been calculated exactly, 13 and 
they all turn out to be of the form !:=o Bie8iZ. Here 
also, So = 0, but none of the remaining exponents s;, 
1 ~ j ~ 6, can be approximated to order 1]2 by any of 
the '1> . In fact, one of the s; has a positive real part for 
small enough 1], while for 0 < 1] < 1 all the 'jI have 
negative real parts. Thus, we have an example where 
the smoothing method yields the first-order moments 
exactly, but a straightforward application of the 
method to calculate the second-order moments by 
means of (2.8) gives an incorrect answer. 

Correlation functions of the form (um(z)un(z + m 
have also been calculated exactly when N(z) is the 
random telegraph process, and again it can be shown 
that the use of Eq. (2.8) yields badly incorrect answers. 

Additional examples have been studied by Samuels 
and Eringen,19 Stratonovich,20 Khas'minskii,:n 
Frisch,22 and Papanicolaou.23 They have shown that, 
in these cases also, the second-order moments grow 
exponentially with z. Thus the standard use of the 
smoothing method to calculate second-order moments 
fails here, too. 

A close examination of the integrals appearing in 
(2.26) shows that they are of order 1]-2 when z = 
0(1]-2) so that the whole term in (2.26) is 0(1) instead 
of O( 1]2). This is due to the fact that, in the evaluation 
of the integrals in (2.26), terms such as 

(2.27) 

and similar terms appear and, for appropriate choice 
ofj and k, (/i + (/k = 0(1]2). 

The striking difference between the growth behavior 
of the first- and second-order moments is discussed 
further in Ref. 13. 

3. SECOND-ORDER MOMENTS 

The results of Sec. 2 strongly suggest that the use of 
(2.8) to calculate second-order moments by the 
smoothing method is suspect in general. However, 
they also suggest that a better way to get approximate 
expressions for higher-order moments is to find a 
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differential equation whose solutions include the prod
ucts whose stochastic average is desired and to 
apply the smoothing technique directly to this equation. 

In applying this idea to (1.2) to calculate second
order moments, we first derived a linear, third-order 
equation whose solutions were u~, Ul U2 , and u~. Then, 
following a suggestion of Papanicolaou, we have 
found it better to use Kronecker products23•24 to derive 
a system of first-order, ordinary differential equations 
whose solutions are the products un(z)um(z), un(z)vm(z), 
and Vn(Z)Vm(Z) , m, n = 1, 2. We then apply the 
smoothing technique to this set of equations. This 
method can clearly be extended to the calculation of 
moments of arbitrary-order of the solutions of any 
linear, ordinary differential equation. 

For the case when N(z) is the random telegraph 
process, this method yields the exact answer. This is 
not surprising in the light of Bourret's results. lO It will 
also be shown that under quite general conditions on 
N(z), the second-moments calculated in this way grow 
exponentially as Z -+ 00. 

We first rewrite (1.2) in matrix form. Thus, we define 

F(z) = (Ul(z) U2(z») , 
vl(z) V2(Z) (3.1) 

where vm(z), m = 1,2, is given by (1.4), and let 

product of. F with itself in the form 

(Lo + 1]Ll)(F x F) = 0, F(O) x F(O) = 1 x I, (3.4) 

where 

and 

Lo(z) == (I x I).E.- + [(A x I) + (I x A)] (3.5) 
dz 

Ll(z) == fJ~N(z)[( C x I) + (I x C)]. (3.6) 

We now apply the smoothing method to (3.4). The 
Green's function corresponding to the inverse of Lo 
satisfies 

Lo(z)G(z, ') = b(z - 0(1 x I), G(O, ') = 0, 

, > 0. (3.7) 

The boundary condition on G is a consequence of (2.6) 
and the nonstochastic initial value of F x F, so that 

CF(O) x F(O):) = O. (3.8) 

From (3.5) and (3.7), it follows that 

G(z, 0 = 0, ° s z < " 
= [E(z - ') x E(z - m, z >" (3.9) 

where 

~~ + AE = 0, E(O) = I. (3.10) 

A (
0 -1) C (0 0) 1 (1 0) (32) We may verify, using (3.2), that 

= fJ~ 0' = 1 0' = ° l' . 
E(z) = ( cos ~oz fJol sin fJo Z). (3.11) Then, from (1.2) and (1.3), we find that - fJo sm fJoz cos fJoz 

(3.3) From (1.1), (2.5), (3.2), (3.5), (3.6), (3.9), and (3.11), 
we obtain the equation for the average of F x F, 

From (3.3), we obtain an equation for the Kronecker namely, 

dF + [A + 1]fJ~N(z)C]F = 0, F(O) = I. 
dz 

d . 
- (F x F) + [(A x I) + (I x A)](F(z) x F(z» 
dz 

( 
° 

_ 2 2 rz fJo sin 2fJo(z - ') sin
2 fJo(z - 0 

- 1] fJo Jo fJo sin 2fJo(z - n sin2 fJo(z - n 
2fJ~ cos 2fJo(z - n fJo sin 2fJo(z - ') 

o 

Also, from (3.4), we have 
(F(O) x F(O» = (I x I). (3.13) 

Expressions are derived in the Appendix for the 
Laplace transform of (F x F), that is, from (3.1), for 

( 

(u~) (U l U2) (U 2Ul ) (u;) ) 

!.:«F x F» = c. (UlVl) (U lV2) (U 2Vl) (U 2V2) . 
(VlU l) (VlU2) (V2Ul) (V2U2) 

M> (VlV2) (V2Vl) M> 
(3.14) 

° sin2 fJo(z - 0 
sin2 fJo(z - n 

fJo sin 2fJo(z - ') 

~)r(z -()(F(() x F(m d(. (3.12) 

An expression for L(F x F» is given in (A5), the 
quantities occurring therein being given by (A6), 
(A9), and (AI7)-(A21), with res) as in (2.18). From 
(AIO), it follows that 

(U~(z» = M(z», 

(ul(z)ub» = (u2(z)vb», (3.15) 

(ul(z)vtCz» = (vtCz)v2(z». 

From (All) and (AI2), in view of the initial values in 
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(1.3), it follows that from (A30), (A31), and (A35), we have 

(3.16) (4P~«(j~*) - 2P1P2) 

and 

d 
- (u~(z» = 2(uiz)vb», 
dz 

(3.18) 

which are not surprising results in view of (1.4). 
Finally, (AB) is a consequence of the Wronskian of 
the solutions of (1.2), namely, 

U1(Z)V2(z) - U2(Z)V1(z) = 1. (3.19) 

We comment that it is possible to remove the re
dundancy that occurs in the Kronecker product 
F x F. Thus, a first-order differential equation may be 
derived for the matrix 

(3.20) 

which is called a Kronecker power.24 The determina
tion of W, together with the Wronskian (3.19), yields 
the ten distinct elements of F x F. However, the use 
of Kronecker powers for higher-order moments would 
appear to be more involved than the use of Kronecker 
products. 

Now consider the case in which (2.21) holds. The 
corresponding expressions for !:«ui)} , !:( (v~», and 
!:(uP) are given in (A26)-(A28). The remaining ele
ments in (3.14) are obtained by means of (A10)
(A13). These expressions for the elements in (3.14) 
agree with the exact results derived13 for the random 
telegraph process. 

As an application of these results, we calculate 
(1/'b'b*), as given in (1.5), to order rJ2 when r(z) is 
given by (2.21). Inversion of the Laplace transforms 
in (A26)-(A28) leads, from (1.5), to 

4P~\/_1_/\ = 2P1P2 + .i ClrJ2
) exp [Sl7]2)L]. (3.21) 

'bb* j=l 

Here, the Sj(rJ2) are the six roots of the equation 
~(s) = 0, where ~(s) is given by (A25) , and the 
Cj ( 7]2) are evaluated from the residues of the expres
sions in (A26)-(A28). For ",2 « 1 and ",2poL ~ 0(1), 

Returning to the general case, as in (Ll), it follows 
from results in the Appendix that, for ",2« 1, 
(1/'bb*) contains a term which grows exponentially 
with L, provided that 

L:e2iPOZr(z) dz 

does not vanish. This term arises from the root Sl of 
A(s) = 0, as defined by (A9) and (AI9), which is given 
approximately by (A37). From (1.5) and (A38)
(A40) , it follows that the corresponding term in 
(1/'bb*) is 

([I + O(",2)]/2P~}(P~ + P~)(P~ + p;)e81L
• (3.23) 

Note that the coefficient in (3.23) is, to lowest order 
in rJ2, independent of yes), which is assumed to be 
analytic at s = O. 
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APPENDIX 

Here, we solve Eq. (3.12) for the average of F x F, 
subject to the initial condition (3.13), by means of 
Laplace transforms. We define 

and 

p = 'Y}2fJ~ f' e-8Z sin2 (fJoz)r(z) dz, 

(] = ",2 P~ i"" e-'Z sin (2Poz )r( z) dz, 

(AI) 

(A2) 

(A3) 
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Then, from (2.17), (3.2), (3.12), and (3.13), 

( P~ ~ a) (s --\) 

(P~ - a) -p 

-T (f3: - a) 

It follows from (A4) that 

-1 

-p 

(s - p) 

(f3~ - a) 

S 

~1)C«F x F» = (~ ~ 
-1 0 0 

s 0 0 

s 

o 0) o 0 

1 0 

o 1 

(A4) 

C«F x F» = !.. (11 - sf3~) 
(

[(S2 + 2f3~) - 2,u] 

A (11 - sf3:) 

[(S2 + 2P~) - I</s] 

(I</s - 2f3~) 

(I</S - 2f3~) 

[(S2 + 2f3~) - I</s] 

(11 - sf3~) 

(A5) 

A. 

where 
A = 2(f3~ - a)2 + T(S - 2p) 

= 2[f3~ + (a2 - pT)] + (ST - 4f3~a), 

,u = (sp + a), 11 = (sa + T), 

I< = (S2p + 2sa + T) = (s,u + 11), 
and 

A = A(s) == [S(S2 + 4f3~) - 21<]. 

Note, from (3.14) and (AS), that 

C«u~» = C«v~», C«U1U2» = C«U2V2», 

(11 - sf3~) 

Also, 

(ST - 4f3~a)= 1'J2f3~[(S + 2if3o)Y(s - 2if3o) 

(A6) + (s - 2if3o)Y(s + 2if3o)] (A20) 
(A7) and 

(AS) (a2 - pr) = t1'J2f3:{2y(s - 2if3o)Y(s + 2if3o) 

(A9) 
- y(s)[y(s - 2if3o) + yes + 2if3o)]}· (A2I) 

We now consider the particular case in which yes) 
is given by (2.22). Then, from (AI7)-(A21), it follows 
that 

C«U1V1» = C«V1V2», (AI0) ,u = 41'J2f3~(S + b)/(s + 2b)[(~ + 2b)2 + 4f3~], 
and 11 = (s + 2b),u, I< = 2(s + b),u, . (A22) 

sL(u:» = 2L(U2V2»' SC«U1U2» = L(U1V2) + (V1U2»· and 

Also, using (A8) and (A9), we find that 

sL(u~» - I = 2C«U1Vl» 

(AU) (ST - 4f3~a) 
= 2r/f3~[s(s + 2b) - 4f3~]/[(s + 2b)2 + 4f3~], 

(a 2 
- pT) = o. (A23) 

and 
(AI2) 

C«U1V2) - (U 2V1
» = S-1. (A13) Hence, from (A9), we have 

Now, from (2.17), (2.18), and (Al)-(A3), we have A = dIes + 2b)[(s + 2b)2 + 4f3~], (A24) 

p = t1'J2f3~[2y(s) - yes - 2if3o) - yes + 2if3o)], (AI4) where 

a = ti112f3~[y(s + 2if3o) - yes - 2if3o)], (AI5) d = des) == {s(s + 2b)(S2 +. 4f3~)[(s + 2b)2 + 4f3~] 
and - 161'J2f3~(s + b)2}. (A25) 

T = 1] 2f3:[y(s - 2if3o) + yes + 2if3o)]. (AI6) Thus, from (3.14), (AS), (A6), and (A22)-(A24), we 

Hence, from (A7) and (AS), we find 

,." = VJ2~~[2sy(s) - (s + 2ifJo)Y(s - 2ifJo) 

- (s - 2ifJo)y(s + 2ifJo)], (AI7) 

11 = li1]2fJ~[(s - 2if3o)y(s + 2ifJo) 
- (s + 2ifJo)Y(s - 2ifJo)], (AIS) 

and 

I< = t772fJ~[2s2y(S) - (s + 2ifJo)2y(S - 2ifJo) 

- (s - 2if3o)2y(S + 2ifJo)]. (AI9) 

find 

C«U~» = (l/d){(s + 2b)(S2 + 2fJ~)[(s + 2b)2 + 4fJ~] 
- 8772fJ~(S + b)} 

= C«v:», (A26) 

C«vi» = (2/~)fJ~(s + 2b){[(s + 2b)2 + 4fJ~] 
+ 1]2[S(S + 2b) - 4fJm, (A27) 

and 

[«u~» = (2/~)(s + 2b)[(s + 2b)2 + 4fJ~]. (A28) 
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Now consider the equation des) = 0, with roots 
8i ,j = 1"",6. If 8 is a root, then so is -(8 + 2b). 
Hence, we may set 

Sq+3 = -(Sq + 2b), q = 1,2,3. (A29) 

For 1]2 « 1, we have the roots 

using (2.17) and (2.18). But, from (1.1), f( -z) = 
fez). Hence, 

SI ~ i1]2p~ L: e2iPO%f(z) dz ~ 0, (A37) 

by a well-known result. 25 From (3.14), (A5) , (A6) , 
(A9), (AI7), and (A19)-(A21), we have 

S1 = [1]2P~bI2(b2 + P~) + 0(1]4)] (A30) lim [(s - S1)L({U~))] 

and 

S2 = st 
= [2iPo - 1]2pg(b + 2iPo)/4b(b + ipo) + 0(1]4)J. 

(A31) 

It follows, from (A29) and (A31), that, in (3.21), 

Ct(1]2) = C2(1]2), Ct(1]2) = Cs(r/). (A32) 

But for 1] = 0, from (A25)-(A28), 

£(vi>o + Pi(ui)o + P;(v;)o + PfP:<u~>o) 
= _1 (! (P2 + p~(p2 + P2) + (P: - Pi)(P~ - P~»). 

2P~ S 0 0 2 (S2 + 4P~) 
(A33) 

Hence, from (l.5), (3.21), and (A29)-(A33), 

Cl(O) = (1/2P:)(P~ + P~)(P~ + P~), CiO) = 0, 

C2(0) = ( -lJ4P~)(P~ - Pi)(P: - P~), Cfj(O) = 0. 
(A34) 

Thus, for 1]2 « 1, we have 

[4Pi(lj1.J(';*> - 2PIP2] 

= Hi + 0(tl)]/2P:}{(P~ + Pi)(P: + Pi) exp [SI(1]2)L] 

- (P: - PD(P~ - Pi) 

x exp (Re [sz(1]2)]L) cos (1m [sz(1]2)JL)}. (A35) 

Finally, we consider the equation A(s) = 0, where 
A(s) is given by (A9) with K as in (A19). We suppose 
that yes) is sufficiently well behaved, in particular, at 
the origin. Denote the root of A(s) = 0 which vanishes 
for 1] = 0 by 81 , Then, for 1]2 « 1, we have 

S1 ~ t1]2p:[y( -2ipo) + y(2iPo)] 

= t1]2p~L"(e2iPOZ + e-2iPO,f(z) dz, (A36) 

and 

lim [(s - sl)C«vi))] = [iP~ + 0(1]2)], (A40) 

assuming that yes) is analytic at s = O. 
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A complete, fully explicit, and canonical determination of the matrix elements of all adjoint tensor 
operators in all U(n) is presented. The class of adjoint tensor operators-those transforming as the IR 
[1 0 -I)-is the first exhibiting a nontrivial multiplicity. It is demonstrated that the canonical resolu
tion of this multiplicity possesses several compatible (or equivalent) properties: classification by null 
spaces, classification by degree in the Racah invariants, classification by limit properties, and the classi
fication by conjugation parity. (The concepts in these various classification properties are developed in 
detail.) A systematic treatment is presented for the coupling of projective (tensor) operators. Six appen
dices treat in detail the explicit evaluation of all Gel'fand-invariant operators (Ik)' the structural properties 
of Gram determinants formed of the Ik , the zeros of the norms of the adjoint operators, and the conjuga
tion properties of the canonical adjoint tensor operators. 

1. INTRODUCTION AND SUMMARY 

Over the past few years, the problem of constructing 
for the unitary group U(n) (n arbitrary but fixed) the 
analog-in so far as possible-to the Wigner-Racah 
angular-momentum calculus for SU(2) has been a 
topic of considerable research interest. In a series of 
papers,1-7 we have developed several general methods 
for attacking this problem and have, in particular, 
advocated the view that not only does there exist a 
generalization of the angular-momentum calculus for 
U(n) , but that this structure is canonical-that is to 
say, it is unique, to within equivalence. In Ref. 1, we 
have succeeded in proving that this is indeed the case 
for U(3) and that accordingly the whole machinery 
of U(3)-Wigner and U(3)-Racah coefficients is now 

transforming as the U(n) irreducible representationlO 

[1 0 .. , 0 -1 ] {equivalent to 

canonically defined. 
One might summarize the content of our demon

[2 I 1 1 0] 
in SU(n)}. 

The class of adjoint tensor operators is of consider
able intrinsic interest in mathematical physics. This 
class includes the generators, whose matrix elements 
were first given, for all U(n), by Gel'fand and Zetlin.n 
In the present paper, we give the explicit matrix 
elements of all unit adjoint tensor operators in all 
U(n) , classified canonically. [For U(3), this has al
ready been ~done in Ref. 5 (Paper V); for U(2) the 
results are very well known, having been obtained in 
1927 by Wigner.12 The remaining results are new.] 

As a by-product of this development, we also give 
explicitly the matrix elements of the (canonical) U(n) 
Racah coefficients (for 

stration of a canonical structure for U(3) by making an [1 0 ... 0] X [0 0 .,. 0 -1] 
analogy to the Weyl branching theorems [this theorem 
serves to classify canonically all states belonging to a o o -1]). 

given (unitary) irreducible representation of U(n)]. Although these explicit constructions are both 
Our result for U(3) establishes a branching law for interesting and new, they are not the principal result 
tensor operators which thereby induces a complete of the present paper. Rather, we are mainly concerned 
operator classification. Expressed somewhat differ- with discussing the resolution of the multiplicity for 
ently, this branching serves to establish a generalized adjoint tensor operators as a specific nontrivial ex
Wigner-Eckart theorem for U(3), in which all quantum ample to illuminate various aspects of the canonical 
numbers for classifying tensor operators are uniquely, approach. Our major result is the proposition that 
and intrinsically, specified. 9 concludes Sec. 7, in which we demonstrate the equiv-

The present paper is primarily concerned with the alence of several properties of the canonical resolu
extension of our U(3) results to U(n); rather than tion: classification by null spaces (see Sees. 2 and 7), 
attempting to discuss the complete problem, however, classification by degree in the Racah invariants (Sec. 
the present work is restricted to demonstrating a 5), classification by limit properties (also in Sec. 5), 
canonical classification of the class of unit adjoint ten- and the compatibility with the classification by con
sor operators in U(n)-these are the tensor operators jugation parity (Appendix F). 

2368 
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One of the more vexing aspects of the whole prob
lem of a general U(n) operator calculus is that of de
vising an acceptable notation; operator labeling 
details that may appear horribly complicated are often 
structurally very elementary. We have attempted to 
solve this dilemma by generalizing on Gel'fand's 
ingenious notation. Without adequate discussion, 
these notational developments would render the pre
sent work needlessly inaccessible; accordingly, we 
include in Sec. 2 a fairly lengthy survey of both the 
technical background and these notational develop
ments. 

In Sec. 3, we discuss the problem of coupling 
projective operators (defined in Sec. 2), which forms a 
necessary technical development for the U(n) calculus. 
Sections 4 and 5 are devoted to construction of the 
explicit matrix elements for the (canonical) adjoint 
(unit tensor) operators. 

The calculus of projective operators is generalized 
in Sec. 6, and this "extended calculus" is demonstrated 
to comprise a significant structural link which emerges 
naturally from the calculus of projective operators in 
the limit oflarge (negative) quantum numbers. Finally, 
Sec. 7 contains a detailed discussion of the canonical 
labeling problem and concludes with a proof of the 
proposition mentioned earlier. 

We have relegated many detailed calculations to 
various appendices. It is our belief, however, that much 
of this material is new (or at least unpublished). In 
particular, we would like to call attention to the 

(m) = 

The integers mii , i, j = 1, 2, ... , n - 1, run over all 
values consistent with the conditions 

mi HI ~ mil ~ mHI HI, (2.2) 

which are referred to as the "betweenness conditions." 
A vector of the orthonormal Gel'fand basis is 

denoted by I(m». When the need to indicate explicitly 
the partition labels [m] arises, we use the notation13 

I ([m]) " 
(m) / 

(2.3) 

The number of orthonormal vectors in the space 
specified by em] [these labels are hereafter called "IR" 

general summation formulas (treated in Appendix 
A), the explicit eigenvalues of the general invariant 
operators Ik (treated in Appendix B), and the explicit 
construction of the null spaces of all adjoint Wigner 
operators (Appendix E). Appendices C, D, and E 
contain several general structural properties of Gram 
determinants formed from the invariants I k • 

2. NOTATIONAL CONVENTIONS AND 
RESUME OF BASIC CONCEPTS 

The purpose of this section is to state the notational 
conventions to be employed and to cite the basic 
theorems and concepts to be used in the constructions 
to follow. It is not our intention to make this resume 
self-contained; rather, we seek only to give referencing 
and discussion adequate to elaborating the methods. 

A. Irreducible Tensor Operators 

Let U denote an n X n unitary matrix and let the 
correspondence U -+ Du, U E U(n), be a representa
tion of the group U(n) by unitary operators on a Hil
bert space over C (the field of complex numbers). 
Each invariant representation space with respect to 
which these operators are irreducible is spanned by a 
set of orthonormal vectors which are specified by a 
partition of integers [m] = [mIn m2n ... mnn], mIn :2 
m2n :2 ... :2 mnn , together with in(n - 1) additional 
integers mi;, i ~ j = 1, 2, ... , n - 1, whose range of 
values enumerates the vectors in the basis. The set 
of n(n + 1)(2 integers is arranged in a Gel'fand 
pattern, a triangular array of n rows, denoted by (m): 

(2.1) 

(for irreducible representation) labels] is given by the 
Weyl dimension functions: 

Dam]) == IT (Pin - Pin) , 
i<;=l 1\ 2!' .. (n - I)! 

(2.4) 

where the Pin are the partial hooks (for j = n) defined 
generally by 

Pii == mil + j - i, i ~ j = 1,2, ... , n. (2.5) 

The vector I(m»' = Du I(m» is given by 

Du I (~:D ) = (~) D~:})(m)(U) I U:,;), (2.6) 
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and 
(2.7) 

is an irreducible representation of U(n) by unitary 
matrices of dimension D([m]). We refer to the vectors 
(2.3) as "the state vectors for IR em] of U(n)" or as 
"U(n) state vectors." 

The significance of the betweenness conditions (2) 
and of the integers in the Gel'fand pattern (m) is 
readily understood as a geometrical realization of the 
Weyl branching law. The condition m"" = 0 distin
guishes SU(n) IR's; in the general case, m"" may be 
any integer (positive, zero, or negative). Each set of 
IR labels em] specifies an IR of U(n), and the state 
vectors I(m» specify the Gel'fand basis. 

Consider next the concept of an irreducible tensor 
operator with respect to U(n). An irreducible tensor 
operator T is a set of operators which is transformed 
linearly into itself under 0u; furthermore, Ou is 
irreducible on this set.14 This signifies that the set T 
can be assigned the labels [M) of an IR of U(n); we 
denote T by T([M]). Moreover, the operators in the 
set can be classified by the Gel'fand labels. The law of 
transformation is 

OUT([M])OU_1 = I D~:~g(M)(U)T([M)). (2.8) 
(M) (M') (M') 

This global definition is equivalent to the infinitesimal 
transformations 

[ Eij, T G:D ] = (~')< (~,~) I Eii I G:D ) T(f~,~), 
(2.9) 

where the Eij' i,j = 1,2, ... ,n, are the generators of 
the representation U -+ 0 u . 

The set of all irreducible tensor operators carrying 
IR labels [M] is itself a vector space [of dimension 
D([M])] over the invariant functions as scalars. (The 
invariant functions are functions of the independent 
invariant operators lk") , k = 1, 2, ... ,n. We shall 
need quite detailed information on these invariant 
operators and their eigenvalues, including some re
sults not hitherto published. This material is developed 
and discussed in Appendices A and B.) 

Our essential purpose is to characterize this space of 
irreducible tensor operators in explicit and complete 
detail. The first step in this characterization is, of 
course, to use the transformation properties, Eqs. 
(2.8) and (2.9), to assign the Gel'fand pattern labels 
(M). A physically motivated second step is to determine 
the selection rules obeyed by the tensor operator. In 
the language of U(n), this step determines the changes 

in the IR labels of a generic state which are effected by 
the application of a tensor operator. [We insist on a 
generic state since, just as in SU(2), the operator may 
annihilate particular states despite the selection rules. 
For example, the shift D.J = -1 cannot be effected by 
a dipole operator on states with J = 0.] For an oper
ator T([M), the "selection rules" are em) -+ em'] = 
em] + [D.], where [D.] = [D.in] designates any weight 
associated with (operator) IR labels [M] and [~) 
runs over all such weights. 

In SU(2) , these two steps provide a complete 
classification, but, as is well known, this classification 
is incomplete in SU(n) (n > 2). 

Given a tensor operator T([M]) which induces the 
particular transformation em] -+ em'] = em] + [D.] 
([D.] a prescribed weight), the dimensionality of the 
associated (operator) space is known to be equal to 
the intertwining number of the three IR's involved, 
that is, J([M], em], [m']*). The intertwining number 
is thus associated with a triple of IR labels; but we 
wish to associate somehow this dimensionality with the 
operator itself. With generic states, the maximum 
dimensionality is clearly an intrinsic property of the 
operator T([M]). This dimensionality has been shown 
(Ref. 5, Paper III) to be exactly the multiplicity of the 
weight [D.] in [M]. In other words (letting [D.] run over 
all weights), we define precisely D([M]) independent 
tensor operators which span the space of all tensor 
operators transforming as [M]. {Each of these tensor 
operators also has, of course, D([M]) components.} 
On certain spaces I (m», some of these operators neces
sarily become dependent or, by using an orthogonal 
basis, certain of the operators necessarily vanish. Thus, 
each of the tensor operators in the set of D([M]) 
orthogonal operators carrying IR labels [M] has 
associated with it a null space (the set of all vectors 
belonging to the various IR spaces annihilated by the 
particular operator). (A problem arises immediately: 
To what extent does the null space characterize the 
operator? This is discussed .in detail in Sec. 7 for the 
adjoint tensor operators.) 

We have dealt rather overlong on this concept of a 
tensor operator since it is a subject which is at once 
fundamental, yet frequently confused in the literature. 

The essential purpose of the ideas discussed above 
has been to extend results-well defined by particular 
matrix elements-to the concept of a unique tensor 
operator defined on all states. Norming this operator 
to unity (on all states not in the null space) leads to 
unit tensor operators or-as they are also called
Wigner operators. The set of all Wigner operators is 
an orthonormal basis, over the invariant functions, 
for all tensor operators. 
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1. Notation 

A unit tensor operator is denoted by 

The lower pattern is the Gel'fand pattern assigned by 
the transformation property (2.8). The upper pattern 
(r) enumerates the various-D([M]) in number
unit tensor operators in the basis. It also has the form (~]\ (M;/ 

(2.l0) of a Gel'fand pattern (inverted for notational con
venience): 

( (r») = 
[M] 

r 1n- 1 

The entries in the pattern (r) are also required to 
satisfy the betweenness conditions. 

The significance of the labels (r)--<:alled "upper 
pattern labels" or "operator patterns" -is very differ
ent from that of a Gel'fand pattern (M), since the 
latter are completely interpreted from the subgroup 
properties implied by the Weyl branching law. By 
contrast, the "operator patterns" are-until proven 
otherwise (see Sec. 7)-to be interpreted as mere 
labels. 

The notation implies that one may associate a 
weight with the upper pattern (r); this weight is the 
shift [6.] induced by the tensor operator-or, as we shall 
also call it, the 6. pattern of the operator (2.10). It is 
given explicitly by 

where 
i i-I 

Ain(r)=~rii-~rji-l' (2.13) 
1=1 1=1 

2. Orthogonality and Completeness 

The unit tensor operators of prescribed IR labels 
[Ml satisfy the equations as follows (the dagger 
denotes Hermitian conjugation): 

(
r») 2 [M] 

(M) (M) (
r'»)t 

[M] 
(M) 

(
I') ) ~ [M] 

(n (M) (

C
r
) ) 

[M] = ~(M)(M')' 

(M') 

(2.15) 

where 1m is a function defined on the set of all U(n) 
IR labels, {[m],.}: It has value 0 whenever the U(n) IR 

(2.ll) 

r n-l n-l 

M"" 

labels belong to the null space of 

(
r)\ 

[M]/ ; 

otherwise, it has value 1. 
Weare now able to state the selection rules more 

precisely: The matrix element of the unit tensor 
operator (2.10) between initial and final states I (m» 
and I(m'», respectively, vanishes unless conditions 
(i)-(iv) below are met; that is, the matrix element 

< Q::~:J I (l~f:J I Q:~:J ) (2.16) 

vanishes unless: 

(i) All patterns (Gel'fand and operator) are lexical 
(i.e., satisfy betweenness relations as well as the 
ordering imposed on IR labels); 

(ii) [m'l" = [m]" + [A(r)]n' i.e., m;n = min + 
Ain(r); 

(iii) for each j = 1, 2, ... ,n, there exists at least 
one operator pattern of j rows (1'); of the form 

(1'); = (~~~) , 
where [M]; is row j of (M)" , such that 

[m']; = [m]j + [A(y)]; 

[statement (iii) is a consequence of subgroup proper
ties to be discussed below]; 

(iv) \(m)n) does not belong to the null space15 of 

(r)) 
[M] 
. 
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The essential content of the selection rule for a unit 
tensor operator is contained in statement (ii). It asserts 
that the effect of a unit tensor operator on the IR 
labels [m]n of a generic state vector is to effect the 
shift [~(T)]. (Similar shifts are also effected on the 
subgroup labels (m)n-l in accordance with the sub
group reduction properties discussed below.) 

The ~ pattern associated with a prescribed set of IR 
labels [M] can be used to partition the set of Wigner 
operators (2.10) into subsets possessing a common 
~ pattern: 

{ 
/ [~): (r) = (r'), (r"), . . . j. 
\(M) such that [~(r')] = [~(r")] = ... 

(2.17) 

The number of operators in this set is called the 
multiplicity of the Wigner operators having the pre
scribed ~ pattern. If the multiplicity is 1, then that 
Wigner operator is unique. I6 In this paper, we extend 
this uniqueness to the adjoint Wigner operators of 
arbitrary U(n). 

It is important to understand the significance of the 
nonzero matrix elements (2.16) in a familiar context: 
The matrices of the unit tensor operators are the 
coupling coefficients of U(n). This means, for example, 
that we can couple two kinematically independentI? 
state vectors l(m»1 and I(M»2 to obtain coupled 
state vectors which are again the- Gel'fand basis 
vectors for an JR of U(n) in the direct product space: 

I([m] + [~(r)J). (r)\ 
(m') 'I 

= L I([m] + ~~(T)])I / iJJ) I([m])\ 
(M)(ml\ (m) \(M) (m) 1 

x I([M])\ I([m]) , (2.18) 
(M) 12 (m) 1 

where the coupled vectors are orthonormal whenever 
they are nonzero, that is, whenever I(m» does not 
belong to the null space of 

~~), 
l(fmJ + [~(r)]). (n I([m] + f~(r/)]); (r/)\ 
\ (m') , (m") I 

= b(m')(m"lb(r)(Pl' (2.19) 

Thus, the determination of the coefficients (2.16) 
constitutes the solution to the state vector coupling 
problem. [It is for this reason that we call these U(n) 
coefficients Wigner coefficients and the unit tensor 
operators U(n) Wigner operators.] 

It is an immediate result that these Wigner coeffi
cients are also the elements of the unitary matrix (real 
orthogonal) which reduces the direct product 

D[m](U) ® D[Ml(U) 

into its irreducible constituents. 

B. Subgroup Reduction and ReduCed Wigner 
Coefficients 

The existence of subgroup properties is intrinsic in 
the definition of a U(n) Wigner operator. The essential 
feature is that the U(n) Wigner operator 

(2.20) 

in which the U(n - 1) IR labels [M]n-l are fixed (in 
accordance with the betweenness conditions), is also 
an irreducible tensor operator with IR labels [M]n_l 
with respect to U(n - 1). But the set of U(n - 1) 
Wigner operators 

{ 
\ 

(Y)n-2 ) } 
[M]n-l ,all (Y)n-2 

(M)n-2 

(2.21) 

is a basis for all U(n - 1) irreducible tensor operators 
with IR labels [M]n-I' These properties imply a rela
tion between U(n) and U(n - 1) Wigner coefficients 
which is explicitly stated as follows: 

I([m]n ~ [~(r)]n)1 /i~j:I) I([m]n )\ 
\ (m )n-I \ (M)n-l (m)n-l 1 

I 
[
(r)n-l]) = I (fm]n +, f~(r)]n)1 [MJn I([m]n) 

(1)"-2\ [m In-l ( ) [m]n-l Y n-l 

X l(fm:Jn-l)1 \[c:11~1) 1([mJn-1
)\ (2.22) 

\ (m )n-2 (m)n-2 1 
(M)n-2 

where (Y)n-l is the (lexical) operator pattern which has 
[M]n_l in row n - 1 and (Y)n-2 in the remaining 
n - 2 rows fi.e., is the operator pattern of the U(n - 1) 
Wigner coefficient]. 
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Let us consider the first of the two terms in the sum 
above. This quantity is the invariant [with respect to 
U(n - 1)] which appears in the restriction of a U(n) 
Wigner operator to a U(n - 1) tensor operator. Hence, 
it is independent of the U(n - 2) subgroup labels; it is 
therefore completely labeled by the "free" labels from 
the left-hand side together with the U(n - 1) IR labels 
and the summation pattern (I' )n-2' These coefficients 
are called U(n):U(n - 1) reduced Wigner coefficients 
[these are the isoscalar factors18 of SU(3)]. The 
"matrix element form" of the notation for these 
reduced Wigner coefficients, introduced in Eq. (2.22), 
is motivated by the fact that these coefficients then 
multiply (see Sec. 3) as the elements of a matrix or, in 
physical language ,19 as observables. [Observe that, for 
n = 2, a U(2): U(1) reduced Wigner coefficient is, in 
fact, a U(2) Wigner coefficient.] 

The U(n):U(n - 1) reduced Wigner coefficients 

1([ '] ., [(r)n-1] '([] )\ \ [:,]:_J ~~~:1 [:]:-1 I 
are defined to be zero unless: 

(2.23) 

(i) All patterns are lexical (This means, in partic
ular, that [m]n-1 and [m' ]n-1 must fulfill the between
ness conditions with [m],. and [m']n' respectively.); 

(ii) the initial and final labels are related by 

[m']n = [m]" + [6.(r)]n' 

[m' ]n-1 = [m]n-l + [6.(1')],,-1; 

(iii) the U(n) IR labels [m]" do not belong to the 

null space of <~r1i;l); the U(n - 1) IR labels [m]n-1 

d b I
· f (ry),,_,> 

o nnt e ong to the null space 0 [Yl~_l. 

The coefficients (2.23) also satisfy orthogonality 
relations in consequence of the orthogonality relations 
for U(n) and U(n - 1) Wigner coefficients. These 
properties are most concisely expressed through the 
notion of a U(n): U(n - 1) projective operator to 
which we now turn. 

c. U(n): U(n - 1) Projective Operators 

The concept of a U(n): U(n - 1) projective operator 
is abstracted from U(n): U(n - 1) Wigner coefficients 
in precisely the same way that a Wigner operator is 
abstracted from Wigner coefficients: Consider U(n) 
state vectors I(m),,) in which the U(n - 2) labels 
are taken to be maximal. We then define the unit 
U(n): U(n - 1) projective operator 

[
(r)n-l] 
[M]n 

(1'),,-1 

(2.24) 

to be that operator which effects the following trans
formation between maximal states in U(n - 2): 

(2.25) 

The orthogonality relations referred to previously 
are simply the matrix element statements of the follow
ing operator equations: 

[
(r)] [(rl)]t 

~ [M] [M] = b(r)([,)f(rh 

(I') (I') 

(2.26) 

[
(r)]t[(I')] 

~ [M] [M] = b(y)(y')f(y) , 

(I') (1") 

(2.27) 

where frr) is the invariant function introduced in Eq. 
(2.14). I(y) is a function defined on the set of all 
U(n - 1) IR labels, {[m]n-l}: It has value 0 whenever 
the U(n - 1) IR labels belong to the null space of 

otherwise, it has value 1. 
Equations (2.26) and (2.27) are necessary properties 

which unit U(n): U(n - 1) projective operators must 
have in consequence of the orthogonality properties of 
U(n) and U(n - 1) Wigner operators. It is the con
verse of this result which is important: Consider the 
set of U(n - I) Wigner operators as known. Then 
every set of unit U(n): U(n - 1) projective operators 
satisfying the orthogonality relations (2.26) and (2.27) 
defines a complete set of U(n) Wigner operators through 
Eq. (2.22). The problem of defining completely all 
Wigner operators has thus been reduced to the prob
lem of defining completely the unit U(n): U(n - 1) 
projective operators for all n. The basic structures to 
be studied in the Racah-Wigner calculus are therefore 
the unit projective operators. 
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D. The Pattern Calculus Rules 

It is a remarkable fact that the explicit matrix ele
ments of all extremal unit U(n): U(n - 1) projective 
operators can be calculated from a few simple rules of 
the pattern calculus. 2 In particular, this class of explic
itly known projective operators includes all elemen
tary operators of the form [ik 0n-k] and [On-k - ik] 

(a dot over a numeral implies that the numeral 
is repeated a number of times equal to the subscript), 
which themselves are a basis for constructing all U(n) 
tensor operators. 

The pattern calculus proceeds by considering a 
given unit U(n): U(n - 1) projective operator 

[

(r)n_l] 
[Mln . 

(Y)n-l 

To this operator we assign a A pattern of two rows, 
corresponding to the shifts [A(r)ln and [A(Y)]n-l' 
From the A pattern, we construct an "arrow pattern" 
and write out the U(n): U(n - 1) reduced Wigner 
coefficient by the following rules. 

The Arrow-Pattern Rules 

Rule 1: Write out two rows of dots, as shown: 

.•. n dots 

•• n - 1 dots. 

Rule 2: Draw arrows between dots as follows: 
Select a dot i in row n and a dot j in row n - 1. If 
Ain(r) > Ajn-1(y), draw A;ncr) - A jn- 1(y) arrows 
from dot i to dot j; if Ain-1(y) > Ain(r), draw the 
arrows from dot j to dot i. Carry out this procedure for 
all dots in rows nand n - 1. This yields a numerator 
arrow pattern with arrows going between rows. 

Carry out this procedure for dots within row nand 
dots within row n - 1. This yields a denominator 
arrow pattern with arrows going within rows. 

Rule 3: In the arrow patterns, assign the partial 
hook Pin to dot i, i = 1, 2, ... , n, in row nand Pin-l 

to dot j, j = 1,2, ... , n - 1, in row n - 1. (Pi! == 
mij + j - i.) 

Rule 4: In general, there will be several arrows 
going between two dots in the arrow patterns. Assign 
to the first arrow the factor 

p(tail) - p(head) + e(taiJ), 

to the second arrow, the factor 

p(tail) - p(head) + e(tail) + 1, 

etc., until all arrows going between the same two 
dots have been counted: 

e(taiI) == 1, if tail of arrow on row n - 1, 

== 0, if tail of arrow on row n. 

Rule 5: Write out the products 

N2 = product of all factors for numerator 
arrow pattern, 

D2 = product of all factors for denominator 
arrow pattern. 

The net effect of these rules is to make the associa
tions 

[
(r)] 
[] 

A tt arrow algebraic I N I M +-+ L.l pa ern +-+ +-+ == -pattern factor D . 
(y) 

The arrow-pattern rules clearly yield the same result 
if we effect an integral shift A;n(r) ->- AinCr) + A, i = 
1,2," . ,n, Ain-1(y) ->- Ain- 1(y) + J., i = 1,2,'" , 
n - I. Thus, the rules apply to A patterns which con
tain negative integers. In particular, all operators of 
the form [Ok - in- k] are obtained from the rules 
above . 

In the present work, we later need the [I 0] and 
[0 -1] operators for which the following special 
notations are introduced: 

[CI >J and [<-I)} p,7=1,2,",., 

(2.28) 

where ([1 p OJ) denotes the (uniquely determined) 

operator pattern which has A pattern given by 
An(P) == [0 ... 0 1 0 ... 0], where 1 stands 

. . . "1 I ( [0 - 11) d h t III pOSItIon P; sImI ar y, Ii enotes t e opera or 

pattern which has A pattern given by -~n(P)' The T 

specifies the upper operator pattern. Let us note ex
plicitly the phases of the projective operators (2.28): 

sign of [[1 : OJ] = S(p - 7), (2,29) 

sign of [co : -IJ] = (-I)'-'S(p - 7), (2.30) 
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where S(p - T) is +1 for p ~ T and -1 for p < T. 

The complete set of Wigner coefficients for [1 0] and 
[0 -1] can now be set down. 

We shall make use of the pattern calculus rules to 
define a "pattern calculus factor" for arbitrary ~ 
patterns for two rows. 

E. The Factorization Lemma 

The use of boson variables as a convenient realiza
tion for the carrier space of U(n) is very familiar.20 In 
order to realize all IR's of U(n), it is necessary to 
assume n kinematically independent copies of an n
state boson variable; that is, one takes the variables 
a;, i,j = 1,2, ... ,n, with the commutators 

(2.31) 

all other commutators defined to be zero. The genera
tors Eij of the group U(n) are defined by the mapping 

(2.32) 

It is clear, however, that these boson variables admit 
also of a second, isomorphic, U(n) group generated by 
the operator mapping 

n 

Eii ---+ 8ii == ! a~a~ , (2.33) 
k=1 

and that, moreover, the two sets of operators {Eij} 
and {Pi} commute. Thus, this boson realization in
volves the direct product group Un X Un. 

In fact, one sees at once that this boson realization 
{a;} really involves the group Un' and all totally sym
metric IR's thereof. This defines a canonical imbedd
ing of U(n) in the sequence of groups Un' ~ Un X 

Un ~ Un' in which, moreover, the IR labels of the 
two U(n) groups in Un X Un coincide (we denote this 
by Un * Un). This structure is precisely the analog to 
that exhibited by the tensor operators of U(n) , and 
Ref. 1 discusses this canonical embedding in detail, 
proving the factorization lemma to which we now 
turn. 

Let 

(2.34) 

denote a normalized basis vector in Un * Un. In this 
notation, the first U(n) refers to the U(n) group with 
generators Eii , the second to the U(n) group with 
generators Eii. [These two U(n) groups are isomorphic 
but distinct (and commuting); the placement of the 
indices is merely a reminder as to which group is 

which ("upper" vs "lower")-there is no implication 
as to metric in this placement of indices. The star 
signifies that the Casimir invariants of the IR's of these 
two groups coincide.] Hence, both 

(M) = O~D and (M') = (~~i) (2.35) 

in Eq. (2.34) are Gel'fand patterns, the second one 
being inverted. The basis vector (2.34) may also be 
written in the form 

(
M'») = .M,([M])-! B [M] (A) 10), 

(M) 

(2.36) 

where 

(
M'») B [M] (A) 

(M) 

(2.37) 

is an operator-valued polynomiaP1 in the set of boson 
creation operators {a;}, the symbol 10) denotes the 
vacuum ket, and .M,([M]) is the measure of the highest 
weight tableau associated with [M]: 

n 

II (Min + n - i)! 
.M,([MD == _,='=,,-1 - ___ _ 

n (2.38) 

II (Min - Min + j - i) 
i<j=1 

The introduction of .M,-t into Eq. (2.36) defines the 
manner in which the boson operators (2.37) are 
normalized: For example, if (M')n and (M)n are 
maximal, i.e., 

then 

(2.39b) 

where ag::: ~ is the determinant formed from the k 
bosons a;, i,j ::;; k. 

The boson operator (2.37) is clearly a tensor oper
ator in either its lower or upper Gel'fand pattern with 
respect to transformations in the respective U(n) sub
group of Un * Un. As such, it must be bilinear in the 
canonical Wigner operators which are defined, respec
tively, on the two U(n) groups. The factorization 
lemma asserts that the precise form of this bilinear 
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relation is 

B(i:;:n-l)(A) 

(M)n-l 

(
r)n-l) (r)n-l ), 

=.A(,l! [M]n [M]n .M., -l, 
(nn-I ( (M') 

M)n-l t n-l " 
(2.40) 

where .A(, is an invariant operator of Un * Un which 
has eigenvalue equal to the measure .M.,([m]) for an 
arbitrary vector with labels em]. The indices t and u 
designate the fact that the Wigner operators act, 
respectively, on the lower and upper Gel'fand patterns 
of an arbitrary vector of Un * Un: 

(2.41) 

C/l)n-l) 

(EJ) ~ ··(::i:)-
(m)n-l 

Note that when we apply the individual Wigner oper
ators in Eq. (2.40) to an arbitrary basis vector (2.34), 
we should consider the common labels [m]n to be two 
identical sets of labels as indicated in Eq. (2.41). 
Note also that the two Wigner operators in Eq. (2.40) 
commute since they act in different spaces and that 
the application of a single Wigner operator carries a 
vector outside of Un * Un' in the general case. [More 
precisely, these properties serve to define the meaning 
of the product of operators in Eq. (2.40).] 

The work in Sec. 5 makes use of the following 
import~nt special case of Eq. (2.40): 

(This special case accounts for the term "boson 
factorization. ") 

The crucial importance of the factorization lemma 
in our work may not be clear from this brief summary. 
This importance rests primarily on the fact that the 
factorization lemma allows one to define a general 
operator from knowledge of particular matrix elements. 

F. Coupling of Wigner Operators 

It is well known in the Racah-Wigner angular
momentum calculus how to couple two irreducible 
tensor operators to form a third-one simply uses the 
coupling coefficients of the group. Here, we follow 

precisely this procedure, except that we are interested 
in coupling unit tensor operators: 

! /([M] + ~~(A)])I / [~~]) I([M])\ 
(M')(M)\ (M) \(M') (M) / 

( 
(r,») (0) 

X [M'] [M] 

(M') (M) 

= {([M] + [.l(A)]) (~~) ([M])} ~ (r") [] (r) 
(f) (r') 

( 

(r") ) 
X [M] + [.l(A)] . 

(Mil) 

(2.43) 

The complicated appearing equation is the statement 
of a very simple fact. First, consider the left-hand side. 
When we examine the transformation properties of this 
sum of Wigner operators, we find that the object is an 
irreducible tensor operator with IR labels [M] + 
[.l(A)] : 

(
[M] + [.l(A)]). 

T (Mil) 

But all such irreducible tensor operators are expres
sible as linear combinations (with invariant coeffi
cients) of the Wigner operators appearing on the 
right-hand side of Eq. (2.43). The invariant coefficients 
are denoted by the notation 

which we now explain. The particular arrangement of 
operator patterns in this U(n) invariant is not contrived 
arbitrarily, but rather to portray certain features that 
these invariants share with Wigner coefficients of the 
same labels-these properties will emerge later. For 
the moment, we justify the notation by noting that 
these invariant coefficients must be labeled by the free 
operator patterns appearing on the left-hand side as 
well as the summation operator pattern of the right
hand side. We have taken the liberty of arranging the 
operator patterns in the right to left order: initial, 
intermediate, final. The pattern (A) is assigned its 
position in accordance with its position in the Wigner 
coefficient and its role of relating the initial IR labels 
to the final ones. 
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The U(n) invariants (2.44) are called (left) Racah 
invariants because, as will be seen, their eigenvalues on 
arbitrary state vectors are the Racah coefficients of the 
group. The first significant property of a Racah in
variant is a consequence of the requirement that the 
~ pattern of each side of Eq. (2.43) be the same (the 
~ pattern of a product of Wigner operators is clearly 
the sum of individual ~ patterns). We arrive at the 
following rule. The Racah invariant 

is defined to be zero unless: 

(i) All operator patterns are lexical (satisfy all be
tweenness conditions); 

(ii) [M"]n = [M]n + [~(A)]n; 
(iii) [~(r")]n = [~(r')]n + [~(r)]n' 

These conditions should be compared with the pre
vious set of conditions on the Wigner coefficients. We 
can make no restriction for Racah invariants compar
able to the previous condition (iii) of Eq. (2.16) 
because we have demonstrated no subgroup properties 
for operator patterns. [An interesting consequence of 
these properties is illustrated, for example, by the 
following Racah invariant from U(3): 

o 
o 0 

o 0 

o 

The Wigner coefficient having these same labels, 

o 
o 

o 0 
o 

is automatically zero because we cannot obtain (2 0) 
by coupling (0 0) with (1 1). There is, however, no 
reason for the Racah invariant to be zero.] Despite this 
dissimilarity in detail, we nonetheless emphasize below 
the close structural similarity that exists between Racah 
invariants and Wigner coefficients. 

Next, we turn to the derivation of some properties 
which the Racah invariants (2.45) must have in conse
quence of their definition as the coefficients in Eq. 

(2.43). The following expression is an easy conse
quence of orthogonality relation (2.14)22.23: 

{( [M] + [~(A)]) (A~) ([M])) 
(r") [M] (r) 

(r') 

_ L /([M] + [~(A)])I ( ~~ ) I([M])\ 
-(M")(M')(M)\ (M") [] (M) / 

(M') 

( 

(r') ) ( (r») ( (r") ) 
x [M'] [M] [M] + [~(A)] . 

(M') (M) (M") 

(2.46) 

Equation (2.46) is the explicit expression of the (left) 
Racah invariants in terms of Wigner operators and 
Wigner coefficients. 

Because the matrix elements of Wigner operators 
can be chosen real, the Racah invariants can be con
sidered to be Hermitian invariants. This result, com
bined with Eq. (2.46) and the orthonormality relations 
(2.14) and (2.15), leads to the orthonormality relations 
for (left) Racah invariants: 

2 (([M] + [~(A)]) (A») ([M])) 
(r')(n (r") ~~~] (r) 

{( [M] + [~(A')]) (A':) ([M])) 
X (rill) [M] (r) 

(r') 

(2.47) 

[M] + [~(A")] [M] 

( (A"»)) (r~A"( ( (r") ) ~~~ (rJ 

(( [M] + [~(A")]) (~:) ([M])) 
x (r") [] (A) 

(N) 

(2.48) 

where I(r") is the function introduced in Eq. (2.14); 
I(r)(r') is a function which has value zero on the null 
space of the product 

( 
(r») (r,) ) 
[M] [M'] , 

. . 
and, otherwise, it has value one. 
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The coupling law for Wigner operators is now ob
tained by using the orthonormality relation (2.47) to 
move the Racah invariant to the left-hand side in Eq. 
(2.43). The result is 

<5(A')(A) [M] + [~(A)] 
(M") \ 

(P') ) 

_ ! /([M] + [~(A)])I / ~~ ) I([M])\ 
- (~\~M)\ (M") \ ~M'~ (M) / 

{( [M] + [~(A')]) (N:) ([M])) 
x (r") [M] (n 

(r') 

\ 
(r') ) ( (r») 

x [M'] [M]. 

(M') (M) 
(2.49) 

This form is very significant. It exhibits clearly the fact 
that Racah invariants play the same role with respect 
to operator patterns as do Wigner coefficients with 
respect to Gel'fand patterns. Racah invariants are the 
coupling coefficients for operator patterns (more pre
cisely, the objects carrying these patterns). To form a 
new Wigner operator from a given pair, we Wigner
couple its Gel'fand patterns and Racah-couple its oper
ator patterns. This important property is symbolized 

by writin( [~']) : ([~]) ~ ([ ~'] ). (2.50) 

An important special case results for [M'] = [1 0]: 

([\ . 0]) : ([~]) ~ ( 1M] ~ a.(p)). (2.51) 

In this coupling, the fundamental Wigner operator 
and the fundamental Wigner coefficients (the lower
pattern coupling) are known explicitly. The upper
pattern coupling is effected by the fundamental Racah 
invariants (those having [M'] = [1 OD. We thus see 
that knowledge of the fundamental Racah invariants 
is equivalent to a complete solution to the problem
all Wigner operators could then be constructed from 
Eq. (2.51) by recursion. This signifies that in a very 
definite sense the fundamental Racah invariants pos
sess structural properties which "explain" the origin of 
operator patterns. 

3. COUPLING OF PROJECTIVE OPERATORS 

Almost every equation in the previous discussion of 
the coupling of Wigner operators implies an analo-

gous equation in terms of the unit U(n): U(n - 1) 
projective operators. The derivations of the relations to 
follow are completely straightforward, although 
tedious, to be sure. Let us simply state the basic 
result: 

[ 

(r") ] 
<5(A')n-l(A)n-l [M]n + [~~A)]n 

(y")n-1 

= ! , [([M]n + [~(A)]n) (A~n-1) ([M}n )] (y),,-t!y) .. -1 [M ] 
(O,,-t!f')n-l (y") _ n (y) 

n 1 ( ') n-1 
y -n-1 

X {eM]n;', [~(A')]n) (i~~i:1) ([M]n )) 
()n-1 (r') (nn-1 

n-1 

[
(r')n-1] [(r)n-1] 

x [M']n [M]n' 

(y')n-1 (Y)n-1 

(3.1) 

where we have introduced a new object-called a 
square-bracket invariant (in analogy to the curly 
bracket, or Racah, invariant): 

in which 

(A') -1 = ([y']n-1). 
n (A') 

n-2 

(3.3) 

The first factor on the right-hand side of definition 
(3.2) is a U(n): U(n - 1) reduced Wigner coefficient; 
the second factor a U(n - 1) Racah invariant-its 
eigenvalue depends only on the labels [m]n_l' Thus, 
the square-bracket invariant, denoted [ ... ], is a 
U(n - 1) invariant. [Note that, for n = 2, projective 
operators become Wigner operators, the square
bracket invariant becomes a Wigner coefficient, and 
Eq. (3.1) reduces (properly) to the coupling law for 
Wigner operators.] 

The square-bracket invariants satisfy orthogonality 
relations of exactly the same form (2.47) and (2.48) as the 
Racal1 invariants-simply replace the curly brackets by 
square ones. This result is a direct consequence of the 
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definition (3.2) and the orthogonality relations of 
reduced Wigner coefficients and the U(n - 1) Racah 
invariants. There is, however, one very significant 
structural property which, unlike the Racah invariants, 
the square-bracket invariants possess: They retain a 
remnant of a subgroup reduction condition: Namely, 
the square-bracket invariant 

[( [~"]n ) (i~i~l) ( [M]n)] (3.4) 
(y )n-l (') (Y)n-l 

Y n-l 

is the zero operator unless: 

(i) All operator patterns are lexical; 
(ii) the following conditions between labels in rows 

nand n - 1 hold: 

[M"]n = [M]n + [~(A)]n' 

[ "] f] + ~([Y']n-l) 
Y n-I = Y n-I (A')n-2 

for some lexical operator pattern (A')n-2; 
(iii) the following condition on the deltas of the 

operator patterns holds: 

[~(y")]n-I = [~(yf)]n_1 + fMY)]n-l' 

These relations should be compared with the condi
tions on the Racah invariant (2.45). The additional 
constraint (ii), above, is a direct consequence of the 
fact that the labels in row n - 1 of a lower operator 
pattern of a unit U(n): U(n - 1) projective operator 
have subgroup reduction significance. 

Let us now return to the basic coupling law (3.1) 
in order to interpret the implied structural features. 
The essential fact is that we couple two projective 
operators 

[
(rf) ] [(r) ] 
[M'] [M], 

(Y') (y) 

to produce a new projective operator 

[ 

(r") ] 
[M] + [~(A)] 

(Y") 

or zero. The upper operator patterns, (r') and (r), 
are coupled by a Racah invariant: We denote this 
coupling by {R}. The lower operator patterns, (Y') and 
(y), are coupled by the square-bracket invariant: we 
denote this by [R]. Thus, we may symbolically inter
pret the basic coupling law for projective operators by 
the structurally simple (but highly implicit) equation 

[ ]
{R}[ ] [ (r") ] [~'] [~1J = [M ~~] . 

• [R] • (y ) 

(3.5) 

(Here the dots imply operator patterns summed over; 
this symbolic equation violates index balance because 
of the suppression of variables in the two coupling 
operations.) 

Using the orthonormality relations for Racah in
variants and square-bracket invariants, we can obtain 
directly from Eq. (3.1) a variety of relations corre
sponding to the many equivalent forms for the Racah 
invariants. 

One can hardly fail to notice the striking similarity 
between Eqs. (3.2) and (2.22). In order to demonstrate 
this, we first convert Eq. (3.2) from an operator state
ment to a matrix element relation, by specifying 
explicitly the appropriate state vector on which the 
operators act. Consider a maximal basis vector in the 
carrier space of the U(n): U(n - 1) projective oper
ators, i.e., one in which we choose min- 1 = min' i = 
1,2, ... , n - 1. On such a basis vector, the eigen
value of a square-bracket invariant [which depends 
only on the U(n - 1) labels] now depends on the 
labels [mIn m2n ... mn-In]; the Racah coefficient 
depends on [mIn m2n ... mnn], as usual. These two 
sets of coefficients satisfy orthogonality relations 
which are identical in formal structure. 

It is natural to ask now if there is any deeper rela
tion between these two very similar sets of coefficients. 
Does the fact that the square-bracket invariants in
volve one less label (here mnn) have anything to do 
with the extra (subgroup-type) constraint? 

We conjecture that there is a deeper relationship; 
that, in fact, the following relation holds (the eigen
value of a Racah or square-bracket invariant is 
designated by writing the IR labels of an arbitrary 
state vector on the right-hand side of the invariant): 

(3.6) 
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This property can be verified to hold in all instances in 
'" hich the coefficients are unique; we demonstrate 
below that it holds for all adjoint coefficients. It is not 
yet known to be valid in general. Our purpose in noting 
it here is simply to support the thesis that operator 
patterns are related to a definite structure of the 
calculus of projective operators. Equation (3.6), when 
combined with Eq. (3.2), takes the form of a reduction 
law for operator patterns in complete analogy to the 
subgroup reduction law (2.22). Indeed, we can now 
take successive limits of Eq. (3.6): mn-ln ~ - 00, 

then m n-2n ~ - 00, ••• , and finally, m2n ~ - 00. Each 
time a limit is taken, we gain, in consequence of Eq. 
(3.2), a subgroup type restriction on the allowed 
operator patterns, until finally, when the last limit 
m2n ~ - 00 is taken, the Racah coefficient has been 
reduced to a Wigner coefficient of the same labels. 

We repeat that this relationship has not been dem
onstrated to be valid in general. 

To summarize, we have in this section developed 
the algebra of the unit U(n): U(n - 1) projective 
operators. (For n = 2 the algebra is just that of the 
Wigner operators themselves.) The basic structure of 
U(n) Wigner operators has itself been built up from 
the unit U(n): U(n - 1), U(n - 1): U(n - 2), ... , 
U(2): U(1) projective operator algebras. In this sense, 
it is the algebra of projective operators that is the funda
mental structure. We will return to develop this 
algebra still further in Sec. 6. 

4. GENERAL FORM OF THE ADJOINT WIGNER 
OPERATORS 

The preceding sections have surveyed the general 
structure of the calculus of Wigner operators and 
projective operators. These results incorporate a 
unique content, from which explicit calculations can 
proceed, only when the structural principle under
lying the origin of operator patterns can be stated 
definitively. We can acquire considerable insight into 
the significance of operator patterns by examining 
particular sets of Wigner operators for which we can 
resolve the multiplicity problem explicitly and canoni
cally. A set of interest for physical applications which 
can be dealt with exhaustively is the set of all adjoint 
operators labeled by 

[1 0 -1] = [1 0 0 ... 0 -1]. 

In the next section, we give a direct construction of 
the n - 1 Wigner operators which have the Ll pattern 
[0]. However, the adjoint Wigner operators can also 
be obtained by coupling (I 0) and (0 -1) in the 

manner of Eq. (2.S1). Comparing the direct con
struction with the general form of this coupling allows 
us to identify the Racah invariants of the coupling. 
These Racah invariants are then used to establish 
additional structural features of the solution. 

It is convenient at this point to write out the cou
pling formula in detail, in the present context, after 
introducing some abbreviated notation. 

The symbol 

(
[1 0 -1]) 

(i,j) ,i,j = 1,2,., .. ,n, (4.1) 

designates a Gel'fand pattern which has weight given 
by Lln(i) - I1n(j), where Lln(i) denotes the unit row 
vector of dimension n which has 1 in position i and 
O's elsewhere. For i =F j, the pattern (1) is extremal2 

and is thus uniquely determined from its weight; for 
i = j, the weight is [0], and there are n - 1 distinct 
patterns having this weight. In this case, the pattern 
(1) (withj = i = 1,2,' .. ,n - 1) is defined to be the 
pattern with all O's in rows 1 through i, the remaining 
rows being of the type [1 0 -1]. With these 
definitions, the notation (1) enumerates all n2 - 1 
patterns for [1 0 -1] as we let the (i,j) indices run 
over the values i =F j = 1,2, ... ,n; i = j = 1, 2, ... , 
n - 1. We use the same notation for operator patterns, 
but replace the Roman indices i, j, ... by Greek 
indices p, 'T, •••• 

We next introduce the following abbreviations for 
the Wigner coefficients and Racah invariants which 
are relevant to the coupling of (I 0) and (0 -1): 

~" = < ([I (~. ij-I])1 \[1 > ) !eO j -I]). 
(4.2a) 

~.i = (((i) I ([1: 0] ) WO j-I]). (4.2b) 

R,,=(([1 (~.p;I])«+[O .-I])}. 
(4.3a) 

(4.3b) 
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The following evaluations (from the pattern calculus2
) 

are also required: 

(([I t,j)-IJ)j ( < OJ) WO j-IJ) ~ I, 
i =;l: j, (4.4a) 

{([I (~, T~IJ) « OJ) eo ,-IJ)} ~ I, p # T. 

(4.4b) 

j>i+l 

= (-I)i-ij[i(i + 1)]1, j = 1,2,"', i, (4.4c) 

= [iJ(i + 1)]1, j = i + 1, 

for i = 1, 2, ... , n - 1, 

On; = (-I)n-ijJn, (4.4d) 

for j = 1, 2, ... , n. 
Using the above notations and results, we obtain 

the following couplings of (I 0) and (0 -1) from 
Eq. (2.49): 

([I (~'T~IJ)= ([l~O]) ([0 7~1])' 
(I,J) 1 J 

p =;l: 'T, i =;l: j, (4.5a) 

([1 (~''T~1]) = ~?ij([1 p 0]\ ([0 7_1\ 
(i, i) , j '/ j '/ 

p =;l: 'T, (4.5b) 

/[1 (~'P~IJ)=~lRpr([1 ~ 0])([0 ~-1])' 
\ (I, J) 1 ] 

i =;l: j, (4.5c) 

[1 0 -1] =r~10i;Rpr [1 0] [0 -1] 
( 

(p, P») ( 7 ~ ( 7 ') 

(i,i) ., j j 

(4.5d) 

The Racah invariant Rnr is already uniquely deter
mined from 

which is a special case of Eq. (2.46). This result can be 
written in another form by using the identity 

(4.7) 

where D is the dimension operator. This result can be 
proved by direct comparison of the known matrix 
elements of elementary Wigner operators. Equation 
(4.6) becomes 

t 

R .. ~ (-X-1 ([I ~ OJ) Dl( [I ~ OJ )D-l. (4.8) 

Operating on the state vector I(m», we obtain the 
following result (in consequence of the normalization 
of the fundamental Wigner coefficients): 

Rnr I(m» = RnrC[mD I(m», (4.9a) 
where 

R ([m]) = (_I)n-r[D([m] - ~n('T»J1 
nr In D([mD 

= (_l)n-r[ir (Psn - Prn + 1)]1. (4.9b) 
In s=l (ps - P ) s* T n Tn 

There are additional equations resulting from Eq. 
(2.49) and corresponding to the coupling of (I 0) 
and (0 -1) to zero. However, these equations are 
consequences of the fact that the Racah invariants are 
required to be orthogonal, 

n 

L RprRp'r = 0, (4. lOa) 
r=l 

for p =;l: p' = 1,2, ... , n. We also require 

n 

LR!r = 1, (4.10b) 
r=l 

whenever Rpr([mD =;l: 0 for all 7 = 1,2, ... , n. Note, 
in particular, that the invariants [Rp1 Rp2 ' .. Rpn ], p = 
1, 2, ... , n - 1, comprise a row vector which is per
pendicular to the known invariants [Rn1 Rn2 ... Rnn]. 

Equations (4.5) give the general form of the set of 
adjoint Wigner operators. Since the Wigner coefficients 
o if and the elementary Wigner operators appearing in 
these equations are known, we see that the first two 
equations uniquely determine the adjoint Wigner 
operators having a ~ pattern of the form ~n(P) -
~n(7), p =;l: 7, i.e., a delta which is a permutation of 
[1 0 ... 0 -1]. The last two equations give the 
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form of the n - 1 adjoint operators having delta [OJ, 
and their determination is equivalent to that of the 
fundamental Racah invariants. This determination is 
discussed in detail in the next section. 

5. CANONICAL ADJOINT WIGNER OPERATORS 

We begin with the definition of a "vector operator" 
with respect to U(n). A vector operator V is defined to 
be a set of n2 operators V;; which transform under 
l'> u in the same manner as the infinitesimal operators 
Ei;' the generators of the representation l'> u. Equiv
alently, the components Vi; satisfy the commutation 
relations 

[E;;, Vkl ] = t5ikVa - t5a Vk;. (S.1) 

A U(n) vector operator is reducible into an invariant 
Ik Vkk and an irreducible operator of n2 - 1 com
ponents of the form 

r([lO -1]). (S.2) 
(i,j) 

Stated differently: If V is a vector operator, then V is 
reducible into a multiple of (0) plus a multiple of a 
[1 0 -1] irreducible tensor operator. 

The folIo wing set of vector operators is of particular 
utility and interest for our development: 

VilO) = t5ii , 

Vill) = Eii , 

n 

ViP) = I EikEki , 
k=l 

n 

Jiilq) = I1 EiilEili2··· E i._1i , 
it. ... ,io-l 

(S.3) 

for q = 2, 3, .... The index q refers to the degree of 
V(q) in tho! generators. Observe that 

V:iq) = Vilq)· (5.4) 

The scalar product of two vector operators V(q) and 
V(p) is defined to be 

n 

~ Vi;(q)Vi;(P) = I q+1" (S.5) 
1.1=1 

where Ik is the Gel'fand form of the invariant opera
tors24 defined (for any set of generators) by Eq. (BI) 
of Appendix B for k = 1,2, .... We define 10 = n. 

A significant property of the n vector operators V(q) , 
q = 0, 1, 2, ... , n - 1, is that they are linearly inde
pendent on generic states. Indeed, the Gram deter
minant is given explicitly by 

det /(m» 

n 

= II [(Pin - Pin)2 - 1] /(m». (S.6) 
i<i=l 

A proof of this result is given in Appendix C. 
Each operator V(q) , q = 0, 1, 2, ... , effects the 

change ~ = [0] on arbitrary IR labels (since gener
ators cause no shift in IR labels). Therefore, each of 
these vector operators reduces into (0) and an adjoint 
tensor operator T( [1 0 -1]) which belongs to the 
subspace of adjoint tensor operators having d = [0]. 
Since YeO) clearly reduces into (0), it follows that the 
reduction of the remaining n - 1 operators V(q) , 
q = 1, 2, ... , n - 1, must yield n - 1 linearly inde
pendent irreducible tensor operators having IR labels 
[1 0 -1] and ~ = [0]. The inclusion of Vii(O) = t5;i 
in the set is important. It assures that each vector 
{Vi;} perpendicular to {Vii(O)} will have Ii Vii = o. 
Thus, every vector {Vii} perpendicular to {Vii(O)} is 
equivalent to a tensor operator T([1 0 -1]). We 
can therefore obtain a set of n - 1 adjoint Wigner 
operators with ~ = [0] by orthonormalizing and 
reducing the set of operators (S.3), making sure that 
all vectors are constructed orthogonal to {V;i(O)}. 

A set of orthonormal vector operators {X;;(q)} , is 
obtained by applying the Schmidt orthogonalization 
procedure to the operators 

YeO), V(1), ... , V(n - 1) (S.7) 

in this order. This ordering by degree is quite natural 
and, as we prove below, it is, in fact, canonical. We 
obtain25 

Vi;(q) 

(S.8a) 
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forq = 0, 1,'" ,n -1, where 

(5.8b) 

(5.8c) 

12<1 

where for q = ° we define det Ll = 1 so that 
X,;(O) = ViiO)/Jn. The orthogonality relations now 
take the form25 

11 

L X,i(q)Xji(p) = 0,,1>' (5.9a) 
i,j=l 

and, in particular (set p = 0), we have 

11 

LXu(q) = 0, q = 1,2,"', n - 1. (5.9b) 
;=1 

The next step is to find those linear combinations of 
the Xij(q) (q fixed) which transform like the state 
vector with IR labels [1 0 -1]. There are several 
ways of doing this, and we choose a method which 
leads to the explicit form of the Racah invariants Rpt 

of the last section. The idea is to write each X(q) as a 
coupling of the elementary operators (I 0) and 
(0 -1). The form of Eqs. (4.5) then determines the 
mapping. . 

In order to write each X(q) as a coupling of (1 0) 
and <() -1), we must first accomplish the same task 
for V(q). This appears most difficult to do directly 
from Eqs. (5.3), and it is precisely here that the boson 
calculus and the factorization lemma come to our aid. 
We use an explicit realization of the operators V(q) in 
terms of the boson calculus: 

11 

'l)'ij(q) == Ll &ii/;hi2'" &i.-1' , 
itt·' . tiq-l 

(S.10a) 

n 
'l)'ii(q) == Ll &iil&iliz ••. &i.-l~ (S.lOb) 

tIt' .•• iQ-l 

[The bii and SiJ operators are realizations of the two 
sets of generators in the boson calculus; cf. (2.32) and 
(2.33).J 

The identity 

'l)'ij(q) = i a~(a~)t'l)'lk(q - 1), (5.11) 
k.l=l 

generated by the fiji, Eq. (5.11) has the form of a 
coupling of a [1 OJ boson and a [1 . 0]: boson.] . 

The next step is to use the factorIzatIOn lemma m 
the form (2.42) (and the Hermitian conjugate of this 
result) to write Eq. (5.11) as follows: 

'\J,I q) - ?,; ([< OJ l .11.,-' ( [I: OJi .11.,3"( q - I), 
(S.12a) 

for q = 1, 2, ..• , where 

3-PT(q _ 1) == ~ ([1 PO]) 1[1 T OJ',t'l)lk(q - 1). 
k.!_l k ~ 1 

... " 
(5.12b) 

[Index t in Eq. (S.12a) designates "lower"; index u 
in Eq. (5.l2b) designates "upper."] It is easy to prove 
that the quantities 3-pr(q - 1) are also invariants with 
respect to the U(n) transformations generated by the 
f;H; hence, they are invariants with respect to U(n) * 
U(n). In consequence, 

6P r(q - 1) = oP'6PP(q - 1). (5.13) 

Now let us carefully consider the result obtained 
from Eq. (S.l2a), upon using property (5.13). The 
operators appearing in each term of the right-hand 
side of the resulting equation have matrix elements 
which depend entirely on the lower Gel'fand patterns 
of the initial and final boson state vectors. This implies 
that we can just as well regard Eqs. (5.12) as abstract 
operator identities: 

t 

v,,cq) =~, ([I : OJ).II., -'\ < OJ) JI.,J,(q - I), 
(S.14a) 

where 

JT(q - 1):: I ([1 T OJ) 
k,t=l k 

t 

\[1 ~ OJ) V,.(q - 1). 

(S.14b) 

An important special case of Eqs. (5.14) occurs for 
q = 1; in this case J.(O) = 1, and we find 

Eo =~, ([l >'i .11.,-' ([1 >~t.ll.,. (5.15) 

for q = I, 2, ... , can be proved in a manner similar This result is a rather elegant relation which expresses 
to the proof of Eq. (53) of Ref. 6. [Since the 'l)'lk(q) are the generators of U(n) directly in terms of the funda
invariants with respect to the U(n) transformations mental Wigner operators (in consequence, the explicit 
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evaluation of the generator matrix elements can be 
obtained immediately). 

The invariants J
1
(q), q = 0, 1, ... , given by Eq. 

(5.14b), have very simple eigenvalues, namely, 

J,(q) I(m» = (p,n),ll(m». (S.16) 

(This result is proved in Appendix C. Note that this 
relation provides an answer to the question: What 
operators have the labels of a Gel'fand pattern as 
eigenvalues 1) 

We can now give Eq. (S.14a) an alternative form by 
noting the relation between the measure operator 
.At., and the dimension operator D [compare Eqs. 
(2.4) and (2.38)J: 

t 

V;,(q) - ~ (rl : OJ) D (rl :OJ )D-'J,(q), (5.17) 

which turns out to be correct also for q = 0 as well as 
for q = 1,2, .... [Observe that D-IJ/q) can also be 
written to the left-hand side of the Wigner operators.] 

The form of V(q) as a coupling of (l 0) and 
(0 -1) is now obtained by eliminating the Hermitian 
conjugate operator from Eq. (S.17) by using Eq. (4.7). 
The final form is the following operator relation: 

V;lq) = (_l)n-Jn! 

x ~ « oj ) ~O :-IJ) J,(q)R,,, 

(S.18) 

forq = 0,1,···. 
Substitution of Vi;(q) in the form (S.18) into Eq. 

(S.8a) yields the coupling formula for the vector 
operator X(q): 

(-1)H~X;,(q) = f ([l ~ O~ ([0 ;-1]) S," 

(5.19) 
where the invariant SqT is defined by 

J.(q) 

(S.20) 

for q = 0, 1, ... , n - 1. (Note the special case SOT == 
Rnt .) Observe that SqT can be moved to the left side of 
the Wigner operators in Eq. (S.19). 

We further observe that the invariants SqT satisfy the 
orthonormality relations25 

n 

! SqrSVT = !5QV' 
r=1 

for q, p = 0, I, ... ,n - 1. 

(5.21) 

The simplest proof of this is to notice that the Sq, are 
just the result of doing the Schmidt orthogonalization 
procedure on the operators 

(S.22a) 

where Zq is the row matrix 

Zq = [Zql Zq2 ..• ZqnJ, (5.22b) 

in which 

Zq, == Jr(q)Rn, . (S.22c) 

One needs the result 

n n 

n !ZqrZpr = n !J.(q + p)R~r = Iq+v. (S.23) 
r=1 r=1 

which follows from Eq. (B14), to complete the proof. 
If one now compares Eq. (S.19) to the right-hand 

side of Eq. (4.5c), it follows that the Sq, invariants are 
indeed none other than Racah invariants. (We must 
yet prove, however, that the Sqr are the canonical in
variants.) Using these Racah invariants in Eqs. (4.Sc) 
and (4.5d), we determine directly a set of orthonormal 
Wigner operators having Ll = [0]: 

/[1 oq -I~ = i,s) [/ OJ\ f[o ~-It 
\ (.,j) / \ J / \ j / 

(I 
. i ¢. j, (5.24a) 

~q.-l]) =,I/)iiSqr 1r.1 T OJ\ fro T:-IA 
(J, J) \. j ! \ ] / 

(5.24b) 

in which q = I, 2, ... , n - 1 is a mere label, related 
to degree, but of no operator pattern significance at 
this stage. 

Let us now return to the consideration ofEq. (5.19). 
Comparing it with Eqs. (5.24), we see, in precise 
detail, the form of the mapping of a vector operator 
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(with Li Xii = 0) onto an adjoint Wigner operator: 

(-I)n- H X ii(q) = /[1 oq -1]\, i ':;l: j, (5.25a) 

\ (i,j) I 
(-I)n-i-qHi(q) = 1[1 oq 1]\ 

'\ (i, i)- / 

i = 1,2, ... , n - 1, (5.25b) 

where 

for i = 1,2, ... , n - 1, q = 1, 2, ... , n - 1. The 
only free choice, in the identifications above, is the 
over-all phase factor (_l)n-a. [This choice occurred 
in the assignment of the factor (-I)q to SqT in Eq. 
(5.20), and is based on a general principle to be dis
cussed shortly.] 

The orthonormality of the Wigner operators (5.24) 
is assured because of the orthonormality of the Racah 
invariants. [It may be worth noting also that it was 
assured from the very beginning because of the iden
tity2s 

t; 1[1 iJq -1]\ 1[1 0" -i 
'\ (i,j) 1 \ (i,j) / 

n . 

= Ll Xii(q)X;;(p) = !5qp , q, p = 1,2,' .. ,n - 1, 
i,j 

which holds as a direct consequence of 2i Xii(q) = 0, 
and again illustrates the convenience of including 
Vii(O) in the set (5.3).] 

Let us summarize. By a rather indirect route, start
ing from an ad hoc set of linearly independent vector 
operators, we have constructed an explicit set of 
Wigner operators which spans the subspace of adjoint 
tensor operators with !l = [0]. We have obtained 
these Wigner operators in two forms: Equations 
(5.24)-which express them as couplings of the known 
elementary Wigner operators (1 0) and (0 -1) 
through explicit Racah invariants-and Eqs. (5.25)
which relate them back to the expJicit vector operators 
from which we started. A number of interesting results, 
e.g., Eqs. (5.15) and (5.16), have emerged as auxiliary 
relations. Operator patterns have not yet been assigned 

to these Wigner operators or to the Racah invariants, 
only an index q, and there remains the problem of the 
origin of the operator patterns and of the structure 
which, we insist, entitles us to call these operators 
canonical. This is discussed in the concluding section. 

There are several important properties of the adjoint 
operators and Racah invariants, which can be ob
tained from the foregoing results. 

The first concerns the classification by polynomial 
degree (in the Pin) of the Racah invariants. An alterna
tive (easier but less instructive) construction to deter
mine the adjoint Wigner operators is to define the row 
vector 

Zq([m]) == [pfnRnl([m]),pgnRn2([m]),"', P~nRnn([m])] 

for q = 0, 1, ... , n - 1. These vectors are linearly 
independent on generic states [using Appendix B, 
Eq. (BI4)]; they thus constitute a basis for the Racah 
invariants. If we now ask for an orthonormal set of 
vectors of the form 

Sq{[m]) = [Sql([m]), Sq2([m]), ... , Sqn([m])], 

constructed from the vectors {Zq([m])} and having 
increasing (polynomial) degree in the {Pin}, we ob
tain precisely the Racah invariants of Eq. (5.20). 
The origin of these Racah invariants can be traced to a 
single structural idea-that of degree. 

Let us turn to a second property of the adjoint 
Racah invariants closely related to polynomial degree: 
the limit properties. The proofs of the following limit 
properties are given in Appendix D (the arrow signifies 
the limit mnn ~ - (0): 

S~~>Cmln ... mnn) 

~ -[en - l)jn]!S~~-l>Cmln ... mn- 1n), (5.26a) 

for T = 1, 2, ... , n - 1, 

s(n)(m ... m ) ~ II In' 
On In nn V, (5.26b) 

Sl~)(mln ... mnn) ~ S~~-l)(mln ... mn-1n)IJn, 

(5.27a) 
for T = 1,2, ... ,n - 1, 

Sl~)(mln ... m~n) ~ [en - l)jn]!; (5.27b) 

s(n)(m ... m ) ~ s(n-l)(m ... m ) (5.28a) aT In nn a-IT In n-In , 

forq=2,3,"',n-1,T=1,2 ··,n-I, 

s(n)(m ... m )~O 
qn In nn , (5.28b) 

for q = 2,3, ... ,n - 1. [Note that we have used a 
superscript n on these Racah invariants to indicate 
explicitly that they are associated with U(n).] 

The limit relations given above for the adjoint 
Racah invariants are all particular instances of the 
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following statement: 

{(
[M]n + [L\(A)]n) (A~n-I) ([M]n )) 

(r") [M ]n (r) (mIn· .. mnn) n-I (r') n-I n-I 

[(
[M]n + [L\(A)]n) (A~n-I) ([M]n )] 

---+- (r") _ [M ]n (r) (mIn· .. mn- In)· n I (r') n-I n-I 
(S.29) 

As mentioned previously, we have no (complete) 
proof that this general relation holds. If it is indeed 
valid for each n, then it implies the result that under 
the successive limits min ---+- - 00, i = n, n - 1, ... , 
2, a Racah invariant limits to a Wigner coefficient. 
This latter result is, in particular, true for the explicit 
adjoint Racah invariants developed above. {We ob
serve [cf. Eq. (S.30) below] that the Racah invariants 
of Eqs. (4.3) and the S~~l are related by R~~l = S~~PT.} 

There is one final point which requires mention
the question of phase. The phases of the Racah in
variants (S.20) have been chosen such that the reduc
tion law holds precisely in the form (S.29)-this 
uniquely determines all phases. 

We complete this section by noting the explicit 
forms of the adjoint unit U(n): U(n - 1) projective 
operators. In Sec. 6, we justify the identification of the 
degree index q with the operator pattern as follows: 

( [1 0 -1]) ---+- ( [1 0 -1]). (S.30) 
q (n - q, n - q) 

It is convenient to anticipate this result so that we can 
write out the adjoint projective operators in terms of 
the notation which employs operator patterns: 

[
[1 (~'T~I]] = [[1 p 0]][[0 ~-1]]' 

(rx, (J) rx {J 

(S.31a) 

for p :;!: T, rx :;!: {J, 

[
[1 (~'T~I]] = ~IR~P[[1 p 0]][[0 ~-1]]' (S.31b) 

for rx :;!: {J, 

[ 
(p, p) ] [ T ] [ if ] 

[1 0 -1] = p~IR~pRpT [1 0] [0 _-1] . 
(~rx) {J {J 

(S.31d) 

In these results RpT and R;p are, respectively, the in
variant operators as follows: 

R" _ {([I (~. p~ II) ([I : 01) ([0 ,-1))}. 
(S.32a) 

R;' - [el (~ .• ~II)([1: 01)([0 p-II) J 
(S.32b) 

The relations of the square-bracket invariants to 
U( n - 1) Racah invariants are 

R' - R(n-Il «P - «P , for rx = 1,2, ... , n - 2, 

{J-12 ... n-l - " , , 

R~n = 0, for rx = 1,2, ... , n - 2, 

R' R(n-IljJ n-Ip = n-Ip n, for ]1-12··· n-l - " , , 

R~_h. = [en - l)jn]l. (S.33) 
~,~ P P 

for p oF T, 

[ 

(p, P)] [ T ] [ if ] 
[1 0 -1] = ~tPT [1 0] [0 -1], 

(rx, P) rx iJ 

All operators appearing on the right-hand sides of 
Eqs. (S.3l) are known explicitly; these equations com
pletely define the set of canonical adjoint U(n): U(n - 1) 

(S.3lc) projectit'e operators. The matrix elements of these 
operators, denoted by 

(S.34) 
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in which ~n-l(n) == 0, comprise the set of canonical 
adjoint U(n): U(n - 1) reduced Wigner coefficients. 
These coefficients are calculated straightforwardly 
by using the pattern calculus rules and the known U(n) 
and U(n - 1) Racah coefficients. The results are given 
below where the expression on the right-hand side of 
the arrow is the matrix element (5.34) of the operator 
appearing on the left-hand side of the arrow. We have 

also partitioned the list of matrix elements into four 
classes a, b, c, and d corresponding, respectively, to 
the four types of operators of Eqs. (5.31a)-(5.31d). 

Class a 

These are the extremal operators, and their matrix 
elements are written down directly from the pattern 
calculus rules: 

[ 

(p,T) ] 
[1 0 -1] ~ (-l)P-rS(1X - p)S«(3 - 1') 

(IX, (3) 
X [IT (Ppn - Psn-l)(Psn-1 - Prn+ 1) iI (Plln-1 - Psn + 1)(Psn - PPn-1) 

~=lp (Plln-1 - Psn-1 + 1)(Psn-1 - Ppn-1 + 1) ~=1 (Ppn - Psn)(Psn - Prn) 
S-ra., 8.,.. p,T 

(Ppn - PPn-1)(Ppn - Ppn-1 + I)(Plln-1 - Pm + 1)(Plln-1 - Prn + 2)]! x , 
(Ppn - Prn)(Ppn - Pm + I)(Plln-1 - Ppn-1 + 1)(Plln-1 - Ppn-1 + 2) 

(5.35a) 

for p ~ l' and IX ~ (3 ~ n, 

[ 

(p,T) ] 
[1 0 -1] ~(_I)n-rs(1X - p) 

(IX, n) 

X [fi (Ppn - Psn-1~Psn-1 - Prn + 1) Jj (PIl':'-l - P.n ~ 1) 

.~l (Plln-1 Psn-1 + 1) 8-1 (Ppn Psn)(Psn Prn) 
s..,..a S::J:.p,T 

(Plln-1 - Prn + 1)(Plln-1 - Prn + 2)]! 
X , 

(Ppn - Prn)(Ppn - Pm + 1) 
(5.35b) 

for p ~ l' and IX ~ n, 

for p ~ l' and (3 ~ n. 
Class b 

These are the operators which are extremal in their upper patterns and have the lower patterns with ~ = [OJ: 

[
[1 (~' T~ 1]] ~ (_I)Il-r-1[N~~-;~1([m]n_1)r!(PCF) 

(IX, IX) 
- I~n-1)([m]n_l) I~~-;~l([m]n-l) 

X det 

I ~~-;:>2( [m ]n-1) 

f~O;([m]n' [m]n-1) 

I~7~~)-3([m]n-1) 

f~~-,,-l)([m]n' [m]n-l)_ 

, (5.36a) 
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for p =F T and oc = 1,2, ... , n - 2, where N;~-;~1 is the invariant normalization operator given by Eq. (5.8b) 
for U(n - 1); (PCF) is given by 

[ 

'11-1 ]! II (Ppn - Psn-l)(Psn-l - Pm + 1) 
(PCF) = $=1 'II ' 

(Ppn - Prn)(Ppn - Pm + 1) !! (Ppn - Psn)(Psn - Prn) 
S:¢p,T 

(5.36b) 

and is the pattern calculus factor (PCF) which obtains 
by applying the pattern calculus rules to the ~ pattern 
having ~n = ~n(P) - ~n(T) and ~n-l = [01'11-1; fi
nally, the functions f~~) , q = 0, I, ... , are given by 

set of n variables. The {J~'!..-;l) are the symmetric func
tions of order n - 1 discussed in Appendix A. 

f~~([mJn' [m]n-l) 

=:~:[P~n-l ft (Psn - ppn-l)/U (Psn-l - ppn-I)] 
'¢p,T s¢P 

'11-2 
= 1(-lyrcp~n-2)(Pln'" Ppn'" fir'll'" Pnn) 

a=O 

x {J~':..-;l)(Pln_l ... Pn-In-I), (5.36c) 

where the cp~n-2) are the elementary symmetric func
tions of order n - 2 in the n - 2 variables PIn' .. 
Ppn ' .• Prn ..• Pnn' where the notation Ppn and Prn 
designates that these variables are omitted from the 

x det 

The reduced matrix element of Eq. (5.3Ib) for 
oc = n - I is not obtained from Eq. (5.36a). It has the 
very simple form as follows: 

[1 0 -1] -4- (_I)n-t(nj(n - l)]t(PCF), 
[ 

(p,T) ] 

(n - 1, n - 1) 
(5.36d) 

for p =F T. 

Class c 

These are the operators which are extremal in their 
lower patterns and have the upper patterns with ~ = 
[0]: 

, (5.37a) 

I;r:..'p-l([ m ]'11) 

g~W([mJn' [m]n-l) 

I~(~_p)_l([m]n) 

g~p-p)([mJn, [m]n_l) 

where N~"!lp is the invariant normalizatio.n operator given by Eq. (5.8b); (peF) is the pattern calculus factor 
appropriate to the ~ pattern for ~n = (OJ'll' ~n-l = ~n-l(OC) - ~n-l({J) and is given by 

[ 

'II Ji II (Psn - PPn-l)(Pan-l - P.n + 1) 
(PCF) = . s=1 '11-1 ' (5.37b) 

(P«n-l - Ppn-l + l)(P«n-l - PPn-l + 2) !! (P«n-l - Psn-l + l)(Psn-l - PPn-1 + 1) 
81'«,P 

g~~([m)n' [m)n-l) =~I[P~n II (Psn-l - PTn + 1)/U (Psn - Pm)] 
81'«,P s*r 

(5.37c) 

Equations (5.37b) and (5.37c) are correct only for oc =F fJ =F n. However, the form (5.37a) is still valid for IX < fJ = n 



                                                                                                                                    

CANONICAL UNIT ADJOINT TENSOR OPERATORS IN U(n) 2389 

and (:J < oc = n with the modified factors as follows: 

(PCF) = [: -) 11 (Pan-1 - Pan + 1) / 

n-l ]! !! (Pan-1 - Psn-1 + 1) , (5.37d) 
sf'a 

g~~([m]n' [m1n-l) 

= ( -) ~1[P~n fi (Psn-l - Prn+ 1) If{ (Psn - PTn)] 
sf'« 8f'r 

n-2 
= I(-I)" 

,,=0 -----X cp~n-2)(Pln_1 + 1 ... P",n-1 + 1 ... Pn-1n-l + 1) 

X (:J!::~-1(P1n ... Pnn), (5.37e) 

for oc < {:J = n, 

(PCF) = [( -) 11 (Psn - PPn-1) / 

n-1 J! 1] (Psn-l - Ppn-l + 1) , (5.37f) 
sf'P 

X det 

g~~([m]n' [m]n-l) 

n [ n-1 In] = (-\~1 P~n.IT (Psn-l - Prn + 1) !1 (Psn - Prn) 
sf'P sf'1 

n-2 
=I(-l)" 

,,=0 

X cp~n-2)(P1n_l + 1'" ~ ... Pn-ln-l + 1) 

(S.37g) 

for (:J < oc = n. 
Observe that g(OI = g(l) = 0 for all oc ~ {:J = 1 2 11./J ap' ,... " 

... , n - 1, so that the class of reduced matrix ele-
ments (S.37a) for p = n - 1 (the generator operator 
pattern) and oc =F (:J = 1,2, ... ,n - 1 vanishes on 
all labels. 

Class d 

These are the operators which have upper and lower 
patterns with Ll = [0]; their matrix elements are the 
most complicated: 

, (S.38a) 

where 

I~~rl([m]n) 

D~O)([m]", [m1n-1) 

I~n-l)([m1n_1) 

Ii;Lpl-l([m]n) 

D~n-p)([m]n' [m]n-l) 

I~~-;:!l([m]n_l) 

D~IlI([m]n' (m]n-1) = det (S.38b) 

I~~~:!2([m ]n-1) I~(;!~1_3([m 1n-1) 

h S(qOI([mJn' [m]n_l) S(Il,n-a-ll([m]n. [m]n-l)_ 

;':~[mJ .. [mJ.-,) -~: ~,[P~n TI (Psn-l - Prn + 1)/f{ (Psn - Prn)] 
sf'P sf'r 

X [ppn-l 11 (Psn - ppn-l)/ff (Psn-1 - ppn-l)]. (S.38c) 
.f" .",p 

for oc = 1, 2, ... , n - 2, 

[ 

(p, p) ] 
[1 0 -1] - (_l)n-p-l[(n - l)N~:'}i[m]n)/n]-t det 

(n - 1, n - 1) I~~rl([m]n) 

g(OI([m]n, [m]n-l) 

I~~~_p)_l([m ]n) 

g(n-p)([m]n, [m ]n-1) 

(5.38d) 



                                                                                                                                    

2390 J. D. LOUCK AND L. C. BIEDENHARN 

where 

n-I 

= ( - ) I ( - I)" tp~n-l)(Pln_1 + 1 ... Pn-In-I + 1) 
a=O 

(5.38e) 

We still need to evaluate the sum (S.38c), and this 
can be done using the summation formulas of Appen
dix A. To obtain the result in the form (S.40) below, it 
is necessary to use the relations 

a 
m(n-lJ(x .. , X ) = ~ (-X ).tm(n) (X ... X ) 
ra I n-I "t., n ra-.t In' 

).=0 

a 
RCn}(X ... X ) = ~ X).RCn-l}(X ... X ) 
Pa I n "t., nPa-). I n-I . 

).=0 

The sum (S.38c) is given explicitly by 

sCq,r}([m]n' [m]n-I) 
n-2 q-).-2). • 

(5.39a) 

(S.39b) 

= 1!~-;l)([m]n_l) - I I I I (-1»).-' 
).=0 11=0 .=0 a=O 

X (:)P~~i_II_2(X)tp~~I)(y + 1) 

X et( -1)' tp~n)(x)p~;~~_T+2(Y»)' (S.40) 

in which Xi = Pin and Yi = Pin-I' Observe that the 
sum is zero for q = 0 or 1. 

The specification of the adjoint U(n): U(n - 1) 
projective operators is complete only when the pre
ceding list of reduced matrix elements is supplemented 
with a description of the vanishings of the respective 
matrix elements. It is convenient for the discussion to 
classify these vanishings into three types [we assume 
that the initial (state) labels in the reduced matrix 
element (S.34) are lexical]: (1) vanishings which occur 
because the final labels in the matrix element (S.34) 
violate lexicality; (2) vanishings which occur when all 
IR labels are lexical, but either one or the other, or 
both, of the normalization functions N~'!!p or N~~-(/.!.l 
vanishes; (3) all other vanishings. 

Vanishings of type (I) may also be called "pattern 
calculus factor vanishings," since they always arise 
from the vanishing of one or more numerator terms in 
the pattern calculus factor. These vanishings are 
easily recognized, and are not difficult to interpret. 

Vanishings of type (2), as well as type (1), can al
ways be traced to the following characteristic (for any 
n) of the direct product: The number of occurrences of 

the JR, [m] + [~(r)], in the direct product, [m] X 

[M], can be less than the multiplicity of the ~ pattern, 
l~(r)]. Type (2) vanishings occur only when a ~ 
pattern has a multiplicity > 1, and the vanishings are 
more difficult to recognize than are those of type (1). 
Hence, we choose to discuss them separately. 

The zeros of the normalization functions N~'!!p and 
Nn~;:.!:~ occurring in the explicit expressions for the 
adjoint reduced matrix elements are established in 
Appendix E. These results imply that the reduced ma
trix elements (S.34) vanish if: Class b: The sequence 
Sn-I = {mIn-1 - m2n-l, .... ,mn-2n-1 - mn-In-I} con
tains a. or more zeros (a. = 1,2, ... ,n - 2); Class c: 
The sequence Sn = {mIn - m2n ,"', mn- In - mnn} 
contains p or more zeros (p = I, 2,"', n - I); 
Class d: Either the sequence Sn-I contains a. or more 
zeros or the sequence Sn contains p or more zeros, or 
both (IX = 1,2,' .. ,n - 2, p = 1,2,' .. ,n - 1). 

Finally, there are the vanishings of type (3). These 
vanishings occur even when all the detailed conditions 
imposed by the reduction of the direct product are 
satisfied, i.e., for initial arbitrary states. In other words, 
a particular projective operator for which these vanish
ings occur is the zero operator. In the adjoint system, 
only the projective operators associated with the U(n) 
generators possess this property, i.e., 

[

en - 1, n - 1)] 
[1 () -1] = 0, 

(a., ~) 

(5.41) 

for IX =;f:. ~ = 1, 2, ... , n - 1. These zero operators 
are "intrinsic" to the generators: A generator cannot 
effect a shift ~n-I(IX) - ~n-I(P)' a. =;f:.~, of the 
U(n - 1) IR labels [m]n-I' 

6. THE EXTENDED PROJECTIVE OPERATORS 

A U(n): U(n - 1) projective operator can be general
ized by extending the domain of definition [the sets of 
U(n) and U(n - 1) IR labels of these operators]; 
namely, we introduce an extra label mnn- I into the set 
of U(n - 1) IR labels. It might appear, at this stage, 
that such an extension is but a formal construct which 
recognizes and enhances the similar roles played 
by upper and lower operator patterns of the 
projective operator. It is the purpose of this section 
to demonstrate that, quite to the contrary, the con
cept of extended projective operators provides 
an essential structural link between (nonextended) 
U(n): U(n - 1) projective operators and (nonextended) 
U(n - 1): U(n - 2) projective operators and, indeed, 
that extended projective operators have an inde
pendent existence. In particular, because these extended 
operators play a significant role for the understanding 
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of certain structural properties of the adjoint reduced 
Wigner coefficients of Sec. 5, we allocate this section 
to a brief discussion of the ideas. 

The idea which underlies the generalization of 
U(n) : U(n - I) projective operators was indicated in 
the earlier work2 on the development of the pattern 
calculus. It was recognized then that the pattern 
calculus rules could be extended to include n dots in 
row n - 1, in which case the shift ~nn(Y) from the 
lower pattern is assigned to this dot; the arrow pattern 
is then constructed just as before. One then assigns the 
partial hooks Pin > P2n > ... > Pnn' respectively, to 
the n dots of row n, while the partial hooks PIn-I> 
P2n-l> ... > Pn-In-l > Pnn-l, respectively, are as
signed to the n dots of row n - 1. Here Pnn-l appears 
as a new variable. Finally, one writes out the pattern 
calculus factor using rules (3)-(5) (cf. Sec. 2D). In this 
manner, an extended pattern calculus factor (PCF)ext 
is associated with each U(n): U(n - 1) projective 
operator. It was then observed2 that one recovers the 
ordinary pattern calculus factor (PCF) by the simple 
device of letting pnn-l go to - 00: (PC F) ext ~ (PCF) 
as Pnn-l ~ - 00. In particular, when the upper and 
lower operator patterns are extremal, one obtains the 
set of extremal U(n): U(n - 1) reduced Wigner coeffic
ients as the limit of the corresponding set of 
extended coefficients. 

Extended projective operators are completely de
fined by the rules of the extended pattern calculus 
when the upper and lower operator patterns are extremal. 
However, since the associated pattern calculus factor 
contains a new variable Pnn-l and it is not clear that it 
is meaningful to introduce this new variable into the 
Hilbert space of state vectors, we avoid the idea of 
state vectors in interpreting extended operators. 

There is another point of view which is vividly sug
gested by the pattern calculus and which admits of 
generalization: We introduce a point ([x]; [y]) = 
(Xl' x2, ... , Xn; YI' Y2' ... ,Yn) of the real, Euclid
ean space R2n. Next, we define the extended unit 
projective function of type [M]n, denoted by 

[
(r)n-l] 
[MJn , 

{Y)n-l ext 

(6.1) 

to be a real-valued function which is defined on all 
ordered pairs of points ([x']; [y']) E R2n and ([x]; [y]) E 

R2n. We denote the value of this function by the nota
tion 

The value (6.2) of the unit projective function (6.1) is 
defined to be 0 unless: 

(a) The points ([x'], [y']) and ([x], [y]) consist of 
ordered integers 

Xl ~ Yl ;;:: X2 ;;:: Y2 ;;:: ... ;;:: Xn ;;:: Yn' (6.3a) 

X{ ;;:: y{ ;;:: X~ ;;:: y~ ;;:: ... ;;:: X~ ;;:: y~; (6.3b) 

(b) the point ([x']; [y']) is related to the point 
([x]; [y])by 

[x'] = [x] + l~(r)], (6.4a) 

[y'] = [yJ + [~(y)], (6.4b) 

where ~(r) and ~(Y) denote, respectively, the ~ 
patterns of the upper and lower operator patterns of 
the function (6.1). 

Finally, for (r) and (1') extremal patterns, the value 
(6.2) of the unit projective function (6.1) is defined to 
be the result obtained by applying the extended pattern 
calculus rules and using the identification 

Pin = Xi + n - i, Pin-l = Yi + n - 1 - i, (6.5a) 

for i = 1,2, ... ,n; or, equivalently, 

min = Xi' min-l =Yi' (6.5b) 

More generally, we use the term projective function 
to designate any real-valued function P whose domain 
of definition is the set of all ordered pairs of points of 
ordered integers. The value of such a function is 
denoted by 

1([X'J)lpl((X])\ 
\ (y'] [y] I (6.6) 

The product of an ordinary point function I (de
fined on the ordered points (6.3)] with a projective 
function P is denoted by fP and is defined to be the 
projective function with values 

, , I((x'])/ p I((X])\ 
f«(x 1; [y ]) \ [y'] [y] /' (6.7) 

Similarly, PI is the projective function which has the 
value obtained from (6.7) by replacing f«(x'], [y']) 
withf«x]; [yD. (Note thatlP ~ PI, in general.) 

The product of two projective functions, P' and P, 
is denoted by P'P, and is defined to be the projective 
function with values 

( G;:DI P' pi G;D) 
=[~,t~']( G;::DI P' IG;:D >( G;:DI p IG;D)-

(6.8) 
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In particular, for the types of projective functions 
which we consider, the sum in Eq. (6.8) is always 
finite, so that no problems of convergence arise. 

The projective function denoted by pt is defined to 
be the projective function with values 

The preceding rules, which serve to define the algebra 
of projective functions, are clearly designed to duplicate 
certain aspects of the algebra of the nonextended 
U(n): U(n - 1) projective operators. Indeed, if one 
deletes variable Yn' then we have simply enumerated 
various properties of nonextended U(n): U(n - 1) 
projective operators using a different language. 

Next, we define the null space of the extended unit 
projective function (6.1): Let ([xl, [yJ) denote a point 
which satisfies the order relation (6.3a). The null space 
of the extended unit projective function (6.1) is defined 
to be the set of all points {([x]; [Y])} for which the 
value (6.2) is zero. In particular, the null space in
cludes all points ([xl; [y]) such that the point ([x']; 
[y']) defined by Eqs. (6.4) does not satisfy the order 
relation (6.3b); however, there are, in general, other 
points in the null space. 

The preceding discussion is an elaboration of the 
various definitions relating to the idea of projective 
functions and the definitions of the operations of: 
(i) multiplication by a "scalar," i.e.,f P or Pf; (ij) the 
addition of two projective functions P' + P; (iii) the 
distributive law with respect to scalar multiplication 
(f + g)P = fP + gP; and (iv) the multiplication of 
two projective functions, P'P. [While we did not define 
operations (ii) and (iii) explicitly, it is clear how this is 
done.] We now turn to the more interesting problem 
of constructing unit projective functions. 

The formal theory we are developing already pos
sesses a great deal of explicit content: Namely, we 
know completely and uniquely the class of unit pro
jective functions which are defined by the rules of the 
pattern calculus. The problem is to give the more 
general construction for those cases where the pattern 
calculus fails to give the complete answer. Further
more, we are not interested in constructing an arbitrary 
algebra, but rather one which relates directly to the 
U(n): U(n - 1) projective operators about which we 
already have a great deal of structural information. 

For purposes of discussion, let us assume that we 
have succeeded in constructing the canonical set of 
U(n) Wigner operators. Then the canonical U(n) 
Racah functions [Eq. (2.46)] are also determined. 
(Even if the explicit construction is unknown, the 
existence of such Racah functions is firmly established.) 

We can therefore define the extended unit projective 
functions recursively by the coupling rule: 

[[MI ~ 11.(PJ] = [[1 . OJ] {RU}[[~I] , 
ext ext {Rd ext 

(6.10) 

where {Ru} denotes (symbolically) the fundamental 
U(n) Racah function and couples the upper operator 
patterns and {Rt} denotes a similar fundamental U(n) 
Racah function, but couples the lower operator 
patterns. More precisely, the result expressed sym
bolically by Eq. (6.10) is as follows: 

[ 

(r') ] 
t5"a [M] + Iln(p) 

(1") ext 

= I {([M] + Iln(p») ([1 PO]) ([Ml)) 
T,(n (r') (n 
P,(y) r U 

X {CMI ~,tJ+ »(\~I) t 
X [[1 r 0]] [~J] (6.11) 

fJ ext (I') ext 

In this definition, the U(n) Racah functions { ... } play 
the roles of scalar multipliers introduced earlier. Let 
us emphasize once more the fact that in this result 
{ .. '}u and { .. '}t are each fundamental U(n) Racah 
functions: The indices u (for upper) and t (forlower) 
simply designate that, in evaluating Eq. (6.11) be
tween the points ([x']; [y'D and ([x]; [yD, the Racah 
function labeled with index u is to be evaluated on 
[x'], while the Racah function labeled with index tis 
to be evaluated on [y']. Thus, for the same operator 
pattern entries in both {"'L and { .. '}t and for 
[y'] = [x'], we have the result 

{ ... }u([x']) = { ... M[x']). (6.12) 

We remark that Eq. (6.1l)-together with its analog 
for coupling [0 -1]ext-suffices to define all extended 
unit projective functions, starting from the known 
results for [i", 0n-k]ext and [Ok - in-]kext. 

At this stage of the development, the introduction of 
the extended unit projective functions is ad hoc to a 
certain extent. However, we are justified in following 
this course if the quantities so introduced can be 
demonstrated to have a significant structural relation 



                                                                                                                                    

CANONICAL UNIT ADJOINT TENSOR OPERATORS IN U(n) 2393 

to the canonical U(n): U(n - 1) reduced Wigner 
coefficients which we seek. It is our intent to dem
onstrate this relevance explicitly for the adjoint 
U(n): U(n - 1) reduced Wigner coefficients. 

Next, we wish to note (without giving the details of 
the proofs) the following important properties which 
the extended projective functions, defined by Eq. 
(6.11), possess; 

Orthogonality relations: 

[
(1')] [(r')]t 

~ [M] [M] = t5(f)(f,)I([), 

(y) ext (y) ext 

(6.13a) 

I [~]]t [~]] = t5(y)(y,)I;y); 

(n (y) ext (Y') ext 

(6.13b) 

boundary property for [y] = [x]: 

I([x] + [Ll(I')])1 [en] I([X])\ _ t5 I' x 
\ [x] + [Ll(y)l [M] [x] I - ([)(y) (y)([ D· 

(y) ext 

(6.14) 

In Eq. (6.13a), l(n is a scalar function whose values 
depend only on the variables [x] of the point ([x]; [y]). 
It is defined as follows: l(f)([x]) = ° for each [x] 
which belongs to the null space of the U(n) Wigner 

operator /(1') \t 
~~y ; otherwise, it has value 1. 

Similarly, l(y) is a scalar function whose values depend 
only on the variables [y] of the point ([x]; [yD. It is 
defined as follows: l(y)([Y]) = ° for each [y] which 

belon~ to ~~~l: ~::~~~~t :::)v::n~' opemM 

The occurrence of the "null-space functions" of 
U(n) Wigner operators in Eqs. (6.13) and (6.14) 
assures that the null spaces of extended unit projective 
operators will relate in a definite manner to the prop
erties of the two U(n) intertwining numbers asso
ciated with the triples of IR labels [x] + [Ll(r)], [M], 
[x] and [y] + [Ll(y)], [M], [Y], respectively. 

The method of proving Eqs. (6.13) and (6.14) is as 
follows: One first verifies directly that these relations 
are correct for the [1 O]ext and [0 -1 ]ext projective 
functions (a nontrivial task!); second, one assumes 
the validity of Eqs. (6.13) and (6.14) for all labels [M] 

which sum to some fixed integer N; finally, one uses 
definition (6.11) (and its counterpart for [0 -l]ext) 

and the orthogonality properties of U(n) Racah func
tions to prove that Eqs. (6.13) and (6.14) hold for all 
labels [M] which sum to N + 1 (N - 1). The general 
result then follows by induction. In this connection, 
we wish to note explicitly property (6.14) for the 
fundamental projective functions (established from 
the explicit pattern calculus expression): 

I([x] + Lln(P») \ [[1 PO]] I([X])\ = t5paI~([x]), 
\ [x] + Lln(lX) [x] I 

IX ext 

(6.15a) 
where 

I~([xD = 0, if Xa- 1 = xa' 

= 1, otherwise; (6.15b) 

I([x] - Lln(P») \ [[0 P-l]] I([X])\ = t5 1'([ ]) 
\ [x] - Lln(lX) [xl I pii ii X , 

ii ext 

where 

I~([xD = 0, if Xa = Xa+l' 

= 1, otherwise. 

(6.16a) 

(6.16b) 

There are two important limit properties relating to 
the extended projective functions. It is these properties 
which demonstrate the relevance of the definition of 
extended unit projective functions to U(n):U(n - 1) 
reduced Wigner coefficients. We state the results and 
then discuss the method of proof, indicating the 
limited extent to which we have, in fact, established the 
general proof: 

lim 1([X]n + [Ll(n]n) 1 [i~]_l] \([X]n)\ 
Y,,-+-oo \ [Y]n + [Ll(Y)]n, (Y)n~l ext [Y]n I 

= I( [X]n + [Ll(n]n )1 [i~]_lJ I([X]" )\ 
\ [Y]n-l + [Ll(Y)]n-l (Y)n~l [Y]"-l /' 

(6.17a) 

lim I( [x]n + [Ll(r)]n )1 [i~]_l] 1([X]n )\ 
"',,-+-00 \ [Y]n-l + [Ll(Y)]n-l (Y)n~l [Y]n-l, I 

= t5[y]n-l[n,,-l 

I 
1 [

(nn-2] \ X ([X]n-l + [Ll(n]n-l) [Y]n-l 1([X]n-l). 
\ [Y]n-l + [Ll(Y)]n-l () [Y]n-l I 

Y n-2 ext 

(6.17b) 
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Equation (6.l7a) asserts that, in the limit of large 
negative y n' the value of an extended unit projective 
function is a U(n): U(n - I) reduced Wigner coefficient. 
This is just the property discussed at the beginning of 
this section, and known to be valid for the class of 
extended projective functions having extremal oper
ator patterns. Equation (6.17a) asserts the validity of 
this property, in general. 

Equation (6.17b) is a completely new result. It 
asserts that, in the limit of large negative xn (= Pnn), 
a U(n):U(n - I) reduced Wigner coefficient limits to 
zero for [r]n-l =;f:. [Y]n-l, and for [r]n-l = [Y]n-l it 
limits to the value of definite extended unit projective 
function defined on R2n-2. It is this property which will 
give a precise meaning to operator patterns. 

The proofs of Eqs. (6.17) depend on the validity 
of the conjectured relation (3.6) as applied to the 
particular cases [M'] = [I 0] and [M'] = [0 -I]. 
If this conjectured relation is correct, the proofs of Eqs. 
(6.17) follow from Eq. (6.11) by using an induction 
argument which parallels the one outlined previously 
in this section. 

Thus, we can claim to have proved Eqs. (6.17) for 
the following important cases: (a) the class of all unit 
projective functions having extremal upper and lower 
operator patterns and (b) the class of all adjoint ([ M] = 
[I 0 -I)) unit projective functions [since Eq. (3.6) 
has been demonstrated to be valid for the adjoint 

Indeed, we have carried out this construction and 
proved directly the properties expressed by Eqs. (6.13) 
and (6.14). These extended Wigner coefficients are 
orthogonal, they satisfy the boundary property (6.14), 
and they become the ordinary Wigner coefficients in 
the limit m21 --+ - 00. The set of extended U(2) Wigner 
coefficients, in other words, is a well-defined structure 
having an independent existence of its own. 

One can go still further. We can use Eq. (5.17) (for 
q = 1) to calculate the matrix elements of the set of 

r , )1 12 m33 M 
13 

Racah functions]. Although we lack a general proof of 
Eqs. (6.17a) and (6.17b), the remarkable fact that they 
are correct for the aforementioned nontrivial cases 
requires that these relations be noted. 

Properties (6.17a) and (6.17b) can be summarized 
by writing 

where the arrow designates restriction of the domain 
of definition of the respective projective functions by 
first letting Yn --+ - 00, and then letting Xn --+ - 00. 

Let us also note that the existence of the limit of a 
(nonextended) projective function at level n implies 
the existence of an extended projective function at level 
n - I: Equation (6.17b) is a quantitative statement 
of this property. 

We conclude this section with some comments 
relating to U(2) and U(3). For n = 2, the U(2): U(1) 
projective functions are the functions whose values 
are the ordinary SU(2) Wigner coefficients.26 But, in 
this case, the Racah functions, in particular the 
fundamental (spin t) ones, are known. We can there
fore construct explicitly, using Eq. (6.11), the set of 
extended Wigner coefficients, 

(6.19) 

"extended generators," {E~xt), i,j = 1,2, .. '}. How
ever, the commutation relations of these "extended 
generators" close only in the limit m2J --+ - 00. This 
suggests strongly that extended Wigner coefficients 
are not group-theoretical objects; rather, only their 
limits possess group properties. 

We conjecture [Eq. (6.l7b)] that these extended 
U(2) Wigner coefficients appear in stilI another con
text, namely, as the limiting structure of the canonical 
U(3): U(2) reduced Wigner coefficients: 

Y12 Y22 

Yn 

m~3 JI [ m~ Y12 
Yn 

Y22] l(m13 m23 
)\ (6.20) 

m12 m22 / 
ext 
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(We repeat that this relation has been verified in many 
special cases.) 

7. A PROPOSITION CONCERNING THE 
CANONICAL WIGNER OPERATORS 

The purpose of this section is to tie together various 
properties of the explicit adjoint Wigner operators 
developed in Sec. 5. We are now able to indicate the 
structural principle which underlies the origin of 
operator patterns, including those which belong to the 
same multiplicity set. Furthermore, we wish to dem
onstrate how this set of operators accords with more 
general concepts, including null space and conjugation 
properties and that-far from being arbitrary or ad 
hoc-this set is, in fact, canonical. That is to say, the 
set of operators constructed in Sec. 5 will be shown to 
involve no free choice, aside from the primitive order 
1, 2, ... , n of the Weyl subgroup labeling. 

A. An Operational Definition of Operator Patterns 

Operator patterns were originally introduced (Ref. 
5, Paper IV) in analogy to the state-vector Gel'fand 
patterns: The labels of a complete set of Wigner 
operators of prescribed IR labels [M] were shown to 
be in 1-to-1 correspondence with the Gel'fand pat
terns of the state vectors; furthermore, one of the 
significant properties of operator patterns was demon
strated to be the shift property [m] ...... [m] + [A(r)]. 
The assignments of operator patterns to Wigner 
operators is then already unique for the class of oper
ator patterns which has multiplicity one (the A pattern 
then determines uniquely the operator pattern). How
ever, when the multiplicity is greater than one, we have 
a number of distinct operator patterns to assign to an 
equal number of distinct Wigner operators (the ones 
having a prescribed A pattern for prescribed [M]), 
and we have thus far stated no general property of 
Wigner operators whereby the mapping: (patterns) +:t 
(operators) is uniquely determined in all cases. 

The properties of the set of adjoint Wigner operators 
developed in the preceding sections provide us with 
the first definitive clue as to the general origin of the 
mapping of patterns onto operators: The assignment of 
operator patterns to Wigner operators is uniquely in
duced by the limit properties of thi' Wigner operators. 

Let us illustrate how the limit property could be 
used to assign operator patterns in the simplest case, 
U(2). The number of Wigner operators with IR labels 
[M12 M 22] is M12 - M22 + 1, and a unique operator 
pattern is assigned to a particular Wigner operator in 
the set in accordance with the shift [601 602] which 
the particular operator effects on the IR labels [m12 m22] 
of a generic state vector. We wish now to demonstrate 
how the operator label could be assigned by limits. 
For this purpose, we consider initially that the mem
bers of the set of orthon0tmaf Wigner operators are 
enumerated by an index <1: 

Since these operators are unique, their matrix elements 
are fully known [the U(2) Wigner coefficients] on 
general states. Next, we take the limit m22 ...... - 00 in 
the set of matrix elements of the operators (7.1) 
corresponding to Mu fixed, but having <1 ranging 
over the values 1, 2, ... , M12 - M22 + 1. We find 
that the matrix elements of all but one of the operators 
vanish and that all the matrix elements of this one 
operator limit to unity. We assign this operator the 
operator pattern Mll , and observe that the operator 
so labeled is precisely the one which effects the shift 
A = [Mll' M12 + M22 - Mn]. Repeating this pro
cedure for each Mll = M12 , M12 - 1,'" ,M22 , we 
are able to assign uniquely the operator patterns 
r 11 = M12 , M12 - 1, ... , M22 to the Wigner oper
ators (7.1). The final set of fully labeled Wigner 
operators is then characterized by the limit property 

lim /\(m12 + Al+mM22 + 60
2)1012 r

ll 

M211(m12 m22)/\ = I5Mllrll , (7.2) 
m22-+- OO mll 11 mn 

M11 

--~~---------------------------------
where 601 = r n , 602 = M12 + M22 - r 11 • We have 
thus demonstrated that: The label r 11 induced by 
limits is precisely the label assigned by the shift property. 

Now let us show how the concept of a limit property 
can (and hence must) be used to induce all the operator 
pattern labels of the adjoint Wigner operators. This is 
accomplished by induction on n. Thus, we start with 
the explicit U(3): U(2) reduced Wigner coefficients in 
which the lower U(2) operator patterns have been 

completely assigned, but we use an index <1 = 1, 2, ... , 
8 to enumerate the eight adjoint Wigner operators 
(1 0 -1). Thus, the projective operators are des
ignated by 

[1 ~ -1] « / ' «= 1,2, .. · ,8. (7.3) 
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The matrix elements of these operators are just the ones 
constructed explicitly in Sec. 5 (for n = 3), but now 
identified by an arbitrary index a in place of upper 
operator patterns, since it is our aim to illustrate how 
the limit properties of the matrix elements themselves 
induce the upper pattern assignments. 

We now take the limits, P33 ---+ - 00 followed by 
P22 ---+ - 00, of the matrix elements of all sixty-four 
U(3): U(2) projective operators. The results are as 
follows: For [ocP] = [1 -1], the matrix elements 
of all but three of the operators vanish: The matrix 
elements of each of these three operators has a distinct 
limit; these limits are, in fact, the matrix elements of 
the U(2): U(l) projective operators 

[I :-J 
where r takes three values 1, 0, and -1. This limit 
procedure has therefore assigned the labels (1 1~1) to the 
respective operators such that 

r 
-1 

o (7.4) 

-1 

y 

We now go back to the originaJ matrix elements, 
set [ocP] = [1 0], and repeat the limit procedure. We 
find that the matrix elements of all but two of the 
operators vanish and, in particular, that the matrix 
elements of the three already labeled operators also 
vanish. The two operators which have nonzero matrix 
elements in the limit are found to have matrix elements 
which limit, I-to-l, to the matrix elements of the 
U(2): U(1) projective operators 

where r takes on the two values 1 and o. We assign 
these two operators the upper pattern in accordance 
with the limit 

r 

o : -I ~ [I >l (7.5) 

y 

Again we repeat the procedure, this time for [oc/3] = 
[0 -1]. The matrix elements of the already labeled 

operators vanish, but of the three unlabeled operators 
the matrix elements of two limit, I-to-l, to the matrix 
elements of 

where r takes the two values 0 and -1. Thus, the 
assignment 

r 
-1 

o (7.6) 

o -1 

y 

is induced. 
In the last step, we repeat the procedure with 

[ocP} = [0 0]. The matrix elements of the seven al
ready labeled operators vanish, but the remaining 
operator has matrix elements which limit to those of 

It is assigned these labels in accordance with 

o 
o 0 

o 
o 0 

o 

(7.7) 

For the six unique operators (those having ~ = 
permutation of [1 0 -1]), the preceding assign
ments of operator patterns by limits are precisely the 
same as those determined by the ~ patterns. However, 
the limit procedure also assigns a unique operator 
pattern to each of the two operators having ~ = 
[000). The projective operator labeled by the degree 
index q = 1 is the one with property (7.7); the other one, 
labeled by the degree index q = 2, is the one with 
property (7.4) for r = o. 

Having assigned all operator patterns for n = 3 (in 
the adjoint system), we now repeat the procedure for 
the U(4): U(3) projective operators (the limit pro
cedure is now P44 ---+ - 00 followed by Pa3 ---+ - 00). 
We continue this process upward to n and arrive at the 
following general result: The n(n - 1) adjoint Wigner 
operators having ~ pattern equal to a permutation of 
[1 () -1] are assigned operator patterns by the 
limit procedure in complete agreement with those 
assigned by the d pattern; the n - 1 adjoint Wigner 
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operators having /). = [OJ are assigned operator 
patterns given by 

(
[1 0 -1])_( [1 0 -1]), (7.8) 

q (n-q,n-q) 

where q is the degree index introduced in Sec. 5 and 
the notation on the right-hand side of Eq. (7.8) is that 
introduced by Eq. (4.1). 

One now observes that, in general, the concept of 
inducing operator patterns by limits depends crucially 
on properties (6.17a, b). Taking the limit 

Yn-l = mn- 1 n-l --00 

of Eq. (6.17b) and using property (6.17a) for n
n - 1, we can symbolize the result as follows: 

(7.9) 

in which the arrow designates the restriction of the 
operator which obtains upon restricting the domain of 
definition by taking the two limits, first Pnn - - 00, 

then Pn-l n-l - - 00. 

If we regard the lower operator pattern in Eq. (7.9) 
as having already been assigned [by building up from 
U(2)], then Eq. (7.9) is an expression of a very general 
branching law whereby the upper pattern assignments 
are induced from the lower ones as follows: Under 
restriction of the domain of definition by taking 
limits, a U(n): U(n - I) projective operator either 
restricts to the zero operator or to a U(n - I): 
U(n - 2) projective operator. This branching uniquely 
assigns all upper operator patterns from the lower 
ones; hence, by induction on n, all operator patterns 
arise in precisely this way. This result has been proven 
so far only for the class of all unique operators and for 
the class of all adjoint operators. 

B. The Conjugation Properties of the Adjoint 
VVigner ()perators 

Having uniquely induced the assignment of operator 
patterns to the set of adjoint Wigner operators of Sec. 
5 through the use of limit properties, we next turn to 
the question of conjugation properties. We have 
made no use of conjugation properties in developing 
the adjoint Wigner operators-the classification by 
degree uniquely determined the operators in the multi
plicity set having /). = [0). That this classification by 
degree accords with the classification by sharp con
jugation is therefore a property of the set which must 
be proved. 

The U(n) conjugation operator e is defined in 

Appendix F. In particular, the following conjugation 
properties of the adjoint Wigner operators are derived: 

~ (p,T) ) 
e [1 0 -1] e-1 

(i,j) ~ ~ (_l)"+HH+~' [1 0 -1] \ 
(n - T + 1, n - p + 1) 

(j, i) / 

(7.10a) 
for p ~ T = 1,2, ... , n and all i, j; 

e~1 (~'P~1]\e-l=(-lt+i-i+P~1 (~'P~l]\, 
\l (i,j) / \ (j, i) / 

(7.10b) 
for p = 1,2,"', n - 1 and all i,j. 

We remark that the two U(3) adjoint Wigner 
operators having /). = [000] have sharp conjugation 
parity; they must therefore be precisely (except pos
sibly for phase27) the previously determined (Ref. 5, 
Paper V) (2 1 0) adjoint operators upon making 
the following identifications28 : 

= 

= 

1 1 

Q( fJ 
y 

1 

1 

2 0 

1 

Q( fJ 
y 

1 

1 

1 

a 
a a 

0 

Q( - 1 fJ-l 
Y - 1 

a 
-I 

y-l 

(7.11b) 
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Let us summarize the important conclusions estab
lished by the preceding results: The classification of 
the adjoint Wigner operators (in the multiplicity set 
having d = (0)) by degree uniquely determines the 
operators. In consequence of this classification, the 
following two properties obtain: 

(1) Operator patterns are uniquely induced by the 
branching law (operator splittings) which results by 
taking limits; 

(2) classification by sharp conjugation parity is 
achieved automatically. 

There is still one set of properties possessed by the 
adjoint Wigner operators which requires further dis
cussion-the null space aspects of these operators. 
This is the subject of the concluding section. 

C. The Adjoint Splittings Induced by Null Spaces 

From the results obtained so far, it would be not 
unreasonable to assert that the resolution of the 
adjoint operator multiplicity by the now operationally 
defined operator patterns is canonical. But this des
ignation can only mean that no free choices (aside 
from the equivalence class of primitive orderings of 
the Weyl subgroup restrictions: n, n - 1, ... , 1) have 
been imposed. One might argue that choosing to 
classify operators by degree is a free choice. It is the 
purpose of this concluding section to demonstrate 
from a completely different approach that the degree 
classification is indeed canonical. 

The basic idea which underlies this new approach 
can be easily understood by example. Consider the 
two U(3) adjoint operators: 

( -: 0 _} ( :-'_) 

When operating on an IR of the form [p 0 0], for 
example, one knows that the multiplicity, for any 
operator, is at most one. Clearly, when we operate 
on this subspace, one of the two adjoint operators 
must vanish (the two operators cannot become the 
same since they are orthogonal); this can only be the 
non generator 

( 
1 0 -1 ) 

1 0 -1 ' 

aside from the special case [0 0 01 where both 
operators vanish. From the explicit normalization of 
the 

operator, it is easily seen that this operator annihilates 
the space [m13 m23 mss] characterized by equality of 
two, or more, mi3' Let us denote this space that is 
annihilated, the null space .N' of the operator 

Expressed intuitively (and imprecisely), the idea we 
seek to exploit is this: An operator is to be character
ized canonically by its associated null space. 

There are immediate difficulties with this idea which 
we must remove by employing a sharpened language. 
Let us first define two tensor operators to be similar 
if the two tensor operators: (i) transform according to 
the same Gel'fand pattern and (ii) possess the same 
d pattern in U(n). It is immediately clear that similar
ity is an equivalence relation. 

The problems which arise in any attempt to charac
terize tensor operators by their null spaces are of two 
related types: Firstly, tensor operators admit of two 
distinct types of scalar multipliers, (a) numerical 
scalars and (b) numerically-valued (scalar) functions 
of the U(n) invariant operators; secondly, the limita
tions on the functional dependence of the scalar 
multipliers, and, indeed, of the tensor operators 
themselves, has not been made sufficiently explicit. 
It follows from Eqs. (5.3)-(5.6) that there exists an 
orthogonal basis for all adjoint tensor operators 
which possesses matrix elements that are square roots 
of rational functions of the Gel'fand labels; hence, it 
is not an essential limitation to restrict our attention 
to that class of tensor operators whose norms are 
polynomial functions of the invariant operators {lot}. In 
particular, all null spaces of a given tensor operator 
of this class must be obtained from the zeros of its 
norm. 

Having made the admissible class of tensor opera
tors explicit, we can now turn to the problem posed 
by the existence of scalar' (polynomial) functions. 
Clearly, the existence of such multipliers can change 
the null space of an operator arbitrarily. The problem 
then is to find a procedure to distinguish these 
"spurious" or "nonintrinsic" zeros from the "in
trinsic" zeros that are to characterize the operator. 

Consider the set of all similar tensor operators 
having polynomial norms, {Oil. Two such operators 
are defined to be equivalent, °1""" °2, if there exist 
polynomial functions of the invariant operators, PI 
and P2 (Pi ~ 0), such that the relation 

(7.12) 

is valid on all U(n) representation spaces. 
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That this is an equivalence relation is again verified 
directly. 

[The existence of one pair of polynomial functions, 
PI and P2 , implies the existence of arbitrarily many 
since P; = Pi x (polynomial), i = 1, 2, would serve 
just as well. To simplify the situation, these common 
factors are considered to have been canceled out.) 

Equivalent tensor operators may have distinct null 
spaces. What would be desirable next would be to 
select from each equivalence class an operator having 
the "largest" nonnull space. Let us make this con
struction precise. 

Consider an equivalence class of tensor operators; 
from this class choose two distinct operators. Their 
null spaces either are identical or they differ. If the 
former, choose the operator whose norm is of lesser 
degree (or either operator, if of the same degree). 
If the null spaces differ, choose the operator having 
lesser degree (or either, if the degrees are equal): 
Call this operator (')1, and denote its norm by N1 ; 

call the other operator (')2, and denote its norm by N2 . 
Then, from Eq. (7.12), we have the polynomial identity 

(7.13) 

Since PI and P2 had no common factors, we necessarily 
have then 

(7.14) 

where K is a polynomial in the invariant operators. 
This shows, however, that the new operator 

has a polynomial norm (= K) and is in the same equiv
alence class as (')1 and (')2' But Eq. (7.14) shows that 
the norm K vanishes only on the intersection 
.N\ n Jf 2' Hence, from .any two operators in the 
equivalence class, we have constructed an operator 
whose null space is the intersection of the null spaces of 
the two equivalent operators. 

Proceeding in this way through all operators of the 
given equivalence class, one arrives at a representative 
b of this class J(" having the null space n.'Jj€J\, Jf«(,) i)' 

For the adjoint tensor operators we can assert: 

Lemma: The representative (adjoint) tensor operators 
have null spaces that are simply ordered. 

Proof" By construction from the canonical basis, 
see Appendix E. 

Several further properties of the representative 
operators of a given equivalence class are easily 
obtainable from the results of Appendix E. In partic-

ular, one sees that there exist representatives for each 
null space .N'p of Appendix E. The null spaces do 
not, however, completely characterize the representa
tives. In fact, representatives from distinct equivalence 
classes may have the maximal null space .N'1' 

In consequence, we define next the concept of 
decomposability. The representative b of a class J(, 

whose null space .N'(b) is maximal is termed decom
posable if it can be written 

jab = jlbl + j2b2' (7.15) 
1 

where the (1;)2 are polynomials (I; ~ 0) over the in-
variant operators such thatja ¢: 0 on .N'1; b 1 and b2 
are representatives whose null spaces are distinct. 
Otherwise, the representative b is indecomposable. 

Remark: Decomposability relates to a specific set of 
representatives; the maximal null space similarly re
lates to the specific set. In applying the concept of 
decomposability, we will successively decrease the 
space of admissible operators; see below. 

Using now the explicit construction of the canonical 
adjoint operators and the results of Appendix E, we 
easily see that indecomposable operators exist and 
that, moreover, an indecomposable (adjoint) tensor 
operator is unique to within scalar multipliers that 
vanish only on the maximal null space. (Hence, upon 
norming to 1, we could obtain a unique basis oper
ator.) 

Having obtained the indecomposable operator be
longing to the maximal null space of the adjoint tensor 
operators, one next considers the orthogonal com
plement to this operator and then repeats the whole 
construction to identify that indecomposable operator 
belonging to the next largest null space. This process 
identifies, step-by-step, precisely those operators pre
viously designated as canonical. 

We summarize this canonical identification of the 
adjoint unit tensor operators in the following form: 

Theorem: The set of indecomposable representative 
adjoint operators is uniquely determined by the 
associated simply ordered set of null spaces: .N'1 :::> 

.N' 2 :::> ••• :::> .N' n-l, .N' p = {all IR spaces with labels 
[m] in which p + 1 or more min are equal}. This 
construction is canonical and agrees precisely with 
that induced by (a) degree and (b) conjugation parity. 

We remark that, although this construction by null 
spaces is canonical, it does not, of itself, associate any 
particular upper pattern labels with a given canonical 
operator. The direct association of upper pattern labels 
is a special feature of the use of limits and demon
strates that such concepts are equally important. 
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APPENDIX A: SUMMATION FORMULAS 

In dealing with the explicit matrix elements which 
arise in the unitary groups, as well as the orthogonal 
groups,29.30 the following sums are encountered fre
quently: 

i~[X~/g(Xs - Xi)] == (-I)n-
l
Pa_n+1(x), (AI) 

for q = 0, 1, ... , in which Xl ¢ X2 ¢ ... ¢ Xn are 
arbitrary numbers. In this appendix, the general 
expression for the P(x) is obtained in terms of the ele
mentary symmetric functions 

CPo(x) = 1, CPl(X) = !xi , CP2(X) = !xix;,···. 
i ;< j 

(A2) 
We employ a technique previously used.29 Define a 

function I of a complex variable z by 

Jiz) = (-I)nza/fl (xs - z) (A3) 

so that 

PQ-n+1(X) = ~ r jiz) dz, 2m Jo (A4) 

where the integration is counterclockwise around a 
path C which encloses all the simple poles of j(z) 
(located at the points Xl ¢ X2 ¢ ... ¢ Xn). We now 
use the fact that 

r Pl(Z) dz = 0 
Jo P2(Z) 

(AS) 

for Pl(Z) and b(z) polynomials in which the degree of 
PI is less than the degree of b by at least 2, where C 
encloses all the roots of P2' Thus, we immediately have 

P-n+1(x) = P-n+2(x) = ... = P_l(X) = O. (A6) 

For q ;::: n - 1, we can write 

Jiz) = aJ:
l
p,,(x)za-n-2> + [g(z) / z TI (xs - Z)], 

(A7) 
where g(z) is a polynomial of degree not greater than 
n - 1 and the coefficients Po, PI' ... [not yet identi
fied as those of Eq. (AI)] satisfy the recursion for
mulas 

Po = 1, 

PI = CPl' 

P2 = PI CPl - POCP2, 

forp=I,2,···. 

(A8) 

The proof of Eq. (A7) is obtained by multiplying 
both sides by z rr~l (xs - z) and comparing like 
coefficients in the resulting polynomial identity. Inte
grating Eq. (A7) counterclockwise around a path 
enclosing the simple poles of liz) yields Eq. (A4), so 
that the P's of the recursion formula (A8) are the 
P's of the sum (AI). 

Next, we use the recursion formula to prove that 
the general expression for P2> (p = 0, 1, ... ) is 

R = d = ~ (-IY-«oc! m«1m «2 ••• m«" ( ) 
f'2> 2> £., '1'1 '1'2 Tn' A9a 

«1 •.• «n OCl ! OC2! ... OC n ! 

where oc == OCl + OC2 + ... + OCn and the sum is over 
all nonnegative integers OCl, OC2, ... , OC n which satisfy 

OCl + 2OC2 + 3OC3 + ... + nocn = p. (A9b) 

The explicit expression (A9) is designated as d2> by 
Perron.3l Thus, we must prove P2> = d2>' This can be 
accomplished as follows. The power sums 

S,,(X) = !x:, P = 0, 1,2,"', (AIO) 
i 

are related to the cp's and the d's by3l 

2>-1 

S2> = - ! (p - v)( -I)2>-·cp2>-.d.. (A11a) 
.~o 

They are also related recursively to the cp's by New
ton's formula 

2> 

! ( -I)"cpp_.S. + PcPp = O. (Allb) 
.~l 

Now observe from the explicit expression for Sp in 
terms of the cp's that 

n as 
! CPi-

P = pd2>' 
i~l acp; 

Application of the operator 

n a 
!cp;
i~l acp; 

(AI2) 

to Eq. (Allb) and use of result (AI2) now yields 

(A13) 

Comparison of this expression for Sp with Eq. 
(AlIa) shows that the d's satisfy the recursion formula 

p 

! (-l)P-·CP2>-Vd. = 0, (A14) 
V~O 

for p = 1, 2, .. '. Thus, the functions Po, PI' ... , 
P p , . . . and do, dl , ... , dp , • . . satisfy the same re
cursion relation. Since Po = do = 1, the functions are 
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the same, i.e., 

f31J = d1J , P = 0, 1, .... (AI 5) 

The following result can also be established for 
negative integers, but we omit the proof: 

for p = 0, 1, 2, ... , where IX and the summation have 
the same significance as in Eq. (A9). 

The symmetric functions f31J' P = 0, I, ... , are the 
homogeneous symmetric functions denoted by h1J by 
Littlewood.32 They can also be expressed in deter
minantal form: 

CPl I 0 0 0 

CP2 CPl 1 0 0 

f3p = det 

CPp-l CPp-2 CPl 1 

CP1J CP1J-l CP2 CPl 

APPENDIX B: EIGENVALUES OF THE 
GEL'FAND INVARIANTS 

(AI7) 

The occurrence of the invariants in the Gel'fand 
form33 in the expression (5.20) for Racah invariants 
means that the eigenvalues of the Racah invariants 
cannot be written out until those for the Gel'fand in
variants are. The eigenvalues of the Gel'fand invariants 
of U(n) are derived in this appendix. (These results 
have been noted previously, without proof.3) 

The Gel'fand invariants for U(n) are expressed in 
terms of the generators by 

(Bl) 

The eigenvalue is denoted by 

I~n)(m) = I~n)(mln' m2n , .. " mnn) (B2) 

for an arbitrary state vector I(m». 
In order to derive the explicit expression for Ikn)(m), 

a number of recursion formulas are first derived. The 
first useful property is 

(B3a) 

where A is an arbitrary parameter. This result is a 
consequence of the identity 

11 

Ll (Eili2 + A<5iliz)(Ei2i3 + A<5i2i3 ) ... (Eiki1 + A<5iki) 
i l ' .. ik 

= iC);'k-sI!n), (B3b) 

where I~n) == n. To show that Eq. (B3a) obtains from 
Eq. (B3b), we argue as follows. Clearly, we need only 
show that the left-hand side of Eq. (B3a) is the eigen
value of the left-hand side of Eq. (B3b). This is done 
by operating on a maximal state vector. Since Eij, 
i < j, annihilates a maximal state vector, we can by 
repeated use of the commutation relations reduce 

Iln) I( [m] )\ = Iln)(m) I( [m] )\ 
(max) / (max) / 

to the form 

Fln)(En , E22 ,"', Enn) I( [m] )/\ 
(max) 

= Ikn)(m) I( [m] )\ 
(max) / 

Effecting precisely the same reduction steps on the 
left-hand side of Eq. (B3b) yields 

Fkn)(Ell + A, E22 + ;" ... , Enn + ;,) I( [m] )\/' 
(max) 

and, since Eii ~ min on a maximal state, we obtain 
the desired result, Eq. (B3a). 

The result 

I (n)(m ... m ) 
k In' 'nn 

(B4) 

now follows from Eq. (B3a) upon setting A = mnn and 
making the substitution min ~ min - mnn . The use
fulness of Eq. (B4) is that it shows us how to calculate 
the general eigenvalue for mnn -:F 0 if it is known for 
mnn = O. 

The next result is more difficult to prove. We first 
state it and then sketch only the essential steps of the 
proof. The result relates the eigenvalues of U(n + 1) 
invariants and U(n) invariants: 

Iln+ll(mln+l' ..• , mnn+l , 0) 

~(k - 1) (n) ::::;: "'" 1 I. (mln+1 ,"', mnn+1), 
8=1 s-

(BSa) 
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which can also be written in the form 

1(1I+l)(m •• , m 0) k 111+1, '1111+1' 
= Il")(ml"+1 + 1, ... , mn1l+1 + 1) 

- 1t>I(ml11+1 + 1,' .. , mn1l+1 + 1) (BSb) 

through the use of the binomial-coefficient identity 

and Eq. (B3a). It is, however, Eq. (BSa) which we 
prove directly. 

A little study of Eqs. (B4) and (BSb) reveals that 
they can be used to generate the general eigenvalue 
starting from Ill)(mu) = m~l' k = 0, I, .... This is 
not, however, the technique we use. 

Now for the proof of Eq. (BSa). We start with the 
vector operators to which a superscript n is now 
attached with, however, 

(B6a) 

for all n. 
The identity 

V~;+1)(q) 

= V!;)(q) + Vi(i Vl~)('11 - 1)Ek'll+1) V~~-W(q - 'II), 
.=1 k=l 

(B6b) 

for q = 2,3, ... , results directly from the definitions. 
We now operate on a maximal state vector of U(n + I). 
Since Ek1l+1' for k = 1, 2, ... ,n, annihilates such a 
state vector, the product Ek1l+1V~~~})(q - 'II) can be 
replaced by its commutator. Furthermore, the term 
V~~~~+I(q - 'II), which arises from the commutator, 
annihilates a state vector with m1l+1n+1 = O. Thus, on 
such a state vector, the operator (B6b) is equivalent to 
the following one: 

V-I n 

v~;+ll(q) ~ V!;)(q) +! ! V::)('II - 1)Vki+1)(q - 'II), 
.=1 k=1 

(B7) 

for q = 2,3 •.... We now setj = i and sum from I to 
n, noting that the sum can be extended to n + 1 on 
the left-hand side: 

q-l n 
l~n+1) ~ /~n) +! !1 V::)('II - 1)V!;+1l(q - 'II). 

.=1 ik 
(B8) 

The idea is to iterate Eq. (B8) through repeated use of 
Eq. (B7). To do this, we need the obvious results 

n 

! V:;)(oc)V~~l(~) = V:~\oc + ~) (B9a) 
i=1 

and 
11 

1(11) - ~ v(n)(k) 
k -k it • 

i=l 
(B9b) 

Thus, in the first iteration of Eq. (B8), the term for 
'II = q - 1 is separated off in the sum, and 

V!;+ll(q - "'), 

'II = I, 2, ... , q - 2, is substituted in from Eq. (B7). 
After minor manipulations and use of Eqs. (B9), we 
obtain 

/(n+l) ~ I(n) + (q _ 1)/ln) 
Q q q-l 

v-I n 

+ !('II - 1)!1 vl:)('11 - 2)V!;+I)(q - 'II). 
.=2 ik 

(BI0) 

Continuation of this procedure establishes the proof of 

I~n+l) ~ i (q - 1)1;n) (B11) 
.=1 'II - 1 

on maximal U(n + I) states having m1l+1n+1 = O. 
Equation (BSa) then follows. 

Equations (B4) .and (BSb) can be used to generate 
the desired eigenvalues I~n)(m). We follow, however, a 
different course. We now prove that these eigenvalues 
are given by the formula 

l)(n)(m)1~")(m) 

11 

= ! P:nl)(nl(mln ..• min - 1 ... m,...), (BI2) 
i=1 . 

where DIn) (m) denotes the dimension of the representa
tion with IR labels [m] given explicitly by Eq. (2.4). 
We give the proof by showing that the I~nl(m) defined 
by Eq. (B12) satisfy Eqs. (B3a) and (BSb). Since Eq. 
(BI2) gives Ikll (mll) = m~I' the proof is complete. 

Proof' Since the dimension of an IR is invariant to 
the shift min ~ min + .It, property (B3a) is an im
mediate consequence of definition (BI2). Next, we 
observe the properties 

l)(n+l)(m ... m 0) In+1' 'nn+1 , 

= 1)Inl(m1n+l' ..• , mnn+1)(ll Pin+l) / n!, (B13a) 

D(n+ll(mln+l' .•• , min+1 - 1, ... , mnn+l' 0) 

= Dln )(mln+1" .• , min+1 - 1, ... , mnn+l) 

x [(U Pin+1) (Pin+1 - I)Jn! Pin+1} (B13b) 

for i = 1, 2, ... ,n. It is now a simple exercise to 
validate Eq. (B5b) upon shifting n to n + 1 in Eq. 
(BI2) and using the above results. 



                                                                                                                                    

CANONICAL UNIT ADJOINT TENSOR OPERATORS IN U(n) 2403 

Equation (B12) and Eq. (4.9b) can now be used to Eq. (B16): 
write the eigenvalues in the remarkably useful form as k 

follows: I~n)(m) =! 

n 

= n !P~n[R~~)(m)]2. 
r=1 

It is interesting to observe that 

where 

I~n)(m) = ~ r ikn)(Z) dz, 
2m Ja 

(BI4) 

(BISa) 

f~n)(z) = (_ )Zk IT (P.n + 1 - z). (BlSb) 
.=1 P.n - Z 

The summation in Eq. (BI4) can be effected in 
terms of the {J's of Appendix A. We proceed as follows: 

n n 

II (P8n - Prn + I) = ! 'Pn-,,(P + 1)( - Prn)", 
8=1 ,,=0 

where (p + 1) = (PIn + I'P2n + I,'" 'Pnn + 1); 

n 

I~n)(m) = ! 'Pn-iP + 1)( _l)n-"+1{Jk+,,_n+1(P) 
,,=0 

k+1 
= ! 'Pk+1-.(P + 1)( -1)k-'{J.(p), 

.=0 

where the second sum follows upon noting that (Ja(P) = 
0, for -n + 1 :::;; q :::;; -1, and that the elementary 
symmetric functions 'Pip) in n variables are defined to 
be zero for q > n. We next use the property (AS), 

k+l 
! ( -1 )k-·'Pk+1_.(P )(J.(p) = 0, 
• =0 

to obtain 
k 

Il")(m) = !(-I)k-V{'Pk+l_.(P + 1) - 'Pk+1-vCP)]{J.(p). 
.=0 

Using 

'P;.(P + I) - 'P;.(p) =:~ (: = i) 'Pip), 

we can straightforwardly bring Ik")(m) to the form 

I~n)(m) = ± i (_I)k-.+"( n - I-' ) 'P,,(p){J.-,,(p). 
• =0,,=0 k+l-v 

(B16) 

The final explicit form for the eigenvalues is obtained 
by substituting the expression (A9a) for (i.-ip) into 

v=O (n···«" 
.. ,+2«.+' .. n"n=' 

X 'P~l(p)'P~I(p)' .. 'P~n(p), (BI7a) 

where the coefficients have the following definition (in 
Ak ., the constraint OCI + 20(2 + ... + nocn = v is in 
effect) : 

Ak.( OCl ' ••• , ocn) 

= ! ~, 
(_I)k-.. +1(oc _ I)! n ( n -I-' ) 

OCl! 1X2! ••• ocn ! ,,=0 k + 1 - v, 
(BI7b) 

for v = 1,2, ... ,and in which 

oc = OCI + 1X2 + ... + IX", 1X0 == -IX, (BI7c) 

Ako(O, ... ,O)=(-I)k( n). (B17d) 
k + 1 

We also note that 

Akk(lXt> ... , oc,,) = (-I)k-.. (1X - 1)! kjlX1! 1X2! ... oc,,! . 

(BlSa) 

The term in Eq. (BI7a) for v = k is therefore just 
n 

Sk(P) =! P~n' (BISb) 
r=l 

We note below the first few eigenvalues expressed in 
terms of the power sums (BI8b): 

10 = n, 

II = SI - G), 
12 = S2 - (n - I)S1 + G), 
Ia = Sa + (n ; I)S1 - (n - t)S2 - ts~ - (:), 

14 = S4 - (n - 2)S3 + ten - 2)2S2 

- (n ~ I)Sl - S1S2 +!(n - 2)S~ + G) . 
Before leaving this subject, let us mention a possible 

source of confusion concerning the relation of the Pin 
to the invariants Ikn ). As we have seen the {Ikn )} are 
expressible in terms of the elementary symmetric 
functions of the {Pin}' As such, any individual Pin is 
not distinguished from any other. How then can one 
solve the {lkn )} to determine each Pin ? The answer lies 
in the fact that the process of extracting roots destroys 
the symmetry, and there is no contradiction . 

APPENDIX C: PROPERTIES OF THE VECTOR 
OPERATORS 

This appendix contains the proofs of several im
portant properties which relate to the vector operators 



                                                                                                                                    

2404 J. D. LOUCK AND L. C. BIEDENHARN 

X(q). The first of these is Eq. (5.6). This result is 
easily proved using Eq. (BI4). Let V denote the 
Vandermonde matrix as follows: 

1 1 1 

Pnn 

is a direct consequence of Eg. (4.7) and the ortho
normality of the «() -I) Wigner operators. Taking 
the diagonal matrix element of Eq. (C5) and using 
Eq. (C6) {on the shifted [m} - £In(p) IR labels}, we 
derive the recursion formula 

«m)! J,(q) !(m» = Pm «m)! J,(q - 1) !(m». (C7) 

V= 
P~n 

(CIa) Since «m)! J,(O) !(m» = 1, the desired result, Eq. 
(C4), is immediate. 

n-l 
Pnn 

so that the element in row i and column k is 

V;k = p~-;;I. (Clb) 

We now verify directly the relation (t denotes "trans
position") 

- I&n)(m) Iln)(m) len) (m) 
n-l 

I~n)(m) 

(C2a) 
where D is the diagonal matrix with elements 

D - n[R Cn)(m)]2 kk- nk • (C2b) 
Using 

n 

det V = III (Pin - Pin) 
;<i 

(C2c) 

and the explicit expression (4.9b) for R~'!l(m), we ob
tain the result 

n 

d;et (V DVt) = III [(Pin - Pin)2 - 1]. (C3) 
i<i 

The next result in Sec. 5 which needs proof is Eq. 
(5.16): 

J,(q) ICm» = P~n I(m». (C4) 

From Eqs. (5.14), we obtain 

J.(q) = i i /[1 TO]) i 1[/ 0] Y 1[/ O~ 
p=1 k=1 Y k 1=1 '\ 1 I '\ 1 JI 

P t 

x .At-I [1 0] .AtJiq - 1). (C5) 
k 

The result 

~ /[1 T OJ\ t Icl P 0] \ I(m» 
1_1 '\ 1 / Y 1 ! 

= <5 [D([m] + £liP»] I(m» (C6) 
P' D([m]) 

We would also like to demonstrate that the Racah 
invariant functions are invariant under the shift 
min -+ min + A, i = I, 2,"', n. This invariance 
is a consequence of the invariance of the operators 
X(q) to the shift Eo -+ Eo + Abu [compare Eqs. 
(B3a) and (B3b)}. Hence, we now prove the latter. 
Furthermore, because of the transformation law (B3b) 
and an identical transformation law for the vector 
operators V(q) , the invariance of X(q) under Eij-+ 
Ei ; + AOii is a consequence of the following general 
result (to be proved): Let Xo, Xl, X2 , ••• denote arbi
trary quantities. Then the determinants, 

Xo Xl Xp 

Xl X 2 X p+1 

det , P = 0, 1,"', (C8a) 

xp xp+l x 2p 

are invariant under the transformation 

X; = i (q)Aq-SXs , q = 0, 1,' . . . (C8b) 
.=0 S 

Furthermore, if Yo, Yl, . .. are arbitrary quantities 
which undergo the same transformation law, 

y~ = .t (q)lq-syso q = 0, 1, ... , (CSc) 
8=0 S 

then the determinants 

det , p = 0, 1,"', 

Yo Yl yp 
(C8d) 

are also invariant. 

Proof' Let Xz> denote the (p + 1) X (p + 1) matrix. 
of the Xo , Xl' ••• ,x2z> appearing in Eq. (e8a), and 
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let X~ denote the same matrix in terms of the x~, in which Bp is the matrix 
x~, ... ,x;p defined by Eq. (C8b). Furthermore, 
define a (p + 1) X (p + 1) matrix Ap as bo 

(A ) .. = (i - I)Ai-; 
p " • 1 ' ]-

(C9a) 

where i,j = 1,2, ... ,p + 1 are row and column 
indices, respectively. Observe that Ap is lower tri
angular with all its diagonal elements equal to 1, so 
that det Ap = 1. We assert 

(C9b) 

This result is proved by direct expansion and use of 
the binomial-coefficient identity 

(C9c) 

Thus, 

(C9d) 

The proof of the second part, the invariance of Eq. 
(C8d), proceeds along similar lines, but is somewhat 
more complicated. Here the relevant matrix relation 
is 

x~ x{ x' 
l' 

x{ x~ x;+1 

X~l x' 
l' X~1J-I 

y~ y{ y; -

0 Xo Xl Xl' 

Xl X2 Xl'+l 

= Al'-l 

0 

X1J-I xl' X2:p-I 

0 ... 0 I Yo Y1 Yl' 

0 

A!.-1 
X Bl' , (CIOa) 

0 

0 ... 0 1 

B = p 

I 

o ... 0 b
p 

(CIOb) 

where I is the unit matrix of dimension p and 

bq = (~) AP-q, q = 0, I, ., " p. (CIOc) 

We establish Eq. (ClOa) by direct block multipli
cation of the matrices, noting from Eq. (C9b) that 

The only point which requires additional work is the 
relation 

x' 

=A_.! x_. 
bo xp p 

x~+1 bl Xl'+l 

+ 

X~:p-I l b1J-I X2l'-l_ 

Taking the determinant of Eq. (ClOa), we establish 
the proof of the invariance statement relating to Eqs. 
(C8c) and (C8d). 

The final result to be proved in this appendix is: 
Under the transformation Eij -+ - Eji , the operator 
X(q) undergoes the transformation 

Xii(q) -+ (-IY'Xi;(q)· (Cll) 

The proof of this result is quite elaborate and occupies 
the remainder of this appendix. A number of auxiliary 
results are first required. 

First, consider the transformation properties of the 
V(q) of Eqs. (5.3). The main result is: Under the 
transformation Ei; -+ - E;;, the operator V(q) under-
goes the transformation 

II 

V,lq) -+ ! (Xq/l V;l,u) , (eI2a) 
1'=0 

where the (Xq/l are functions of the invariants 10 , II, 

12 , ••• ,which are uniquely determined by the re-
cursion relations 

(Xq+l1' = - (X1ll'-1 + IO(XIl/l' (Cl2b) 
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for p. = 0, 1, 2 •... , q + 1, q = 0, I, 2, .. " and 
with 

'1 

IXq,_1 == I IXqv l v' 
v=O 

(C12c) 

IXqV == 0, for v> q, all q. (C12d) 
The starting point for the iteration is lXoo = 1. Then, 
from Eq. (C12c), we calculate IXO.-l = 10 and, from 
Eq. (C12b), 1X10 = 0 and lXu = -1. Using these results, 
we then calculate 1X1.-1 = -11' 1X20 = II 1X21 = -10' 

and 1X22 = + 1. From this procedure, we see that 
relations (C12b)-(CI2d) do uniquely determine the 
coefficients. The proof of Eqs. (C12) is by induction. 

We start with 
n 

~lq + 1) = I EikVki(q) 
k=1 

and assume the validity ofEq. (C12a) for all values up 
to q. Then, under Eii - -Eii' we have 

'1 n 

~i(q + 1) - - IlXq" I EkiViip.)· 

Using the identity 
,,=0 k=1 

EkiVik(p.) = V;k(p.)Eki + 6ii Vkk(P.) - Vji(p.) , 

this result simplifies to 
'1+1 

~lq + 1) - I (-lXq ,,_1 + IolXq,,)V;i(p.), 
,,=0 

where definitions (C12c) and (CI2d) are invoked. The 
proof of Eqs. (C12) follows. 

We next derive a second auxiliary result required in 
our proof of Eq. (CIl). The relation 

'1 

Iq-IlXq"l" (C13) 
,,=0 

follows from Eq. (C12a), and is a special case of the 
more general relation 

'1 lJ 

Iq+v - I IlXq"lXlJJ,,+v> (C14) 
,,=ov=o 

which we now prove. Note that setting p = 0 in Eq. 
(CI4) yields Eq. (C13). Thus, Eq. (CI4) is correct for 
p = 0 and arbitrary q. It can therefore be proved by 
showing that Eqs. (C14) and (C12) imply tha~ 

'1 lJ+l 

I q+(lJ+l) -+ ~ ~otq"otl>+1vI,,+v (CIS) 
. ,,=0 v=o . 

holds for arbitrary q. By the induction hypothesis, 
Eq. (CI4) is assumed to'hold for arbitrary q. Thus, 

'1+1 lJ 

I(q+1l+lJ - I IlXq+1"lXlJJ ,,+>. (C16) 
,,=ov=o 

The object is to cast this result in the form (CI5) or, 
equivalently, to show that the difference between Eqs. 
(CI5) and' (CI6) is zero. The sums in Eqs. (CI5) and 
(C'16), can be extended to q + 1 and p + 1, respec
tively. Thus, Eq. (CI5) obtains if the following rela-

tion holds: 
'1+1 lJ+l 

I !(lXq" lXl>+lv -lXq+1"lXlJv)/,,+> = O. (CI7) 
1'=0.=0 

To show that it does, we use relations (C12) and 
form 

IXq"lXlJ+1• - IXq+I/t lXq. = -( IXq"lXlJ._1 - IXql'_l lXlJ)' 

Under this substitution, the left-hand side of Eq. 
(CI7) becomes 

'1 lJ '1 lJ 

I IlXq"lXlJJ,,+V+1 - I I IXq"lXlJJ,,+.+1 
,,=-1.=0 ,,=0.=-1 

= IXq.-I(flXlJv/v) - IXlJ,-I('i lXqI'I,,) 
v=o ,,=0 

= IXq.-llXlJ,-1 - IXlJ,_llXq,_1 = O. 

Thus, Eq. (CI7) is an identity, and Eq. (CIS) holds 
for arbitrary q and fixed p + 1, if Eq. (CI4) holds for 
arbitrary q and all nonnegative integers less than or 
equal to p. Since the result holds for p = 0, it holds 
generally. 

Equations (C12) and (C14) are the significant 
results needed to prove Eq. (CII). Define 

q 

Vij(q) = I IXq" V;lp.) , 

IXlJ = 

and note that 

,,=0 
'1 lJ 

1~+lJ = I 2 IXq"lXlJv/,,+v, 
,,=0.=0 

1X00 0 0 0 

IXlJlJ = (-IY, 

for p = 0, 1, .... Then it is easy to verify 

y~ = IXq Yq~!, 

where Yq is the matrix (5.8c). Thus, 

det Y~ = det Yq • 

Similarly, using the definition 

10 II 

(CI8a) 

(CI8b) 

(CI8c) 

(C18d) 

(C19a) 

(C19b) 

, (C20a) 
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we obtain the transformation law 

o 

o 

o ... 0 1 

o 

o 

o .. , 0 1 

where Au is the (q + 1) x (q + 1) matrix 

, (C20b) 

the determinants of the matrices 

I~n)(m) Iin)(m) 

Iin)(m) l~n)(m) 

y~n)(m) = 

I~n)(m) I(n)(m) q+I 

I~n)(m) If,n)(m) 

Itn)(m) I~n)(m) 

W~~)(m) = 

I~~i(m) I~n)(m) 

I PTn 

I~n)(m) 

I~~i(m) 

I~~)(m) 

(Ola) 

I~n)(m) 

I~~i(m) 

I(n) (m) 2q-I 

I 

(Olb) 

(Olc) 

are polynomials in mnn . In taking the limit mnn -
- 00, only the term in mnn which is of highest degree 

(C20c) is needed from the respective determinants. We state, 

W~~)(m) == 1 (all n) 

o '" 0 (Xqq 

in which I is the unit matrix of dimension q. 
Equation (C20b) is verified by direct block matrix 

multiplication. From Eqs. (C20b) and (C20c), we 
now obtain 

detM;j(q) = (-I)lldetMji(q). (C21) 

Observing the forms of Eqs. (5.8), we now com
plete the proof of Eq. (Cll): Under E;j - -E1;, the 
following transformations are effected: 

(C22a) 

and, from Eqs. (C19b) and (C21), it follows that 

X;;(q)-X;;(q) = (-I)qXj;(q). (C22b) 

APPENDIX D: LIMITS OF THE RACAH 
INVARIANTS 

Certain limits of the Racah functions as mnn - - 00 

are derived in this appendix. The limit of Sri~)(mln' ... , 
mnn) is easily established, and we omit the derivation. 
To establish the limits of the other Racah functions, 
we require some preliminary results. We observe that 

and later prove, the following results: 

det y~n)(mIn' ... , mnn) 

= (mnn)2q det y~":ll)(mIn' ... , mn- In) 

+ (lower-order terms), (02a) 

forq=I,2,···,n-l, 

det W~~)(mIn' ... , mnn) 

( )2q-I d t WCn- I )( ) = -mnn e q-IT mIn"'" mn-In 

+ (lower-order terms), (02b) 

for q = 1,2, ... , n - 1,7' = 1,2, ... , n - 1, 

det W~~)(mIn' ... , mnn) 

= (mnn)q det Y~":ll)(mIn' ... , mn- In) 

+ (lower-order terms), (02c) 

forq = 1,2," ·,n-1. 
Let us accept Eqs. (D2) momentarily. Then 

[N~n)(mIn' ... , mnn)]! 

:: [det Y!~~(m) det y~n)(m)]! 
_ I 12a- 1 [N Cn- 11( • • • )]! - mnn a-I mIn' , mn- In 

+ (lower-order terms), (D3a) 

for q = 2, 3, ... ,n - 1, 

[N~n)(mIn' ... , mnn)]t 

= Imnnl [n(n - 1)]t + (const). (03b) 
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Thus, 

lim 
mn n --+- OO 

lim 

det wf~)( mIn' ... , mnn) 

[Ni")(m In , ... , mnn)]! 

= 1j[n(n -1)]!, r = 1,2,"', n -1, 

= -[en - 1)jn]!, r = n, . (04a) 

det W~~)(mln' ... , mnn) 

[N (n)(m . .. m )]t 
Q In' 'nn 

det W~~l~)(mln"'" mn-In) 
= 

[N(n-I)(m . .. m )]!' 
q-I In' 'n-ln 

for q = 2,3, ... , n - 1, 

r = 1,2, ... , n - 1, 

= 0, for q = 2, 3, ... , n - 1, 

r = n. (04b) 

Equations (5.27) and (5.28) are now easy consequences 
of the above limit relations. 

The limits (04) are established once Eqs. (02) are 
proved. This we now do. The derivation of the follow
ing recursion relation is an easy task using Eq. (814): 

[ (n)(m . .. m ) - m [(n)(m .. , m ) 
k+I In' , nn nn k In' 'nn 

- [(n}(m .. , m 0) 
- k+I In' , n-In' 

- mnn[~n-I)(mln + 1, ... , mn-ln + 1). (OS) 

We now perform the following column operations 
in det y!n)(m) without changing its value: To column 
q + 1 add -mnn times column q; to column q add 
-mnn times column q - 1; ... ; to column 2 add 
-mnn times column 1. These operations bring the 
determinant to the following form in consequence of 
identity (OS): 

Po PI(O) - J.Qo 

PI P2(0) - J.QI 

P2(0) - J.QI 

Pg(O) - J.Q2 

Pq(O) - J.Qq_I 

PHI - J.Qq 

det 

where we have defined A. == mnn and 

P - I(n)(m . .. m ) 
k - k In' 'nfl ' 

(06b) 

Qk = Ikn-I\mln + 1, ... , mn-ln + 1). 

In its dependence on mnn , Pk is a polynomial of degree 
k, and, indeed, 

Pk = J.k + (lower-order terms). 

The term of highest degree in J. in the above deter
minant clearly originates from Pq times its cofactor, 
and it is 

(D7) 

_ QQ-l QQ Q2q-2 

Finally, this determinant of the Q's is invariant to the 
downward shift min + 1 ->- min, i = 1, 2, ... , n - 1, 
of the arguments of the [in-I), and effecting this shift 
yields the highest-degree term of 

det y~n)(mln' ... , mnn) 

(06a) 

as 

m
2q det y(n-I)(m . " m ) 
nn q-l In' 'n-ln • 

The second result, Eq. (02b) , is proved in an 
analogous fashion. Effecting the same column opera
tions as above on the columns of W~~)(mln"'" 
mnn) yields 

Po 

PI 

det 

Pq-I 

1 

PI(O) - J.Qo 

P2(0) - J.QI 

Pia) - J.Qq_I 

PTn - J. 

PiO) - ?Qq-I 

PH1(0) - ?Qq 

(D8) 

The term of highest degree in A. in this determinant is 

Qo QI Qq-I 

QI Q2 Qq 

(_.A.)2q-I det , (09) 

Qq-2 Qq-l Q2q-3 

1 PTn 
q-I 

Pm -
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for T = 1, 2, ... , n - 1, and 

(DI0) 

for T = n. Noting the invariance of these determinants 
to the downward shifts min + 1 --+ min' i = 1, 2, ... , 
n - 1, we obtain the term of highest degree in mnn of 
det W~~)(mln' ... , m nn), 

( )2q-I d t w(n-I)( ) -mnn e a-IT mIn"'" Inn_In' (Dlla) 

for T = 1, 2, ... , n - 1, and 

(mnn)q det Y~~"i:l)(mln" • " mn- 1n), (DUb) 

for T = n. 

APPENDIX E: THE ZEROS OF THE 
NORMALIZATION FUNCTIONS 

The zeros of the invariant normalization operators 
N!n) of Eq. (5.8b) are established in this appendix. 
These zeros are determined by the zeros of the 
(Gram) determinants of the matrices (Dla) corre
sponding to q = 1, 2, .... 

In order to establish the desired results, it is first 
necessary to obtain two principal new results, which 
we first state, and then prove: 

(i) For all lexical labels 

we have that 

det y(n-l)(m '" m 
q tn' 'p-ln' 

mpHn - 1, ... , mnn - 1) = 0 
implies (Ela) 

det y~n)(mln" .. ,mnn) = 0, 

where p is any fixed, but arbitrary, integer selected 
from 2, 3, ... , n. 

(ii) For all lexical labels mIn ~ m2n ~ ... ~ 
mpn > mp+ln ~ ... ~ mnn , we have that 

det y~n)(mIn' ... , mnn) = ° 
implies (Elb) 

det y(n-l)(m ... m 
q In' 'p-ln' 

mpHn - 1, ... , mnn - 1) = 0, 

where p = 1,2, ... , or n. 
Observe that there is one equality imposed on an 

adjacent pair of variables in Eq. (Eta) and there is 

one strict inequality imposed on an adjacent pair of 
variables in Eq. (Elb). The value p = 1 is not ad
mitted in Eq. (Eta) because there is no variable to the 
left of mIn; however, for p = n, the inequality mnn > 
mn+1n in the variables of Eq. (Elb) simply drops out 
(these points come out in the proofs below). Finally, 
for p = I, the first variable in Eq. (El b) is m2n - 1; 
for p = n in either equation, the last variable is mn- In . 

The proofs of properties (Ela) and (Elb) are quite 
detailed. The starting point is the following result 
relating U(n - 1) invariant functions to U(n) invariant 
functions: 

Ikn-l)(mln + 1, ... , mp- 1n + 1, m pHn ' ... , m nn) 

= I~n)(mln"'" m p_ln , P - n - 1, 

mp+In , ... , mnn) 

+ I!~~(mln"'" mp-ln, P - n - 1, 

mpHn, ... , mnn), (E2) 

for k = 1,2,'" and for p = 1,2,'" ,n. Observe 
that mpn = p - n - I in the right-hand side of Eq. 
(E2) and that this variable is missing from the left
hand side. Property (E2) is established directly from 
expression (B14) and, since the proof is straightfor
ward, it is omitted. 

Next, we perform the following sequence of opera
tions in the determinant of the matrix (Dla): First, 
replace each min by min - mpn + p - n - 1, i = 
1,2, ... , n; second, to row q + 1 add row q, to row 
q add row q - 1, ... , to row 2 add row 1. In conse
quence of the invariance of the determinant to these 
operations and of relation (E2), we obtain the follow
ing result: 

det y~n)(mln' ... , m nn) 
-

y~n)(x) yin)(x) y~n)(x) 

Iin-1)(x) I~n-l)(x) I(n-l)(x) 
q+l 

= det , (E3) 

I~n-l)(x) I(n-l)(x) 
q+l I(n-l)(x) 2q _ 

where (x) = (Xl, X2 , ••• , Xn- l) with Xi == min -
mpn + p - n, i = I, 2, ... , p - I, Xi == mi+ln -
mpn + p - n - 1, i = p, p + 1,' .. ,n - 1, and 
where 

(n)( ) - I(n)( 1 1 
Yk X = k Xl - ,"', x p _ 1 - , 

P - n - 1, x p ,"', x n- I ). (E4) 

Equation (Ela) immediately obtains from Eq. (E3) 
upon demonstrating that the first row in the matrix 
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y~n-l)(X) [cf. Eq. (Dla) for n -+ n - I] is linearly inde
pendent of the remaining rows for arbitrary labels 

mIn ~ m2n ~ •.. ~ mp_ln 

= mpn ~ mp+ln ~ ••• ~ mn .. , 

p = 2,3,'" ,n. 

Once this result is established, we argue as follows: 
The vanishing of the determinant on the left-hand side 
of Eq. (Ela) implies the vanishing of the determinant 
obtained from it by shifting al1 the labels by A. = 
-mp_

ln 
+ p - n, i.e., it implies det y!n-ll(x) = 0, 

for mpn = mp_ln ' or equivalently, for x p-l = P - n. 
But, from the above result (to be proved), we have 
that det y!n-ll(x) = ° (for xp_ 1 = P - n) implies a 
linear relation among its rows 2 to q + 1; but these 
are just the rows which also appear in the determinant 
on the right-hand side of Eq. (E3) (having first set 
mpn = mp- 1n)' Thus, we obtain the result, Eq. (Eta). 

Let us therefore turn to the ancillary problem 
relating to the linear dependence (independence) 
of the rows of the matrix (DIa) (for arbitrary n, in 
particular, for n -+ n - 1). It is convenient to write the 
invariant functions in the form 

(E5) 

where Zk' k = 0, 1, 2, ... , denote the row vectors 
defined by Eqs. (5.22b) and (5.22c) and the notation 
(Zk' Zl) denotes the scalar product of two row vectors 
and is defined by the left-hand side of Eq. (5.23). In 
particular, we have 

Zkr(m) = P~nR~~)(m). (E6) 

A property particular to a Gram matrix is that a 
linear relation can obtain among its rows if and only 
if the same linear relation obtains among the vectors 
from which it is constructed, i.e., if, in the matrix 
(Dla), we have 

oco(m)(row 1) + oc1(m)(row 2) 

+ ... + ocq(m)(row q + 1) = 0, (E7a) 
then also 

oco(m)Zo(m) + oc1(m)Zl(m) + ... + ocq(m)Z,,(m) = 0, 

(E7b) 
and conversely. 

Next, we apply the above result (for n -+ n - 1) to 
the matrix y~n-ll(x) in which variable xp_ 1 has the 
value xp _ 1 = P - n. The partial hook corresponding 
to this variable is Pp-ln-l = xp_1 + n - p = O. In 
particular, it follows from Eq. (E6) for n -+ n - 1 and 
'T = P - 1 that the (p - l)th component of each of 
row vectors Zk(Xl, •.. , Xn-l), k = 1,2, ... ,q, van
ishes. But, by direct examination, we establish that the 

(p - I)th component, R~':.t:,~l(X), of the row vector 
ZO(XI, ... ,xn _ 1) does not vanish for xp_ 1 = P - n 
and for arbitrary lexical choices of the variables in 
mI .. , ••• , mp- 2n ' mp_1 .. ' mp- 1n ' mp+l .. ' ... ,mnn . We 
therefore conclude that the first row of y!n-ll(x) is 
independent of the remaining rows for all possible 
sets of lexical variables mIn"", mp- 2n ' mp_ ln ' 

mp_ln ' mp+1n ' .•• , m ..... We have thus established the 
validity of the implication, Eq. (Eta). 

The proof of Eq. (EIb) follows similarly. We ob
serve from the manner in which Eq. (E3) was con
structed that the elements of the first row can be written 
as 

(ESa) 

while the elements in row k, k = 2, 3, ... ,q + 1, 
can be expressed as 

I~~~~ = n(Zk_2 + Zk-l' Zz), 1 = 0, 1, ... , q, 

(ESb) 

where the invariant functions are evaluated on the 
labels 

(Xl - 1," . ,xp_ 1 - 1, P - n - 1, xp ,'" ,xn - 1). 

(ESc) 

A linear relation among the rows of the determinant 
(E3), i.e., 

(Jo(row 1) + (Jl(row 2) + ... + (Jo(row q + 1) = 0 

(E9a) 
implies the linear relation 

(JoZo + (Jl(ZO + Zl) + ... + (JO(Zq-l + Zq) = 0, 
(E9b) 

when. evaluated on the labels (ESc). But now observe 
from Eq. (E6) for T = P andppn = mpn + n - p = 
-1 that the pth component of the vectors Zo(m) + 
Zl(m) , Zl(m) + Z2(m), ... is zero, while the pth 
component of Zo(m) vanishes if and only if mp+1n = 
mp .. ' Thus, we conclude that ~o has value zero on the 
labels (ESc), provided xp =;6 p - n - 1. In other 
words, the first row of determinant (E3) is independent 
of the remaining rows for all lexical labels mIn 2::: 
m2n 2::: ••• ~ mpn > mp+ln ~ ... 2::: mn .. · Therefore, 
the vanishing of determinant (E3), under the restric
tion mpn > mp+1n ' implies a linear relation among the 
lower q rows and therefore implies 

det y(n-l)(x '" x ) = ° q 1, 'n-l , 

det y(n-l)(m ... m 
q In' 'p-ln' 

mp+l n - 1,' .. , mnrt - 1) = 0, (EI0) 

and property (EIb) is proved. 
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Results (Eta) and (Elb) are next utilized in the 
proof of the following significant result (valid for q = 
1,2,'" ,n). 

Lemma: For mIn ~ m2n ~ ... ;;::: mnn , we have 

det yln)(m ... m ) = 0 
q In' , nn (Ella) 

if and only if the sequence Sn (of n - t terms) 

Sn = {mIn - m2n' 

m2n - m3n ,"', mn-In - mnn} (E11b) 

contains n - q or more zeros. 

The proof of the lemma is by induction on n. Before 
noting how one puts in the details of this proof, let us 
note some particular results: 

n 

det ytn)(m) = It (Pin - Pin)2 - [n 2(n 2 - 1)/12], 
i<; 

(E12a) 
n 

det Y~~)l(m) = ITI [(Pin - Pin)2 - 1], (E12b) 
i<; 

det y~n)(m) = 0, q;;::: n. (E12c) 

Equation (EI2a) is established by direct expansion of 
the 2 x 2 determinant; Eq. (E12b) is proved in 
Appendix C; and Eq. (EI2c) follows from the fact 
that the Gram determinant of more than n vectors in 
n space is zero. Thus, we verify the lemma directly for 
q = 1 or q = n - 1. In particular, for n = 2 or 3, 
Eqs. (E12) give the complete result. 

We turn now to the general proof of the lemma. 
We assume that the lemma is valid for n - 1 and show 
that Eqs. (E1) then imply the validity for n. Since 
Eqs. (EI) play the key role in this induction, we adapt 
the notation to facilitate use of these equations. 

In the revised notation, the assumption for n - 1 
takes the form (for q = 1,2, ... ,or n - 1): 

For mIn;;:::'" ~ mp_ln ~ mpHn ~ ... ;;::: mnn , 
p = 1, 2, ... , or n, we have 

det yln-I)(m ... m 
q In' 'p-ln' 

mp+ln - 1, ... , mnn - 1) = 0 (E13a) 

if and only if the sequence 

S~-l = {mIn - m2n' ... , mp-2n - mp-In' 

mp- In - mp+In + 1, mp+ln - mp+2n ' 

... , mn- 1n - mnn } (E13b) 

contains n - q - 1 or more zeros. (For p = n, the 
last term in the sequence is mn-2n - mn_1n;for P = 2, 
thenrst term in the sequence is mIn - m3n + 1.) 

We begin the induction by considering the sequence 

Sn = {mIn - m2n , m2n - man' "', mn- In - mnn}· 
We seek to establish the "if" part of statement (Ell): 
If the sequence Sn contains n - q or more zeros, then 
det y~n)(mIn' .•. , mnn) = O. 

The sequence Sn either has no zeros (trivial case, 
q = n) or it has a first zero reading from the right. 
Assume this first zero occurs at position p - I, that is, 
mp- 1n - mpn = O. Then the sequence S~_l necessarily 
has n - q - I or more zeros. But n - q - I or more 
zeros in S~-t implies-by hypothesis at induction 
level n - I-that 

det yln-I)(m ... m q In' 'p-1n' 
mpHn - I, ... , m

ntl 
- 1) = o. 

By using Eq. (Ela), this then implies that 

det y~n)(mIn' ... , mp-In, mp- ln ' 

mp+1n ' ... , mnn) = O. 

This establishes the induction loop and, since the "if" 
part of the lemma is true for n = 3, it is true in general. 

To establish the "only if" part of the lemma, we take 
as given that det y~n)(mln' ... , mnn) = 0, and we 
seek to prove that this implies that the sequence Snhas 
n - q or more zeros. 

First, we observe that, for q = I, 2, ... , n - I, 

det yln)(m ... m ) = 0 
q In' 'nn 

implies that at feast two adjacent variables are equal. 
This result follows directly from Eq. (E12b) and the 
fact that the nonvanishing of a Gram determinant 
implies the nonvanishing of aU its principal sub
determinants. Second, if all the variables are equal, we 
choose p = n in Eq. (EIb), and the desired result 
follows immediately from the hypothesis that it is 
valid at level n - 1. (Therefore, in the subsequent 
argument, we can assume that Sn does not consist of 
all zeros.) 

We now argue as follows: In the sequence Sn' there 
must exist a first term (reading from the left) which is 
zero followed by a term which does not vanish. Assume 
that this occurs at the (p - I)th and pth terms in the 
sequence, i.e., that mp_ln - mpn = 0, but mpn -
mp +1n > 0 (note that ~ 0 implies> 0 by lexicality). 

From Eq. (Elb), it now follows that 

det Y ln-l)(m . " m 
q In' 'p-ln' 

mp+1n - 1, ... , mnn - 1) = o. 
By the assumed validity of the lemma-the induction 
hypothesis at level n - I-this implies that the se
quence S~_l ofEq. (El3b) contains" - q - 1 or more 
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zeros. But all terms in the sequence S~_I' except the 
one in position p - 1, which is not zero, also occur in 
Sn. Furthermore, Sn contains a zero at position p - 1, 
and this zero is not in S~_l . It follows that S" contains 
n - q or more zeros. This establishes the induction 
loop for the "only if" part of the lemma, and the 
lemma is true in general since it is correct for n = 3. 
[Note that for q = n, the result for "only if" also 
follows from Eq. (EI2c).) 

Thus, we have established the lemma despite the 
fact that our two principal results, Eqs. (Eta) and 
(El b), apparently distinguish between variables to the 
left or right of variable mpn . 

The properties of the normalization functions N~n) 
now follow easily from the lemma of Eqs. (El I). 
Observe that det Y!")(m) always vanishes whenever 
det Y!~i(m) does. We can therefore assert: For mIn ~ 
m2n ~ ... ~ mnn and q = 1,2, ... ,n - 1, we have 
N~")(m) = 0 if and only if the sequence Sn of Eq. 
(Ellb) contains n - q or more zeros. 

It is convenient to state the above property in terms 
of the null space of the function N!n). The null space 
.N' n-q of the function N!n) is defined to be the set of all 
IR spaces on which the function N~n) has value zero. 
[The reason for labeling the null spaces in this partic
ular way is simply so that the null space of the Wigner 
operator with operator pattern (p, p) becomes .N'p.] 
Thus: 

.N'p = {all JR spaces with labels -[m]" in which 

the sequence S" contains p or more zeros}, 

(EI4) 

for p = 1, 2, ... , n - 1. Clearly, these null spaces 
possess the inclusion property 

.N'I ::J .N' 2 ::J ••• ::J .N' ,,-1 . (E15) 

Then: N~n)([m]) = 0 if and only if the labels em] belong 
to an IR space containedin.the null space.N' ,,_q' 

Finally, let us note the connection of the zeros of 
N!n) with the reduction of the direct product [mJ,. X 

[l 0 -1]. We assert the following result (which can 
be proved directly from the rules for reducing direct 
products): The number of times which [m]" appears in 
the reduction of [m]" x [1 () -I] is equal to 
k - I, where n - k is the number of zeros in the 
sequence Sn ofEq. (Ellb), k = 1,2,"', n. 

Now let k be fixed. Then since N!n)([mJ) :;f:. 0 for 
q = I, 2, ... , k - 1 and N~")([m]) = 0 for q = k, 
k + 1, ... , n - 1, we always obtain precisely k - 1 
adjoint Wigner operators (A = [OJ) which do not 
annihilate the IR space \ (m» and n - k adjoint 
Wigner operators which do annihilate \(m». [These 

two sets of Wigner operators are those with operator 
patterns (p, p) given by (n - 1, n - 1), ... , (n -
k + 1, n - k + 1) and (n - k, n - k), ... ,(1, 1), 
respectively.] Thus, we always obtain precisely the 
correct number of orthonormalized Wigner coetn
cients required to effect the reduction of [m]n X 

[1 () -1] into its [m]n constituents. 

APPENDIX F: CONJUGATION SYMMETRY 

In this appendix, we note the symmetry properties 
possessed by the fundamental Wigner operators, the 
adjoint Wigner operators, and the -adjoint Racah in
variants under the operation of conjugation. 

The SU(n) conjugation operator J(, was introduced 
in Ref. 5, Paper III as a mapping on SU(n) state 
vectors (mnn = 0). However, when we consider 
mn" :;f:. 0 and also admit negative integers into the 
labels of U(n) state vectors, the operator J(, is no 
longer a convenient operation because it is a "many
to-one" mapping: Each state vector in the set 
{\(m»:mij - m"" is the same} is mapped by J(, to the 
same SU(n) state vector . 

We introduce the U(n) conjugation operator C to be 
the mapping (on a generic state vector) 

where 
C I(m» = (_l)",(m) I(m», (Fla) 

mij == -mj-i+H' 
n i 

cp(m) == I! mij' 
j=1i=I 

(Flb) 

(Flc) 

The operator A' conjugate to a given operator A is then 
defined by 

(C(m')\ A' IC(m» = <em') 1 A \(m», (F2) 

where the notation C(m) is an abbreviated designation 
for C I(m». Definition (Fl) is motivated by the very 
similar definition of J(, and the following important 
property of the U(n). generators: 

(C(m')\ -Eji \C(m» = <em')l EiJ l(m». (F3) 

The operator C is 1-to-l onto, and it therefore pos
sesses a unique inverse. Indeed, one easily verifies that 
C is unitary and Hermitian. In consequence, property 
(F3) of the generators is expressed by 

(F4) 

where the E;; are the generators of the complex con
jugate representations.3 

The basic relations required for the determination 
of the conjugation properties of Wigner operators are 
the following properties of the fundamental reduced 
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Wigner coefficients: 

[

n-
p +l] \ I([~]n - ~n(n - P + 1»)1 [0 -1] 1([~]11) 

\ [m]n-l - ~n-l(n - (X) -- [m]n-l 1 n-(X 

=(_l)a--p/( [m]n+~n(P) )1[[l
P 

o]]I([m]n )\ 
\ [m]n-l + ~n-l«X) [m]n-l 1 

(X 

(FSa) 
for (X = 1,2, ... , n - 1, 

1 ([ni]n - ~~(n - P + 1») 1 [ n[O P_:] 
1
] W~]n ) \ 

\ [m]n-l n [m]n-l 1 

= (-1y-i ([m]n + ~n(P») I [[Ii- 0]] Wm]n ) \. 
\ [m]n-l n [m]n-l 1 

(FSb) 

These relations are established directly from the ex
plicit expressions for the reduced Wigner coefficients. 

The next step is to use relation (FS) in the reduc
tion law which relates U(n) Wigner coefficients to 
the U(n): U(n - 1), U(n - 1): U(n - 2), ... reduced 
Wigner coefficients. The result which obtains is ex
pressed by 

(F6) 

Particular cases of property (F6) which are required 
for the determination of the conjugation properties 
of the adj?int Wigner operators are 

1([1 ~. -1])1([1
1 O]~ 1([0 _-1])\ 

\ (I,]) . J 1 
1 

j(ll O-illi /[0 "-11\ 1([101) \, 
\ (j, I) \ I / ] / 

(F7a) 

«(0)/ (II »)(Iil ]-1]) 

~ Hr'«(O)1 ([0 :-I~ W\ 01)' (F7b) 

Next, we apply the conjugation operation to the 
Wigner operators of Eqs. (4.5a) and (4.5b). [Note that 

the two Wigner operators in Eq. (4.Sa) commute; 
note also that, in Eq. (4.Sb), we must use relation 
(F7a) to effect the coupling of the conjugated oper
ators.] The result is 

( 

(p,T) ) 
e [1 .~ . -1] e- l 

(I, ]) 

(

n - T + 1, n - P + 1) 
= (_l)"+I+i-HP-T [1 0 -1] 

(j, i) 

(F8) 

for P ¥: T and all i, j. 
The conjugation properties of the adjoint Wigner 

operators having ~ = [0] are determined by prop
erty (C22b). In consequence of relation (F4), we can 
write 

Noting relations (S.2S) and the correspondence, 
(S.30), between the degree index q and operator 
patterns, we can write Eq. (F9) as follows: 

~ 
(p,p) ~ ( (p,p) ~ e [1 0 -1] e-I =(_l)n+i-Hp [1 0 -1] . 

(i,j) . (j, i) 

(FlO) 

The last conjugation property we wish to note is 
that of the Racah invariants of Eqs. (4.3) (determined 
explicitly in Sec. 5). We use Eq. (2.46) and the 
explicit conjugation properties, Eqs. (F6) and (FlO) 
to obtain the following results: 

(Fllb) 
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Remarks: 
(i) The fact that the set of adjoint Wigner poerators 

having ~ = [OJ has the sharp conjugation property 
(FlO), can, indeed, be directly attributed to the con
jugation property (Fllb), of the fundamental Racah 
invariants; 

(ii) The conjugation property of the U(2) Wigner 
operators can be given completely. It is 

~ rll ) e M12 M22 

Mll 

e-1 

= (_1).p(lIll+lIlu -rll 

x (-M" 
(F12) 
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Expressions for the wave and scattering operators in terms of singular integral operators are rigor
ously derived for a simple scattering system, for which the interaction Hamiltonian. V is of rank 1. 
The wave operators, defined by the strong limits, lim eiIIte-iHol as t -+ =f~, are known to exist for this 
interaction, and the existence of these limits is assumed throughout the paper. Using complex contour 
integrals to write down representations for certain operators, we find an identity for the evolution 
operator in terms of a family of bounded operators, from which singular integral operators are obtained 
in the limit as t -+ ~. The analysis differs from previous applications of time-dependent scattering 
theory to this system in that at no stage need "smoothness" or Holder conditions be assumed for the 
element of L,(-~, ~) from which Vis constructed. 

INTRODUCTION 

Since the work of Jauch and others,1-4 the theory 
of nonrelativistic particle scattering has been set on a 
firm mathematical footing. There are two approaches, 
corresponding to the time-dependent and time
independent theories, respectively. 

Time-dependent scattering theory involves a study 
of the strong limits 

O±f = lim eiHte-iHo'j, 

of trace class.4 An example of such an interaction is a 
perturbation V:f(k) -+ (4),f)4>(k) of rank one, where 
4> is a fixed element of, say, La( - 00, 00) and the free 
Hamiltonian Ho is the multipli~ation operator 
K:f(k) -+ kf(k). In fact, the existence and unitarity 
of S for a general perturbation of trace class may be 
deduced from the corresponding result for perturba
tions of rank one by using some general properties of 
wave operators. 

This paper is devoted to an investigation of the 
t .... ~CX) 

evaluation of the wave operators in the case of the 
where Ho is the free Hamiltonian and H is the total above interaction of rank one, from strong limits as 
Hamiltonian, both being self-adjoint operators in t -+ ± 00. Most of the techniques we employ are 
Hilbert space. For simple scattering systems for which applicable to interactions of greater generality than 
the total Hamiltonian is of the form H = Ho + V, those of finite rank. However, it seems an advantage 
the existence of the wave operators O± may be proved to consider a scattering ,system for which the S matrix 
for certain classes of interaction V. The wave opera- may be calculated exactly, i.e., may be expressed in 
tors are isometries, and the scattering operator S terms of singular integrals of known functions. 
may be defined in terms of them by S = O~O+, In the context of Hilbert space, singular integrals 
where O~ denotes the operator adjoint to 0_. If the are conveniently expressed in terms of the Hilbert 
ranges of 0+ and of 0_ are the same, the scattering transform. The Hilbert transform is unitarily equiva
operator is unitary. Unitarity of S has been proved lent (via the Fourier transform) to the operator 
for a large class of interactions. projecting onto the positive spectrum (0, (0) of the 

The scattering operator, which relates incoming multiplication operator K. If the projection onto 
free-particle states at time t = - 00 to outgoing free- (0, t) is denoted by POt, then Poro is related to POt by a 
particle states at time t = + 00, and the S matrix, strong limit as t -+ 00. In Sec. 1, we define a related 
defined in terms of the "matrix elements" (g, Sf), operator Fof , from which a singular integral operator 
are the ultimate goals of scattering theory, and are Foro is obtained by the strong limit as t -+ 00. This is 
closely related to the experimental cross sections. It is the approach we use to express time-dependent limits 
therefore important to understand how, in time- as singular integrals (we make no use of distributions). 
dependent theory, the wave and scattering operators The first step is to express the evolution operator 
may be obtained from limits as t -+ ± 00. One of the eiHte-iKt in terms of Fot and Foro. To do this, we 
simplest types of interaction for which the existence make use of the fact that the resolvent operator 
and unitarity of S have been proved is an interaction G(A.) = (A. - H)-l may be evaluated exactly for an 

2415 
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interaction of rank one. Our method is essentially to 
use Cauchy's theorem 

I
0
7T(A)G(A) dA = 27Ti7T(H), 

where 7T(A) is an analytic function. Since IIG(A)II is 
not uniformly bounded for A on C, using the technique 
of Lorch,5 we must introduce into 7T(A) a polynomial 
which vanishes where the contour intersects the real 
A axis. By using the spectral theorem,5 we obtain an 
identity for the evolution operator which after some 
modification becomes Eq. (33). 

The time-independent scattering problem would 
involve a study of the singular integral operator FoOCJ , 
which is usually unbounded. Here, it is sufficient to 
find a dense set of elements which are in the domain 
of FoOCJ ' Now, given any interaction V, let S be the 
set of elements I such that II VeiH°tjll is absolutely 
integrable on (- 00, 00) with respect to t. Then a 
sufficient condition for the existence of Q± (i.e., for 
Q± to be defined on the whole space) is that V is 
bounded and that S is everywhere dense. For the 
interaction considered here, S is the set of elements I 
such that the Fourier transform of rp*(k)f(k) is abso
lutely integrable. It is interesting to note that, in this 
case, 8 is a subset of the domain of FoOCJ ' The Q± 

exist even if 8 is not everywhere dense, in which case 
an alternative specification of the domain of FoOCJ 
must be found. This domain is always everywhere 
dense, and is investigated in more detail elsewhere.6 

The wave operators are defined by strong limits, 
but in practice it is simpler to take the weak limit of 
Eq. (33a). To do this, we first obtain, in Sec. 3, the 
weak limit of rp*(k)at(k), where aik) is defined by 
Eq. (32). This limit, by use of Cauchy's theorem, may 
be expressed in terms of singular integrals as in Eq. 
(44a), and enables us to evaluate the wave operators 
(56) and (62) and the scattering operator (65). 

1. THE SINGULAR OPERATORS 

Our Hilbert space is L2 ( - 00, 00) with inner 
product 

(J, g) =L:/*(k)g(k) dk. 

Our free Hamiltonian Ho = K is defined by 

(Kj)(k) = kf(k), (1) 

which has maximal domain 

DK = {f(k) E L2 ; kl(k) E L2 }. 

The interaction operator V = Irp) (rpl is defined on 

the whole space by 

VI = rp(rp,f), (2) 

where rp is a fixed element of L2 • 

The total Hamiltonian H is given by H = K + V, 
which also has domain D K; H is self-adjoint with this 
domain. 

We use the notation g for the Fourier transform of 
any element g of L1( - 00, (0), where 

(.P"g)(k) = g(k) = ~ lOCJ e-ikPg(p) dp, 
(h) -OCJ 

and we also define 

(.P"*g)(k) = - eikPg(p) dp. 1 lOCJ 
(27T)! -OCJ 

(3a) 

(3b) 

The operators <P and <P*: L2 -+ L1 are defined by 

(<Pf)(k) = rp(k)f(k), 

(<P*f)(k) = rp*(k)/(k), 

(4a) 

(4b) 

where ,p* is the complex conjugate of,p. We may also 
regard <II and <II* as mapping LOCJ to L 2 , in which case 
we retain the notation of Eqs. (4). 

The projection P ab is defined on L2 by 

(Pabf)(k) = I(k), k E (a, b), 

=0, otherwise. (5) 

In this definition we also allow a and b to take values 
± 00. We define 

(6) 

We now consider the operator Fab . There are two 
cases of interest. 

A. Fab With a, b Finite 

If IEL2' then .P"<P*/ELoo. Hence, Pab.P"<P*1 is 
essentially bounded, and also absolutely integrable. 
Further, .P"* maps L1 to L oo , so that Pab<P*/E Loo' 
Hence, <PPab<P*fEL2. We define the mapping 
Fab: L2 -+ L2 by 

Fad= <PPab<P*! (7) 

An equivalent definition is 

Fad = J... ibeiKt,p(,p, e-iKY) dt. (8) 
27T a 

Here and subsequently, integrals of the form J It dt, 
where It E L2 and is a continuous function of t (in the 
strong topology defined by the L2 norm), are to be 
understood as strong limits of approximating Riemann 
sums. Whenever integrals of this kind appear, we must 
verify the strong continuity of It, which guarantees the 
existence of the integral. 
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Fab is a bounded symmetric linear operator, with 

IlFallll ~ [(b - a)!21T] 114>11 2, when b> a. 

The strong derivative dFall/!db exists and equals 
(21T)-leiKb4>(4>, e-iKbf), so that Faa/is a strongly con
tinuous function of b and also of a. 

From Eq. (8), we readily obtain the identity 

Then the limit 

I±(k) = lim I~(k) (15) 
• ... 0 

exists for almost all k. 8 

The corresponding multiplication operators I± are 
given by 

(LJ)(k) = I±(k)j(k) a.e., (16) 

iKtF -iKt - F e abe - a+t.b+t· (9) each having domain 

If, for any A such that 1m A :F 0, we differentiate the 
identity with respect to tat t = 0, i.e., 

(A - K)-le-W.-K)tFabeW.-K)t(A - KrY 

= (A - K)-lFa+t.b+tC). - K)-Y, 

and set a = 0, we obtain the commutation relation 

[(A. - K)-I, FOb]j 
= (21Ti)-1(A. - K)-leiKbYe-iKb(A. - K)-Y 

- (21Ti)-1(A. - K)-ly(A. - KrY, (10) 

which we shall require later. 

D1 = {j(k) E L2 ; I±(k)j(k) E L2}. 

It may be shown6 that D[ C DF , where DF is the 
intersection of the domains of F_ ooo and Fooo . 

D[ is everywhere dense, so that, in Case (ii), the 
set 8 may be replaced by D [. 

Equations (13) remain valid forjE D[, except that 
(a) <1> and <1>* must be regarded, in Eqs. (4), as 
mapping part of L2 into L2 and (b) in Eq. (6) applied 
to the definition of Po 00 , 3' and 3'* are Fourier trans
forms defined as bounded operators on L2 . 

From Eq. (9), it is easily seen that 

(17) B. Too Singular Operator Fo w 

Fow is defined by 

Fowj= s-lim Fot! 

Note that, since Fsoo - Ftoo = FBb - Ftb , Fsroj is a 
(11) strongly continuous function of s, for any jin DF . 

t-+ w 

whenever the limit exists. 
Similar definitions apply to Fbw , F-wa , and F_ oooo . 

These are all symmetric operators provided their 
domains are everywhere dense, since Fab is symmetric. 

We distinguish two cases: 

Case (i); The set S, containing those elements j 
such that II Ve-iK'l1l is absolutely integrable on 
(- 00, 00), is everywhere dense. 

Then from Eq. (8), with u < v, we have 

II Fauj - Fa"jll ~ l.. f"ll Ye-iKYII dt, (12) 
21T u 

so that, letting u, v ---+ 00, we see that any element j 
of the dense set 8 lies in the domain of F"oo and, 
similarly, of F- oob . 

We also have, for suchj, 

FOooj= <1>Pooo<1>*j, (13a) 

F_oooj + Foooj = F-ooooj = <1><1>*/ (13b) 

Equation (l3b) follows from the obser¥ation that, 
if :F g E L1 , then :F*:F g = g.' 

Case (ii): Suppose S is not necessarily everywhere 
dense. Let 

2. AN IDENTITY SATISFIED BY THE 
EVOLUTION OPERATOR 

In order to obtain the wave operator, we first prove 
an identity for the evolution operator eiHte-iKt. This 
identity is stated in Eq. (33). 

The resolvent operator is given for 1m A ~ 0 by 

G(A.) = (A - H)-l 

= (A - K)-l + (A - K)-lg(A)(A - K)-I, (18) 

where 

and 
g(A.) = [1 - I(A)]-l 14» (4)1 (19) 

I(A.) =foo I 4>2(p) I dP. 
-00 (A. - p) 

(20) 

We apply Cauchy's theorem to various contour 
integrals. The precise shape of the contour does not 
matter, but we choose the rectangular contour C of 
Fig. 1, which cuts the real A axis at two points ~ and fl. 

Now, 

so that, if we take 

(21) 

P'(k) =foo 14>2(p)1 dp , E > O. 
-00 k - p ± iE 

(14) then, jf n > 1, IIP(A)(A - H)-III is bounded on C 
and tends to zero as A ---+ ~ and A ~ fl. 
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C -, 
C 

J-L" 
d 

CE 0 
------ 1 

C 
Flo. l. Applications of Cauchy's theorem to various 

contour integrals. 

Therefore, P(A)(A - H)-lj is a strongly continuous 
function of A on C, and the contour integral 

Ie dA P(A)(A - Hry 

is well defined if the integrand is regarded as vanishing 
when A = ~ or A = ",. The contour integral is defined 
in terms of Riemann integrals in the obvious way. 

We have the two well-known identities 

g(A) = V + VG(A) V, (22a) 

g(A)(A - K)-l = VG(A). (22b) 

Using Eqs. (22a) and (19), we find thatP(A)/[1 - I(A)] 
is a continuous function of A on C, and we define 

A(t) =1 ei.tIP(A) dA. (23) 
01 - I(A) 

For all real t, A(t) is a CtX> function. 
To obtain the identity for the evolution operator, 

we evaluate, in two ways, the integral 

Tf = II A(t2 - tl)eiKllr/>( r/>, e-iKtBj) dt1 dt2. 

O:5h:5tz:5t 
(24) 

Using Eq. (23), we may express Tf as a multiple 
integral with respect to A, 11' and 12 , The integrand is 
strongly continuous in the three variables, so that 
the order of integration does not matter. Integrating 
first with respect to 11' we find 

Tf = fII P().) e-W.-K )tl 

1 - I()') 
0:511:51.:5t 

.tEO 

X r/>( r/>, e'U-KltlJ) dtl dt2 d)' 

= If iP().) (). - K)-I(e-iU-Kltl - 1) 
1 - I()') 

0:51.9 
).EO 

X 4>(4), eiU-KltSj') dt2 d)', (25) 

where we have used the result that, if the strong 
derivative dftld1 exists and is strongly continuous in t, 
then 

_11 dt1 = ft. -10. i ta dj; 

o dtl 

Taking n > 2 in Eq. (21), we can express the 
integrand of Eq. (25) as a sum of two terms, each 
strongly continuous in A and t2 (and, by convention, 
vanishing at A = ~,,,,). Integrating one of these terms 
with respect to t" now yields 

Tf= II ~ i~(:~A) (). - K)-leiKtl r/>(r/>, e-iKtsf) dtadA 

O:5I.:5t 
).EO 

_ r dA peA) (). _ K)-l 
Ja 1 - I(A) 

X 4>(4), (A - Kr1[ei
(.t-K)t - 1]f). (26a) 

Using Eq. (18), we may write the second term in Eq. 
(26a) as 

-i f/). P().)[(A - H)-l - (A - Krt][ei(.t-K,t - 1][ 

(26b) 

This integral may be evaluated by means of the 
spectral theorem. We substitute the spectral repre
sentation for (A - H)-t. Since the integrand in (26b) 
is a continuous function of ). on C, due to the factor 
P().), we may invert the order of integration in the 
double integral to obtain 

-27Ti P(H)PfP(H)(eiHle-iKt - 1)f, 

where Ps,.(H) is the operator projecting onto that 
subset of the spectrum of H lying in the interval (~, ",). 

Using Eq. (8), we may also evaluate the remaining 
integral in Eq. (26a) to give, finally, 

T'f = 217i1 d)' peA} (A - K)-tF f 
a 1 - I(A) 01 

- 21Ti P(H)Ps/J(H)(eiHte-iKt- 1)[ (27) 

To make an alternative evaluation of Tf, we make, 
in Eq. (24), the change of variables 

so that 

Tf= SS A(v)eiKur/>( +, e-iKue-iK"j) du dv. (28) 

u+<>:5I. 
U.,,2:0 

Again using Eq. (8), we may carry out the u integration 
to give 

Tf= 21T f~.(V)FoHle-iK"fdV. (29) 
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Now, for the first time, we choose f to be in the inter
section DF of the domains of Fooo , F- ooo . We then 
see that a(V)FHOOe-iK1Jf is a strongly continuous 
function of v, since, from Eq. (17), this is just 
d(V)e-iK1JFt«Jf, and d(v) is continuous. Thus we may 
subtract this term from the integrand in Eq. (29) 
which gives 

Tf= 21T Lta(V)Foooe-iKjdV 

- 21T fd(V)FH«Je-iKj dv 

= 21T fa(V)Fo«Je-iKj dv 

- 21T fa(v)e-iKVFtoo!dV. (30) 

Now 

IlF0se-iKj - Foooe-iKjll 

= IIFsooe-iKjll 

= 11F,,+s«Jfll - 0, as 5 - 00. 

Further, the convergence of Fose-iKvfto Foooe-iK'j" is 
uniform for v E [0, f], so that 

fa(V)Fo«Je-iKj dv 

= s-lim (ld(v)Fose-iKjdv 
s .... oo Jo 

= s-lim Fosjta(v)e-iKy dv (since FOB is bounded) 
B~CO 0 

= Fooo fd(v)e-iKj dv. 

Hence, Fooo in Eq. (30) may be taken outside the 
integral sign, even when Fooo is unbounded. To simplify 
Eq. (30) further, we define the bounded linear operator 
At by 

Although we have taken t > 0, this identity remains 
valid for t :s; 0, as may be verified by slightly modi
fying the above proof. But, for t < 0, it is more con
venient to make the substitutions FO«J = F_<Iloo - F- ooo 
and Ft<ll = F_<Il<ll - F_<Ilt. In that case, setting 
F-<Il«Jf = «'P«'P*f, we see that Eq. (33a) becomes 

P(H)P~)l(H)(eiHte-iKt - l)f 

= iF 0 -ooAd - iAtFt -<Ilf 

+ [dA P(A) (A - K)-lF f 
Jo 1 ~ 1(1.) ot 

We use Eqs. (33) to obtain the wave operators. 

3. THE WEAK LIMIT OF </>*(k)at(k) 

(33b) 

The existence of the wave operator 0_ implies the 
strong convergence of the lhs of Eq. (33) as t - 00. 

So we may determine the wave operator from strong 
limit of the rhs. In fact, we choose to evaluate the 
weak limit. This we do because, although the sum of 
the terms on the rhs converges strongly, the individual 
terms need only converge weakly. 

To facilitate the evaluation, we first prove the weak 
convergence of 4> *(k)a,(k) , and then evaluate this 
limit as a singular integral. 

Now, from Eqs. (23) and (32), we obtain 

alk) = [ -iP(A) (eiO.-klt _ 1) dA. (34) 
Jo (A - k)(l - 1(1.» 

Hence, for any element g, 

4>(4), Atg) 

= -iLdA 1 ~(~A) 4>(4), (A - Kr1(eiC,t-Klt - 1)g), 

(35) 

At/= fa(s)e-iKjds. 
where the integrand is a continuous function of A. 

(31a) Using Eqs. (19) and (22b), we now have 

Since At is a multiplication operator, we may write 

where 
(Ad)(k) = atCk)f(k), (31b) 

(32) 

The adjoint operator A: is the operator of multipli
cation by a:(k). Applying Eq. (31a) to Eq. (30) and 
comparing with the previous expression for Tf of 
Eq. (27), we have the identity 

P(H)P;iH)(eiHte-iKt - 1)f 

= iFo«JAt/ - iAtFt<llf 

+ r dA P{A) (A - K)-lF f (33a) Jo 1 - 1(1.) Ot 

4>( 4>, Atg) 

= - i4> !adA P(A)(4>, (A - H)-l(eiCJ.-Klt - l)g). (36) 

The contour integral may be evaluated by the method 
of Sec. 2 to give 

(4), Atg) = 21T(4), P(H)PiiH)(eiHte-iKt_ l)g). (37) 

Since g is a general element of the Hilbert space, we 
may use Eq. (37) to obtain an explicit formula for 
AN, and deduce that IIANn is bounded uniformly 
in t. Hence, 114>*(k)at(k)II2 is bounded, and the exist
ence of the wave operator enables us to take the limit 
of Eq. (37) as t - 00 and to show that 4>*(k)at(k) 
converges weakly to some element of La. 
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Now, to evaluate the weak limit of fik) = 
cp*(k)at(k) we have, from Eq. (32), 

the double integral being absolutely convergent for 
any g EL2 • 

If we define 

i-+
OO it 1jJ(S) ds = lim 1jJ(S) ds, 

o t-+ 00 0 

where 1jJ(s) is any continuous and bounded function 
such that S;oo1jJ(s) ds exists, it may be proved that 

(This result may be obtained from the second mean 
value theorem for integrals. Note that e-,s1jJ(s) E 

LI(O, (0), whereas we do not require 1jJ(s) E LI(O, (0).] 
Now, in Eq. (38), the integrand is a bounded and 

continuous function of s, since, as we show in 
Appendix A, ~(s) is bounded for S E (- 00, (0). If 
foo is the weak limit Offt, then from Eq. (38) we have 

(g,foo) = 1-+ 00 

ds A(s) (L:e-ikScp*(k)g*(k) dk) 

= lim roo dse-.SA(S)(jOO e-ikscp*(k)g*(k) dk). 
..... 0+ Jo -00 

(39) 

The double integral is now absolutely convergent, and 
we may invert the order of integration. We integrate 
first with respect to s. Now, in the definition of A(s) in 
Eq. (23), the precise integration contour does not 
matter. We may replace C by a contour C. (see Fig. 1), 
which is chosen in such a way that, on C. ,1m). > - E. 

(I.e., referring to Fig. 1 , we require d < E.) In that case, 
integrations with respect to sand). may be inverted, to 
give 

fOOd -i(k-iE)S" ( )'i P().) dA se uS = I • 
o 0. [1 - J().)J(A - k + iE) 

(40) 

The requirement that d < E guarantees that the pole 
). = k - iE of the integrand in Eq. (40) lies outside 
the contour of integration. 

If E is sufficiently small that E $; tD, say, we can 
use Cauchy's theorem to obtain in Eq. (40) an integral 
round the original fixed contour C (see Fig. 1). 

We have, then, provided k #:- ~, 1', 

. r P().) d)' 
IJO. [1 - J()')]()' - k + iE) 

. r peA) d)' 
= I J 0 [1 - J().)](). - k + iE) 

+ 27TP(k - iE) P (k) (41) 
1 - J(k - iE) ~p , 

where 

Psp(k) = 1, k E (~, 1'), 
= 0, otherwise. 

Substituting Eq. (40) into Eq. (39) and using Eq. (41), 
we have 

(g,foo) = }~~+ L: dk cp*(k)g*(k) 

Now, 

(. r peA) d)' 
x I Jo [1 _ J(A)](A _ k + iE) 

+ 27TP(k - iE) Pg,lk»). (42a) 
1 - J(k - iE) 

r peA) dA 
Jo [1 - J().)](). - k + iE) 

defines a function of k and E which is bounded uni
formly for k E (~, 1'), and 0 $; E ~ tD. To verify 
this, we can use Cauchy's theorem to distort the 
integration contour to that of Fig. 2. Taking n > 2 
in Eq. (21), we have, for example, 

< const I i B' peA) dA I iB' IA -l'lldAI 
II [1 - J(A)](A - k + iE) - IL IA - k + iEI 

~ constiB'ldAI 

~ const, 

where we have used the fact that I(A - 1')/[1 - I(A)]I 
is bounded for A on the contour from I' to B' and 

A 

x 
k-(,E 

B 

FIG. 2. Use of Cauchy's theorem to distort the integration 
contour. 
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that (1/.j2) IA - ,ul < IA - k + iEI. A similar argu
ment shows that the integral round the entire closed 
contour defines a uniformly bounded function for 
k > ,u or k < ~, with 0 ~ E ~ !D. Hence, we may 
use the Lebesgue-dominated convergence theorem9 

to take the limit under the integral sign of Eq. (42a) , 
the integrand being dominated by const 14>(k)g(k)l. 

We then have 

(g,foc') = i L: dk 4>*(k)g*(k) 

( r peA) dA ) 
x J c [1 - I(A)](A - k) 

+ lim 2rrioo dk 4>*(k)g*(k) Ps,,(k). (42b) 
.... 0+ -00 1 - I(k - iE) 

But g is a general element of L 2 , so that we have 

r (k) . A.*(k) r peA) dA Joo - I,/, Jc [1 _ I(A)](A _ k) 

_ I' 27T4>*(k)P(k - iE) P (k) (43) - w- 1m sll ' a.e. 
<-+0+ 1 - I(k - iE) 

This limit not only converges weakly to an element of 
L 2 , but we also have pointwise convergence a.e. 
(see Appendix B). The weak limit and the pointwise 
limit must be the same a.e., so that we have 

w-lim 4>*(k)at(k) = i4>*(k) r peA) dA 
t-+oo Jc [1 - I(A)](A - k) 

+ 27T4>*(k)P(k)Ps,.(k) (44a) 
1 - L(k) , 

whereL(k) is defined by Eq. (15). 
A similar calculation shows that 

w-lim 4>*(k)at(k) = i4>*(k) r peA) dA 
t-+-oo Jc [1 - I(A)](A - k) 

27T4>*(k)P(k)Ps,,(k) + . (44b) 
1 - I+(k) 

We may use Eqs. (44) to take the weak limits of Eqs. 
(33). 

4. THE WAVE OPERATOR AS A WEAK LIMIT 

Since we are takingfto be in DF , the final term on 
the rhs of Eq. (33a) actually converges strongly to a 
limit, which may be written down immediately, 
since the contour integral defines a bounded operator. 
However, it is convenient to use the commutation 
relations for FOt to bring Fooo outside the integral sign. 

Using Eq .. (to), with b = t, we have 

r dA peA) (A _ K)-IF f 
Jc 1 - I(A) Ot 

_ F r dAP{A) (A - K)-Y 
OtJc 1 - I(A) 

= _1 r dA peA) eiKt(A _ KrIV(A _ K)-le-iKY 
27Ti Jc 1 - I(A) 

__ 1 r dA peA) (A _ K)-IV(A - K)-Y 
27Ti Jc 1 - I(A) 

= ~ r dA P(A)etKt[(A _ H)-I - (A _ K)-I]e-iKY 
2m Jc 

- ~ r dA P(A)[(A - H)-I - (A - K)-l]f, 
2mJc 

(45) 
where we have used Eq. (18). 

The rhs may be evaluated by the techniques of Sec. 
2, to give 

r dA peA) (A - K)-lF f 
Jc 1 - I(A) Ot 

= F r dA peA) (A - K)-Y 
OtJc 1 - I(A) 

+ eiKtP(H)Ps,,(H) e-iKY - P(H)Ps,.<H)f (46a) 

Now, 

lim lIeiKtP(H)Psll(H)e-iKY - P(K)Ps,,(K)fll 
t-+ 00 

= lim IIP(H)Psll(H)eiHte-iKY 
t-+ 00 

- eiHte-iKtP(K)PSIl(K)fII 

= IIP(H)Ps,.{H)fLf - (LP(K)Ps,.{K)fll = 0, 

using the intertwining propertyl of the wave operator 
fL. 

Letting t -+- 00 in Eq. (46a), we now have 

r dA P{A) (A - K)-lF f 
Jc l-I(A) 000 

= F r dA peA) (A - K)-Y 
oooJc 1 - I(A) 

- P(H)Ps,.(H)f + P(K)PsiK)f, (46b) 

and we also obtain the same equation with Fooo 
replaced by Fo- oo . 

Applying Eq. (46b) to Eq. (33a), we obtain 

«(L - I)P(K)P (K)f- F r dA peA) (A - K)-Y 
Sll 000 Jc 1 - I(A) 

= i lim [FoooAd - AtFtoof], (47a) 
t-+ 00 
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and from Eq. (33b) we obtain 

(0+ -1)P(K)Ps,.(K)f - Fo- oo Ie di.
l 
~(~i.) (i. - Kry 

= i lim [Fo-ooAd - AtFt-oofJ. (47b) 
t-+-ao 

As in Sec. 1, we distinguish 2 cases. 

Case (i): Let f belong to the set S, defined in the 
discussion following Eq. (11) [i.e., suppose the 
Fourier transform <P~f of 1>*(k)f(k) is an element of 
L1]· 

Then 

1 i oo 
A (AtFtoof)(k) = -1 at(k)1>(k) ds eikB(<P*f)(s). 

(27T) t 
Hence, 

1 ioo
• I (AtFtoof)(k) I ~ -1 I a,{k)1>(k) I ds 1(<P*f)(s)l. 

(27T) t 
(48) 

Now we have seen that lIat(k)1>*(k)lla is bounded 
uniformly in t, so that Eq. (48) implies 

s-lim AtFtoof = O. (49) 
t-> 00 

Hence, we see from Eq. (47a) that, in this case, 
lim FoooAd as t ---+- 00 exists as a strong limit. 

Now let g be a second element of S. Then 

i(g, FoooAd) = i(Fooog,Ad) 

= i L:dk at(k)f(k)1>*(k)[(Pooo<P*g)(k)]*, 

(50) 
where we have used Eq. (13a). 

Now (Pooo<P*g)(k) is bounded for any fixed element 
g E S, so that f(k)[(Pooo <P*g)(k)]* E La. Hence, to 
evaluate i lim (g, FoooAtf), as t ---+ 00, we may use the 
weak limit of 1>*(k)at(k) obtained in Sec. 3. 

If we use Eq. (44a) and make the further assump
tion thatfis in the domain of (1 - L)-1, where L is 
defined by Eq. (16), we obtain 

lim i(g, FoooAd) = (Fooog, h), (51) 
t->oo 

where 

h(k) - -i P(A.) dA. f(k) 
0(1 - J(i.»(i. - k) 

27TiP(k)P~".(k) f(k)' 
+ 1 - L(k) , 

(52) 

i.e., using the inner product of Eq. (47a) with g, 
together with Eq. (49), we have 

(g, (0_ - I)P(K)P~p.(K)f) 

= (Fooog, 27TiP(K)Ps,.(K)(1 - L)-y) (53a) 

= (g, 27TiFooo(1 - Lr1p(K)Ps,.(K)j), (53b) 

since any element of the range of (1 - L)-;-l is in the 
domain Dz of L and hence, as we observed in Sec. 1, 
is also in DF • 

Since for case (i) we assume that the set S to which 
f and g belong is everywhere dense, Eq. (53b) is 
sufficient to determine 0_. But our further assump
tion thatfbelong to the domain D(l_L)-l means that, 
in fact, Eq. (53) apparently determines 0_ only on the 
closure of S n D(l_L)-l. 

Case (ii): Now let us assume instead thatf, g E D == 
Dz n D(l-U-l n Loo. In that case, Eq. (49) may no 
longer hold. 

Now, <P*fE La, for allfE Loo. As a linear operator 
mapping La into La, Ptoo is defined by Eq. (6), where 
:1' and :1'* are Fourier transforms defined on La, and 
Ptoo is a projection operator defined by Eq. (5). We 
may deduce, since :1' and :1'* are bounded, that 

s-lim Ptoo<P*f = O. 
t-> 00 

Further, 

111>*(k)at(k)g(k)lla ~ const 111>*(k)at(k)lla 

and, hence, is bounded uniformly in t. 
Thus, instead'of Eq. (49) we now have 

lim (g, AtFtoof) = lim (<P*Atg, Ptoo<P*f) = O. (54) 
t-+oo t-+oo 

We also have i(g, FoooA,f) = i(Pooo<P*g, <P*A,f), so 
that, having f E L oo ' we may use the weak limit of 
1>*(k)at{k), as in case (i), to deduce Eq. (53). 

Now it is readily verified that any element of D 
which is of bounded support is of the form 
P(K)Ps,.(K)f, for some f 

Hence, we may replace Eq. (53) by 

(g, (0_ - l)u') = (Fooog, 27Ti(1 - L)-lU'), (55) 

where u', g E D and u' is of bounded support. 
It may further be verified that any element u of 

D(1-U-1 is a strong limit of elements u~ E D, where 
the u~ are of bounded support. Moreover, the 
sequence u~ can be chosen such that u~ ---+- u, 
(1 - L)-lU~ ---+ (1 - L)-lU, both being strong limits. 
Since 0_ is bounded, it follows that we can take limits 
in this way to obtain Eq. (55) with u' replaced by u. 
Since D z C DF and the g's belong to a dense set, we 
have then 

O_u = u + 27TiFooo(1 - L)-lU, (56a) 

provided only that u E D(]_U-l . 

A similar calculation shows that 

O+u = u + 27TiFo -00(1 - 1+)-IU • (S6b) 
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Equations (56) are valid only for a dense set of 
elements in La. We may extend the wave operators 
onto the whole of L2 by continuity, and, in this way, 
we may express Q±u as a strong limit. The most con
venient way to do this is first to obtain Q±u for all u 
of bounded support [a, b], so that for a general 
element of La the wave operator is defined by the 
strong limits as b ---+ co, a ---+ - co. The extension of 
the wave operators to elements of bounded support 
is given by Eq. (61), which we now set out to prove. 

Using Eq. (17), we deduce from Eq. (56) that, for 
all U E D(l-I_)-l, 

Q_u - eiKtQ_e-iKtu = 217iFoll - L)-IU • (57) 

We saw in Eq. (44) that 

4>*(k)P(k)PSJl(k)/[1 - L(k») E La, 

and it readily follows that 

4>*(k)/[1 - L(k») == 1p(k) E La(a, b) 

for any finite a, b. If in Eq. (57) the support of u(k) 
is contained in [a, b], then according to Eq. (7) we may 
write 

Fot(l - L)-IU = <1>POt'Yu, (58) 

where 'Y is the multiplication operator corresponding 
to 1p(k) which maps u into an element of L 1 • Therefore, 
<1>POt'Y has an integral representation similar to that 
of Eq. (8) for Fab , and is a bounded operator defined 
for all U E L2 having bounded support. Thus Eq. (57), 
initially proved only for U E DU-U-l' may now be 
extended to give 

Q_u - eiKtQ_e-iKtu = 217i<1>Pot'Yu, (59) 

provided supp u(k) c [a, b]. 
Using the intertwining property of Q_, we find 

that, as t ---+ co, the lhs of Eq. (59) converges strongly 
to Q_u - u. The weak limit of the rhs may be evalu
ated by the same technique that we used to find the 
weak limit of 4> * (k)at(k). We find 

lim (g, 217i<1>Pot'Yu) 
t .... oo 

= lim i (00 ds e-£'(g, eiK84»( (be- ifl·1p(p)u(p) dP), 
£ .... 0+ Jo Ja 

(60) 
which leads to the result 

(Q_u - u)(k) = -4>(k)lim (b 1p(p)u(p) dp a.e. 
.... 0+ Ja (k - p + i€) 

(61) 

The wave operator may be evaluated for a general 
element u by taking the strong limits as a ---+ - co, 

b ---+ + co. In practice, however, it is convenient to 
express Q_u in terms of pointwise integrals and limits. 

From the existence of the strong limits, we may 
deduce, for example, that 

4>(k) (N 1p(p)u(p) dp, 
Jb+l(p - k) 

regarded as an element of Lz(a, b), must converge 
strongly to a limit as N ---+ co. But the phase of u(p) 
may be chosen such that 1p(p)u(p) is real and positive. 
Hence, 

roo 1p(p)u(p) dp 
Jb+l (p - k) 

converges absolutely for k E [a, b]. The strong limit 
(s-lim) as N ---+ co must equal the pointwise limit, so 
that 

s-Iim 4>(k) r
N 

1p(p)u(p) dp 
N ... oo Jb+l (p - k) 

= 4>(k) (00 1p(p)u(p) dp 
Jb+l (p - k) 

= -4>(k)lim (00 1p(p)u(p) ~P , 
£"'0+ Jb+l (k - p + l€) 

where the limits are taken in Lz(a, b). 
Arguments such as these enable us to deduce from 

Eq. (61) that 

(Q_u - u)(k) = -4>(k)lim foo 1p(p)u(p) dp , (62) 
.... 0+ -00 (k - p + i€) 

where 1p(p) = 4>*(p)/[1 - L(P»), and L(P) is defined 
a.e. by Eq. (15). Equation (62) is valid for any 
u E L2( - co, co). 

5. THE SCATIERING OPERATOR 

From Eq. (56b), we have, for u E D(I-1 )+1, 
+ 

Q+u = u - 27TiF_ooo(1 - I+)-IU 

= U - 217i<1><1>*(1 - I+)-IU 

+ 27TiFooo(l - I+)-lU, (63) 

where we have used Eq. (13b). Therefore, 

Q+u = [1 - 27Ti<1><1>*(1 - I+)-l]u 

+ 27TiFooo (1 - L)-l[(1 - L)(1 - I+)-IU]. (64) 

We now define the multiplication operator S by 

(Sf)(k) = S(k)f(k), (65) 
where 

S(k) = [1 - L(k)]f{1 - I+(k)] a.e. (66a) 

From Eq. (Bl) of Appendix B, we have also 

S(k) = 1 - 217i 14>(k)ls/[1 - I+(k)], (66b) 
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so that Eq. (64), from Eq. (56), becomes 

Q+u = Q_Su. (67) 

Since Q_ is isometric, we have Q!Q_ = 1, so that 

Q!Q+u = Suo (68) 

Equation (68) is just the definition of the scattering 
operator S. We see that S is unitary, and Eqs. (65) 
and (66a) define S on the entire Hilbert space, since 
the elements u, for which Eq. (67) was originally 
proved, are everywhere dense. 

APPENDIX A 

Here, we prove that the function ~(t), defined for 
real t by Eq. (23), is bounded uniformly in t. 

Now, from Eqs. (21) and (22) we find that 

[1 - I(A.)]-1 = 1 + (r{>, G(A.)r{», (AI) 

where G(A.) = (A. - H)-I. 
Hence, from Eq. (23) we have 

~(t) = IoeiMp(A.) dA. + Io(r{>, eiMP(A.)G(A.)r{» dA. 

= fo (r{>, eiAtP(A.)G(A)r{» dA., (A2) 

since P(A.) is analytic. 
The contour integral may readily be evaluated by 

the technique of Sec. 2, and we find 

~(t) = 21Ti(r{>, P(H)P~,iH)eiHtr{». (A3) 

Since P(H)P~iH) is a bounded operator, we see 
that ~(t) is indeed uniformly bounded in t. 

APPENDIX B 

We here summarize the results which we need 
regarding boundary values of analytic functions. 

Since r{>2(P) E Ll ( - 00, 00), the limits 

I±(k) = lim Joo I r{>2(p) I d~ 
• ->0+ -00 k - p ± IE 

exist for almost all k. 8 Here, the I±(k) are boundary 

values of the analytic function 

I(A.) =Joo I r{>2(p) I dp 
-00 (A. - p) 

as A. approaches the real axis along a normal to the 
real axis. Therefore, the I±(k) may also be regarded 
as sectorial limits of I(A.) (see Ref. 10, p. 105). The 
sectorial-limit theorem applies to functions analytic 
in a half-plane which are bounded. However, in the 
upper half-plane, say, 1m [I(A.)] ~ 0, so that the 
theorem may be applied to rial().), for any ex. > 0, to 
show that I(A.) has sectorial limit for almost all k. 

The set of real values k such that I±(k) = 1 is of 
measure zero. [This follows from a result of Luzin and 
Privalov, quoted in Ref. 11, p. 371.] 

Hence, [1 - I±(k)]-1 is almost everywhere defined. 
This is necessary for the definition on a dense domain 
of the operators (1 - I±)-I, where the operators 
I± are defined by Eq. (16). 

Often, in the present paper, we meet sequences of 
functions In(k) which converge not only pointwise 
a.e. but also weakly, regarding the In as elements of a 
Hilbert space. Under these conditions, the weak ~nd 
pointwise limits may be shown to coincide almost 
everywhere. 

In Ref. 8, it is shown that 

L(k) - I+(k) = 21Ti IcP(k)1 a.e. (Bl) 
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The domain of an unbounded singular integral operator occurring in scattering theory is investigated 
and is proved to be everywhere dense. An application is made to a simple scattering system, for which 
the interaction Hamiltonian is of rank one, and the existence of the wave operator is proved by a "time
dependent" method which does not assume "smoothness" of the element of L 2( - 00, 00) from which the 
interaction is constructed. 

INTRODUCTION 

Since the pioneering work of Friedrichs and others1.2 
in the theory of time-independent scattering, the im
portance has been recognized of the study of the solu
tions F of the commutation relation [Ho ,F] = U/27T)V, 
where Ho is the free Hamiltonian and V is the inter
action Hamiltonian. 

For the special case of an interaction of rank one, 
a link was established in Ref. 3 with the time-de
pendent theory. A family of operators Fot was defined, 
from which a solution Fooo of the above commutation 
relation may be obtained from the strong limit as 
t --+ 00, and the wave operators and scattering oper
ator were obtained by a time-dependent method. 

The main purpose of the present paper is to show 
that the domain of the singular integral operator is 
everywhere dense in L 2 • Although a simple specifica
tion of the domain of Fooo is not generally possible, we 
prove in Sec. 1 that a dense subse! of the domain may 
be identified with the domain of a given multiplication 
operator in L 2 • 

Fooo is a semibounded operator, and it is possible to 
prove that the closure Fooo is self-adjoint. However, we 
are not directly interested in the (maximal) domain of 
Fooo , since there may be elements g in this domain for 
which the connection Fotg and Fooog is not preserved. 

As an illustration of the application of our results, 
we give a new time-dependent proof of the existence 
of the wave operators D± for the above interaction of 
rank one. Previous proofs have entailed first proving 
the existence of D ± for "smooth" interactions V = 
11> >(1)1, where 1>(k) is assumed to satisfy Holder con
ditions or other smoothness criteria. For these inter
actions, Fooo is defined on the whole of L2 . However, 
the proof we give in Sec. 2 makes no assumptions 
about 1>(k) except that 1> is an element of L 2 ; in that 
case, Fooo may well be unbounded. 

1. CONSTRUCTION OF A SET OF ELEMENTS 
BELONGING TO THE DOMAIN OF THE 

SINGULAR OPERATOR 

We state, for completeness, a number of definitions 
from Ref. 3. 

The linear operator Fot is defined on the space 
L2 == L2( - 00, (0) by 

Fod = 21 (Ids eiKs1>( 1>, e-iKsj), (1) 
7T Jo 

where 1> is a fixed element of L2 and K is defined by 

(Kf)(k) = kf(k). (2) 

The domain D K of K is given by 

DK = {f(k) E L~; kf(k) E L2}. 

More generally, we define Fab by 

Fab! =..1 (b ds eiKs1>( 1>, e-iKsj). (3) 
27T Ja 

The multiplication operator <I> is defined by 

(<I>f)(k) = 1>(k)f(k) (4) 

having domain 

DIS) = {f(k) E L 2 ; 1>(k)f(k) E L 2}. 

This differs slightly from the definition of the operator 
<I> in Ref. 3; we now require the range of <I> to be con
tained in L 2 • 

The adjoint <1>* of <I> is the operator of multiplication 
by the complex conjugate 1>* of 1>. Both <I> and <1>* are 
closed operators; note also that DIS) = DIS)"' 

If:F: L2 --+ L2 is the Fourier transform, we define the 
projection operator Pab by 

(5) 
where, for any f E L 2 , 

(Pabf)(k) = f(k), k E (a, b), 

= 0, otherwise, 
(5') 

Pab is defined on L2 , and we allow a = - 00 or b = 
+ 00 in Eq. (5'). 

The singular integral operator Fooo in which we are 
interested is defined by 

F ooo! = s-lim F od (6) 
t-+ <Xl 

2425 
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for allfsuch that the strong limit exists. Inspection of 
Eq. (3) shows that Fab is an extension of the operator 
<flPab<fl*. Although Fab is a bounded operator defined 
on L 2 • the domain of <flpab<p* is only Dib . Dib = L2 
only if cp E LOCi. Nevertheless, <PPab<P* is densely de
fined and symmetric. POoo is a Hilbert transform, and 
we may write 

(PoOCif)(k) = l.i.m . .-l. JOCi f(p) dP ., (7) 
<-+0+ 271"1 -00 P - k - IE 

the limit being in-the-mean in L2 ; i.e., if we define a 
linear operator T. by 

(T.f)(k) =JOCi f(p) dP . , (8) 
-00 p - k - IE 

then 

P ooof = s-lim ~ TJ. 
.... 0+ 271"1 

It may be verified, for E > 0, that 

IITrfll ~ 271" IIPoOCifll· 

(8') 

(9) 

The singular operators F_ OCiO and F- OCiOCi are defined by 
equations similar to Eq. (6); for example, F_ooo! is 
obtained from F.of by taking the strong limit as s -+ 

-00. 

Finally. we define, for real nonzero E, 

r:(k) = foo Icp2(p)1 dp 
-00 k - p ± iE 

(10) 

and 
J±(k) = lim I;'(k) a.e. (10') 

..... 0+ 

We now proceed to construct a set of elements which 
are in the domain of Fooo . To this end, we suppose 
first that we have a family Z.(k) of measurable func
tions parametrized by a real positive number E; then 
we define in terms of Z. three further families of 
measurable functions by 

u.(k) = 4>*(k)Z.(k), 

v.(k) = c/>*(k)Z.(k)/[l - J;-(k)], (11) 

w.Ck) = Z.Ck)/[l - I;(k)]. 

We assert the following: 

Lemma 1: Suppose that 

(i) u., v., and w. are all elements of L 2 , 

(ii) the L2 norm of u. is bounded uniformly in E, 

for € > 0, 
(iii) 

l.i.m. v.(k) = v(k), (12) 

where v is some element of L z, and 
(iv) 

l.i.m. w.(k) = w(k), 

where w is some element of L 2 • 

Then the function 1Jl. defined by 

(12') 

1Jlik) = CP(k)f
oo 

dp cfo*(p)Zlp) (13) 
-00 [1 - l;(p)]Ck - P + iE) 

is an element of L2 and converges weakly to a limit as 
E-O+. 

Proof: We have 

11Jl.(k)1 = I cfo(k) I I JOO dpw.(p)cfo*(p) I 
-00 (k - p + iE) 

~ 1 Icfo(k)lllw.llllcfoll, 
E 

so that certainly 1Jl. E L 2 • Also, 

111Jl.11
2 

= L: L: L: 
dk dp dp' lcfo2(k)1 u.(p)u:(P') 

x----------~~~~~~~~-------
[1 - l;(p)][l - I:(p')](k - p + iE)(k - p' - iE) 

The triple integral is absolutely convergent. Carrying 
out the integration first with respect to k and sub
stituting 

('Xl dk 1c/>2(k)1 
J-oo (k - p + iE)(k - p' - iE) 

= ( ~ 2') [It(P') - J;(p)], 
p - P - IE 

we find 

1IV'.112 =foo foo dp dp'u.~P)u:~p') 
-00 -00 (p - p - 21E) 

X C _ ~:(P') - 1 _ ~;(P») 
=foo (<Xl dp dP'(U'(P-)V:(P') -: v.(~)u:(P'»), 

-0Ci J-oo p - P - 2lE 

(14) 

where we have used Eq. (11). With the notation of 
Eq. (8), we now have 

II V'.11 2 = (v., T2.u.) + (T2.u., v.). (IS) 

From Eq. (12) we see that (for E sufficiently small) 
IlvE11 is bounded, and from hypothesis (ii) lIu.1I is 
bounded. Hence, ~sing (9), we may deduce from Eq. 
(15) that 111Jl.11 is bounded uniformly [for E in some 
interval (0, a)]. 

To evaluate the weak limit of 1Jl., consider any 
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element y in the domain DIIJ of <1>*. Then we have 

(y, tpE) =fOO fOO dk dP( q,*(k)Y(k~ \* VEep) 
-00 -00 k - P - IEJ 

= (4<1>*y, v.), (16) 

using Eq. (8). Hence, from Eqs. (8') and (12), we have 

lim(y, tp.) = -21Ti(Pooo<l>*y, v). (17) 
..... 0+ 

Since the elements y in DIIJ are dense in L2 and since 
Iltp.11 is uniformly bounded, we may deduce from Eq. 
(17) that tp. converges weakly to a limit; this com
pletes the proof of the lemma. Moreover, lim (y, tp.), 
as E ---+- 0+, defines on DIIJ a bounded antilinear 
functional. By the Riesz representation theorem, 
there exists an element x of L2 such that 

-211i(Pooo<l>*y, v) = -21Ti(<I>*y, Pooov) 

= -21Ti(y, x). (18) 

Equation (18) is valid for all Y E DlIJo; from the def
inition of the adjoint of an operator, by noting that 
(<1>*)* = <1>, Eq. (18) tells us that POoov E DIIJ and that 

<l>Pooov = x. 
Hence 

w-lim tp. = -21Tix = -21Ti<l>Pooo v. (19) 
'-+0+ 

Since <1>* is closed, we deduce from Eqs. (12), 
together with Eq. (11), that v = <I>*w, so that Eq. (19) 
becomes 

w-lim tpE = -21Ti<l>Pooo<l>*w. (19') 
.-+0+ 

Theorem 1: With the same assumptions as the 
lemma, it follows that w is in the domain of FOrt)' 

Proof: From Eq. (19) we have 

11-21Tixll S lim sup IItp.ll. 
O<.<a 

We have already deduced from Eq. (15) that II tpE II is 
bounded; in fact, using Eq. (9), we have 

lim sup II tp.11 2 S const lim sup IlPo00 v. II 
O<.<a O<'<a 

so that 

(20) 

Now the above analysis may be carried out with 
Z.(k) replaced by e-iktZ.(k). In that case, we may 
replace v and w by e-ikt and e-iktW respectively. 
Using the fact that eiKtPoooe-iKt = Ptoo and the 
unitarity of e-iKt, we see that (20) becomes 

(20') 

Substituting 

<l>Ptoo<l>*w = <l>Pooo<l>*w - <l>POt<l>*w 

= <l>Port)<I>*w - Fotw 

and using the fact that, for any element v, 

s-lim Pt""v = 0, 
t .... "" 

we may deduce from (20') that 

s-lim Fotw = <l>Po",,<I>*w; 
t .... oo 

(21) 

i.e., comparison with Eq. (6) shows that we have 
proved the conclusion of the theorem, that w is in the 
domain of Fooo , and that 

(22) 

Using Eq. (15) to obtain a bound for Iltp.ll, we now 
have 

Ilxll = IlFooowll 

S (21Tr1 [lim sup {(V., T2.u.) + (T2eu., veH]1-. 
O<'<a 

If we make the further assumption that 

s-lim u. = U, 
..... 0+ 

(23) 

(24) 

where u is some element of L2 , Eq. (23) becomes 

IlFooowll S (21T)-l[(V, 21TiPo""u) + (21TiPooou, v)]l. 

(25) 

2. PROOF THAT THE DOMAIN OF Fooo IS 
DE~SE IN L2 

We now show that elements w in the domain of 
Fooo, obtained by the construction of the previous 
section, are dense in L2 • 

We first define, for any positive E and N, the two 
sets of real numbers 

s. = {k; N-1 S 11 - I;(k) I s N for any IX in (0, En 

(26) 
and 

SeN) = US., (26') 
e>O 

where r;.<k) is defined by Eq. (10). Since I-;(k), for 
IX > 0, is a continuous function of IX and k, it may be 
shown that both S. and SeN) are measurable sets. We 
denote by L the operator of multiplication by I-(k), 
where I-(k) is defined by Eq. (10'). L has maximal 
domain 
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Since the set {k; [-(k) = I} has measure zero, the 
inverse (1 - L)-l exists, but is not necessarily defined 
on the whole of L 2 • 

We now prove the following: 

Theorem 2: Given any elementg of L2 , letgN denote 
the projection of g onto S(N); i.e., 

gN(k) = g(k), if k E SeN), 

= 0, otherwise. (27) 

Then gN lies in the domain of FoOC). Further the 
restriction, for fixed N, of Foro to elements gN is 
bounded. Ifboth N andg are varied, then the elements 
gN are dense in L2 (so that the domain of Fooo is dense 
in L2)' 

Proof: With the notation of Sec. 1, let 

Z.(k) = g(k)[1 - [;(k)], if k E S. , 

= 0, otherwise. (28) 

Then from Eq. (11) we have 

v.(k) = cf>*(k)g(k), if k E S. , 

= 0, otherwise, (29) 
and 

w.(k) = g(k), if k E S. , 

= 0, otherwise. (29') 

We have the pointwise limits a.e.: . 

lim v.(k) = cf>*(k)g(k), if k E SeN), 
.... 0+ 

= 0, otherwise, (30) 
and 

lim w.(k) = g(k), if k E SeN), 
''''0+ 

= 0, otherwise. (30') 

But it follows from Eqs. (10) that 

I cf>2 (k) I = 17-1 1m [-(k) 

a.e., so that, using Eq. (26), we see that, for fixed N, 
I cf>2(k) I is bounded a.e. for k E S •. Hence Iv.(k)1 :s; 
const Ig(k)l, where the constant is independent of E. 

Since g E L 2 , we may use the Lebesgue-dominated 
convergence theorem to deduce that Eq. (30) is valid 
for the strong limit in L 2 , and similarly for Eq. (30'). 

Thus Eqs. (12) are valid, and comparison with 
Eq. (27) shows that w = gN and v = <I>*gN' 

A further application of the Lebesgue-dominated 
convergence theorem enables us to show from Eqs. 
(11) and (28) that 

u = s-lim u. = <1>*(1 - L)gN' (31) 
.... 0+ 

The assumptions of Lemma 1 and of Theorem 1 are 
satisfied, and it follows immediately that gN is in 
the domain of Fooo . 

Now, for k E SeN), 1cf>*(k)[1 - [-(k)] I is bounded 
for fixed N, so that from Eq. (31) we have Ilull :s; 
const IlgNII. Similarly, we have Ilvll :s; const IlgN\I, so 
that from (25) we find that 

(32) 

This proves the second statement of Theorem 2. It 
remains only to prove that the elements gN, given by 
Eq. (27), are dense in L2 as g and N are varied. 

Now, for almost all k, [-(k) # 1. Hence almost all 
k belong to SeN) for some N. So the measure of 
R"" SeN) tends to zero as N ~ 00, from which we 
conclude that 

lim Ilg - gN11 = ° for any g E L 2 • 
N ... oo 

This concludes the proof of Theorem 2. 

We refer to the set of elements gN given by Eq. 
(27) for any g and N as the restricted domain of 
Fooo. It may similarly be proved that these elements 
are also in the domain of F- ooo . The set of elements on 
which we know Fooo to be defined may be enlarged by 
means of the following: 

Theorem 3: Let D F be the intersection of the do
mains of Foro and F- ooo , and let Dr be the domain of 
the multiplication operator L, where [-(k) is given by 
Eq. (10'). Then Dr c DF • 

Proof: Substituting w = gN and v = <I>*gN and 
using Eq. (31), we may write the inequality (25) as 

11 217iFooogNI12 :s; (217i(I - L)gN, FooogN) 

+ (FooogN' 217i(1 - L)gN)' (33) 

This inequality may be simplified by replacing gN by 
(1 - L)-lgN , this element also being in the restricted 
domain. 

We then have 

where 
w_gN == gN + 217iFooo(1 - L)-lgN' (35) 

w_ is actuaIIy the wave operator for the interaction 
considered in the following section; (34) teIIs us that 
w_ is a bounded operator with Ilw-ll :s; 1. (Actually 
w_ is an isometry, so that Ilw-1l = 1.) 

We extend w_ by continuity onto the entire space 
L2 • Now any element in Dr is of the form (1 - L)-Y 
for some! We define on Dr an operator GOro by 

(36) 
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for any / belonging to 

D(l-Ll-l. 

From Eq. (35) we see that FOrt) and GOrt) have the 
same restrictions to the restricted domain. Defining 
Gtoo = eiKtGoooe-iKt and GOt = Gooo - Gtoo , we have, 
from Eq. (36), 

27TiGoi1 - LrY = (w_ - 1)1 - e'Kt(w_ - l)e-iKY. 

(37) 
If/ N is in the restricted domain, then 

GOt{1 - L)-ljN = Fot(1 - L)-ljN (38) 

since the construction of Got in terms of Gooo agrees 
with the construction of Fot in terms of Fooo • 

Now, given any 

IE D(l-L)-l, 

we can find a sequence IN in the restricted domain such 
that 

s-lim IN = f, s-lim (1 - LrYN = (1 - L)-lf. 
N-oo .'\1-+<:0 

Hence, from Eq. (38) we have 

s-lim Goi1 - L)-1;.v = GOt(1 - Lr11 
N ... oo 

= Foll - LrY, 
since FOt is bounded and since from Eq. (37) GOt(l -
L)-l is also bounded. 

It follows that Fot is an extension of GOt. It remains 
only to prove that Fooo is an extension of Gooo • Now 

lim IliKt(w_ - l)e-iKYNIl 
t ... 00 

But, given any E > 0, we may find an N sufficiently 
large that III - INII < E, and in that case 

IliKt(w_ - l)e-;KY - eiKt(w_ - l)e-iKYNII 

S 2 III - IN 11 < 2€. 
It follows that 

lim !leiKt(w_ - 1)e-iKYIl = o. 
t ... oo 

Using Eq. (37), with GOt now replaced by Fot , we 
have 

s-lim Fot(1 - L)-Y = ~ (w_ - 1)f. (39) 
t ... ", 27T1 

Hence any element (1 - L)-ljin D[ belongs also to 
the domain of FOrt), and from Eq. (36) we see that 
Fooo is an extension of GOrt). This completes the proof 
of Theorem 3; similar arguments show that the do
main of F- ooo also contains D[. 

3. PROOF OF THE EXISTENCE OF THE WAVE 
OPERATORS FOR AN INTERACTION OF 

RANK ONE 

The free Hamiltonian is the operator K defined by 
Eq. (2). The interaction Hamiltonian V = 14>)(4)1 is 
defined by 

VI= 4>(4),/), (40) 

where 4> is a fixed element of L 2 • The total Hamil
tonian H is given by H = K + V, having domain D K' 

We shall prove the existence of the wave operators 
Q±; i.e., we shall prove that 

Q±I = s-Jim eiHte-iK'l' 
t-+'!'rt) 

exists for any I in L2 • 

We first restate a number of results and definitions 
from Ref. 3. The results may be obtained without 
first assuming the existence of Q±; proofs may be 
found in Ref. 3. 

With 

where n > 2 and ~ and (t are real numbers, we define 
a multiplication operator At by 

Ad= -iL Id~PI~~) (A - Kr\ei(l-K'/_ 1)/, (42) 

where 

I(A) = ('" I 4>2(p) I dp 
J-oo (A - p) 

(43) 

and C is a closed contour intersecting the real axis at 
A=~,{t. 

We then have the following identity for the evolution 
operator eiHte-iKt: 

P(H)P5Jl(H)(iHte-iKt - 1)1 

= iFort)Ad - iAtFtool 

+ (dA peA) (A - K)-lF f (44) Ja 1 - I(A) ot , 

where P;f.I(H) is the operator projecting onto the sub
set a, (t) of the spectrum of H. 

Equation (44) holds for any I in the intersection 
DF of the domains of Foro and F- ooo . 

We also require, for 1m A ¢ 0, the commutation 
relation 

[(A - K)-\ Fot1f 

= (27Ti)-1(A - KrVKt4>( 4>, e-iKt(A - K)-lf) 

- (27Ti)-1(J. - K)-l4>(cp, (A - K)-Y). (45) 
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The resolvent operators (A - H)-1 and (A - K)-l 
are related by 

(A - H)-l - (A - Kr1 

Lemma 3: If gN belongs to the restricted domain of 
Fooo , then 

= (A _ K)-l Icfo) (cfol (A _ Kfl. 
1 - 1(,1,) 

(46) where PS/l(K) is the operator projecting onto the 
subset (~, p) of the spectrum of K. 

In order to prove the existence of .Q±, we shall use 
Eq. (44) to show that 

lim lIeiHte-iK~ - eiHse-iKJII = O. 
s.t .... ±oo 

We first prove two lemmas. 

Lemma 2: Suppose gN is any element belonging to 
the restricted domain of Fooo (and of F- ooo), and 
suppose that, for t real, II AtgN11 is a bounded function 
of t (for fixed gN)' Then 

lim (e-iKtgN, P(H)PsiH) 
8.t-+00 

The inner product also tends to zero as s, t ---+ - 00. 

Proof' From Eq. (44), the inner product on the 
lhs is 

i(e-iKtgN' FoooAs_te-iKtgN) 

- i(e-iKtgN' As_tFs_t.ooe-iKIgN) 

+ (e-iKt r dA peA) (A _ K)-lF _ eiKtg ) 
gN, Jo 1 _ leA) O.s I N 

= i(gN' FtooAs-tgN) - i(gN' As-tFsoogN) 

( r dA peA) (A _ KrlF) (48) + gN, Jo 1 _ leA) tsgN . 

Now 

r _d_A_P-,-(A...<...) (A - k)-t, for real k, 
Ja 1 - leA) 

is a bounded function, so that the contour integral in 
Eq. (48) defines a bounded linear operator. Further, 
IIAs-tgNIl is bounded and, since 

s-lim FtoogN = s-lim FtsgN = 0, 
t-+oo 8.t-+00 

we may take the limit as s, t ---+ 00 to obtain Eq. (47). 
To prove similarly that the limit also vanishes as 
s, t ---+ - 00, we note that 

s-lim FtoogN = <))<))*gN, 
t-+-oo 

and that the operators <))<))* and A s- t commute, 

Proof' By the Riemann-Lebesgue lemma, applied 
to elements of L 1 , taking the limit as t ---+ 00 of Eq. 
(45) gives the following commutation relation, applied 
to any element hN of the restricted domain: 

(A - K)-l, Fooo]hN 
= -(21Ti)-1(A - Kr1cfo(cfo, (J. - Kr1hN). (50) 

Multiplying each side of Eq. (50) by P(J.)/[1 - 1(,1,)] 
and carrying out a contour integration, we have 

r dA peA) (A _ K)-lF h 
Jo 1 _ leA) 000 N 

= F i dA peA) (A - K)-lh 
000 01 _ 1(A.) N 

- P(H)PsiH)hN + P(K)PsiK)hN, (51) 

where we have used Cauchy's theorem, together with 
Eq. (46). We have taken Fooo outside the integral sign 
on the rhs ofEq. (51). This is valid since, by Theorem 
2, the restriction of Fooo to the set of elements hN for 
fixed N is bounded. Substituting hN = e-iKtgN and 
operating by eiKt on each side of Eq. (51), we obtain 
Eq. (49) by taking the limits as t ---+ ± 00. 

We found it necessary for the proof of Lemma 2 to 
assume that IIAtgNl1 is bounded. Since the operator 
At defined by Eq. (42) depends on the value of the con
stant n in Eq. (41), we now find it convenient to ex
press the dependence by use of a superscript, so that 
we have a family of operators A~nl as t and n are varied. 
The polynomial given 'by Eq. (41) we now denote by 
pCnl(A).1t is necessary to have n > 2, to guarantee that 
our contour integrals converge. 

We may now find, by using the two lemmas, a set 
of elements in the domain of the wave operators: 

Theorem 4: Let IN be an element in the restricted 
domain of Fooo , such that 

(i) IN(k) is of bounded support, and 
(ii) IIA~2nlfNII is bounded uniformly in t (for fixed n 

and IN)' 

ThenfN is in the domain of the wave operators .Q±. 

Proof' Let gN belong to the restricted domain of 
Fooo , and suppose that IIA:2nlgNIl is bounded uniformly 
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in t. Then, using Eq. (47) with P()") = p(2nl()..), we 

have 

lim [(p(nl(H)p Sp.(H)e-iKtgN' 
s.t .... 00 

eiHls-tl p(nl(H)p S/l(H)e-iKSgN) 

_ (p(nl(H)PsiH)e-iKtgN' p(nl(H)e-iKtgN)] = O. 

(52) 

Using Eq. (49), we deduce that 

lim [(pCnl(K)PsiK)e-iKtgN' 
s. t-+ 00 

eiHls-tl pCnl(K)p Sp.(K)e-iKCs-tl e-iKtgN) 

- (e-iKtpCnl(K)PsiK)gN' 

e-iKtpCnl(K)Pgp.(K)gN)] = O. (52') 

Now the element fN in the statement of Theorem 4 
is certainly of the formPCnl(K)Psp.(K)gN forsomegN in 
the restricted domain and for some ~, fl, where 
lIA~2n)gNII is bounded uniformly in t. 

Substituting p(nl(K)Pg/K)gN = fN into Eq. (52'), 
we have 

lim (e-iK'lN' (eiHls-tle-iKCs-t> - l)e-iK'lN) = O. 
8.t-+00 

(53) 

Now, for any element x, 

II(eiHcxe-iKtz _ 1)x112 = (eiHcxe-iKcxx, (eiHae-iKcx - l)x) 

- (x, (eiHcxe-iKcx - l)x) 

= -2R[(x, (eiHae-iKcx - l)x)]. 

Hence, taking x = e-iKfj'N and ('f. = S - t, we may 
deduce from Eq. (53) that 

lim II(eiHls-tle-iKCs-tl - l)e-iK 'lNII = 0 

or 
lim II (eiHse-iKs - eiHte-iKt)INII = O. 

s. t-+ 00 

From the completeness of the space it follows that 

(LIN = s-lim eiHte-iK'lN 
t-+oo 

exists. We may similarly prove that Q+IN exists. 

Theorem 5: The wave operators Q± are defined on 
the whole space. 

Proof' Since the domain of the wave operators is 
always closed, we know that Q± is defined on the 
closure of the set of elements fN satisfying the con
ditions of Theorem 4. 

Now, certainly IIAj2n'</>1I is bounded uniformly in t. 
(This is proved in Ref. 3.) It is therefore sufficient, 
for the conclusion of Theorem 4, to assume that the 
element fN of the restricted domain satisfies 

(i) fN(k) is of bounded support, as before, and 
(ii) IfN(k) I S const 1</>(k)1 a.e. 

The closure of the set of elements IN satisfying (i) 
and (ii) consists of those elementsfsuch thatf(k) = 0 
a.e., for all k such that </>(k) = O. 

The subspace orthogonal to this latter set of ele
ments collsists of those elements f satisfying, a.e., 
f(k) = 0 for all k such that </>(k):;t= O. But for 
those elements, Fad = Foocf = 0, and it may be 
shown from Eq. (44) that in that case eiHte-iKfj'= f, 
so that Q±f = f So Q± are defined both on a sub
space of L2 and on the corresponding orthogonal 
subspace, so that the wave operators are indeed de
fined on the whole space. 

A derivation of the wave operators is given in 
Ref. 3. 
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2 T. Kato, Perturbation Theory for Linear Operators (Springer
Verlag, Berlin, 1966). 

3 M. A. Grubb and D. B. Pearson, J. Math. Phys. 11, 2415 
(1970). 
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A Lagrangian is presented which describes the evolution of anisotropy in rotating closed (Bianchi type 
IX) cosmologies. It is assumed that the matter is a perfect fluid with an adiabatic equation of state p = 
P(p) such that 0 < dp/dp < 1 - y, Y > O. The matter terms enter the Lagrangian as a potential which 
for large anisotropy is essentially identical to one found previously for dust. Because the dust potential 
has been thoroughly investigated by Ryan. we confine our discussion of the dynamics to a few brief 
remarks. The matter terms are crucial for the rotation since the constraint equations require matter for 
the presence of rotation. The chief effect of the rotation is the appearance of centrifugal terms in the 
Lagrangian which exclude certain parameter values to the system. An appendix gives a proof that R = 0 
is a true infinite-density singularity. 

1. INTRODUCTION 

The metric for a homogeneous cosmology is often 
written! 

ds2 = -dt2 + R 2e;fw;w;. (Ll) 

The variables Rand f3ij are functions only of the 
cosmic time t, while the Wi are functions only of the 
coordinates in the t = const surfaces. The matrix 
f3;; is symmetric and traceless. It gives the anisotropy of 
the spatial surfaces, while R gives their volume. 

The symmetry group of the constant-! surface enters 
when we require that Wi be invariant under action of a 
group; this implies2 that 

(1.2) 

for the curl of the basis vectors Wi. (For notation, see 
Flanders3 or Misner.4) In Eq. (1.2), the CJk are the 
structure constants of the group. We will consider a 
Bianchi type IX universe which has5 CJk = €;;k' the 
totally antisymmetric symbol. When f3;; == 0, Eq. (1.1) 
describes a closed Robertson-Walker line element. 

We shall consider a perfect-fluid stress tensor 

T"v = (p + p)u"uv + pg"v (1.3) 

as a source for these cosmologies, with an adiabatic 
equation of state, p = P[p]. (To avoid confusion 
between the value of a quantity and its functional 
form, we will write capital letters for the function, and 
use the square bracket exclusively to indicate functional 
dependence.) 

There are important simplifications when the kine
matic rotation6 vanishes. Because of the special form 
of the expression for the rotation in these homo
geneous cosmologies, the spatial components of the 
velocity U i must then also vanish.7•s Hence, the matter 
currents TOi vanish. 

Now the Oi component of the Einstein tensor is 

(1.4) 

where (Ji; = i{(eP)'e-P + e-P(eP)o};; is the traceless 
second fundamental form of the space slices. Equation 
(1.4) shows that GOi = 0 means that (ell) and (ell)' com
mute. That is, the principal axes of the metric do not 
rotate when the matter rotation vanishes, and con
versely. 

The Too = Goo Einstein equation reads 

3(R/R)2 = (p + p)u~ - p + t(J;;(J;; 

+ !R-2VlP) - !R-2
• (1.5) 

Here, 
Vg(f3) = i Tr (e4P 

- 2e-2/l + 1) 

is a potential due to the distortion of the space surface 
from an exactly spherical shape (P = 0).9 It arises 
from the scalar curvature of the 3-surfaces and is a 
function only of the eigenvalues of f3. 

With the definitions9 

P+ = -tP3' P- = (2J3)-1(f31 - P2), (1.6) 

this potential is 

Vif3+, P_) = ie4P+[cosh (4J3)P_ - 1] + 1 
- te-2P+ cosh (2J3)P_ + te-sp

+. (1.7) 

The equipotentials are circular near 1,81 = 0 (we 
define 1,81 2 = ,8! + ,8~), where the potential is approx
imately simple harmonic: 

Vg = 8 1,81 2 + 0(1,81 3
). (1.8) 

For large values of 1,81 the potential takes on the shape 
of an equilateral triangle. The sides are extremely 
straight, and the only deviation from this exact tri
angular shape comes in the corners, where there are 
channels which reach out to infinity. Exactly in the 
corner direction the potential is bounded: Vg < 1. 

2432 
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One of the straight walls of the potential crosses the 
negative f3+ axis, and one finds 

(1.9) 

for the asymptotic behavior in the triangular sector 
that includes the negative f3+ axis. Because of the 
triangular symmetry of the potential, Eq. (1.9) gives 
the behavior in the other sectors as well. 

The positive f3+ axis lies along one of the corner 
channels. The asymptotic behavior for small f3- and 
large f3+ is 

(LlO) 

so the equipotentials narrow exponentially. For most 
purposes the equipotential can be considered exactly 
triangular. Details of the properties of Vg are discussed 
further by Misner,9.10 by MSW, and by Ryan.s 

In discussing the motion of the matrix f3ij' it is use
ful to introduce a new time coordinate,lo 

(Hawking12 gives the form for the convective derivative 
in type IX. The general form for the equation of 
motion for a fluid is given by Ehlers6 and by many 
others.) Because of the assumed homogeneity, p has 
only a time derivative. Dividing Eq. (2.1) by UO and 
multiplying by Ui , one obtains that 

(2.2) 

is constant. In Eq. (2.2), the enthalpy h is defined by 

dh/h = dpj(p + p). (2.3) 

Equation (2:2) is equivalent to the statement of the 
evolution of the vorticity in a fluid with an equation of 
state.6 

Another useful conservation law is contained in the 
Bianchi identity Till. = O. This can be written 

.Il 

(R 3T, ). - R3 T R-2 -2p 
Oi - - Eiik il elk 

R3 R-2 -2P( + ) = - EiikUiUl ek1 P P . 

Q = In (RmjR), (1.11) Hence 

where Rm is the maximum radius of the universe. (To 
within an additive constant, Q = -a, where a is the 
"volume" variable used by MSW.) Since closed models 
always recollapse (MSW), t is a 2-valued function of 
Q. Except near the maximum of expansion, however, 
Q is a very good coordinate. One of its advantages is 
that the "coordinate" f3+f3- of the state of t-he universe 
then moves with speed (d/dQ) 

I :~ 1< 1. 
(Ll2) 

The upper limit is approximately reached when the 
system is far from the potential "walls." (That is, far 
from the turning points due to Vg and to the matter 
potential contained in the matter Lagrangian Lm which 
we introduce in Sec. 3 below.) 

The Q speed of the moving walls of Vg is df3w/dQ < 
t, where this refers to the position of the center of one 
of the straight potential sides. Again, the limit t is 
reached when the system f3 point is far from the po
tential walls. (Because of the triangular symmetry, the 
corners of the Vg equipotential curves move outward 
with Q speed df3cjdQ I'"'o.J 1.) For details of the calcu
lation of these quantities, see Misner,9-11 MSW, and 
also Sec. 4 below. 

2. THE FLUID CONSERVATION LAWS 

We now recall two useful identities. The equations 
of motion for U i in these type IX models read 

uOui = EiikR-2eki2Puiul - (bf + uiua)P.a(P + p)-l. 

(2.1) 

or 

(p + p)2U~UiUi = (p + p)2u~A2h-2 = A 2M 2R-6
, (2.5) 

where M is another constant. When the rotation 
vanishes so that UO = 1, Eq. (2.5) contains the familiar 
laws for adiabatic expansion: for dust p = 0, p oc R-3; 
for radiation p = ip, p oc R-4. 

We shall find it useful to introduce the notation 
u2 = UiUi and ni = ui/u. Then Eq. (2.2) connects U 

and p (because we assume there is an equation of state 
so that h = H[p]), while Eq. (2.5) can be considered 
to connect u, f3, and p, with ni and R regarded as being 
externally given parameters in the relation. Hence, 
given Rand n;. only one of the three quantities u, f3, 
and p can be varied independently and Eqs. (2.2) and 
(2.5) then force a variation in the other two. We shall 
below take f3 to be the freely varied quantity. 

3. THE VARIATIONAL PRINCIPLE 

Because of the Bianchi identities, the G~ = T:equa
tion is satisfied once all the others are, while the TOi = 
GOi equation can be viewed as a constraint which 
restricts only the initial conditions. The remaining 
equations which we have to consider can be expressed 
the following way, in a local Lorentz frame (orthog
onal tetrad): 

°Gik - lbik °Gll = °"I:k -lbik °Tw (3.1) 

The notation "left superscript zero" indicates the 
components in the orthonormal tetrad {dt, (1i = 
R-1e-;!wi }. Equation (3.1), for the model we consider 
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described by Eqs. (1.1) and (1.3), reads 

. 3 R + + !R-2 oV a·· + - (1.. (1',Tt' - T·,at · -., R" .., .., ofJ· . 
" 

= (p + p)(v;v; - 1t5;;vk vk ). (3.2) 

In Eq. (2.2), T;; = t{(eP)'e-P - e-P(eP)'};;, and the 
orthonormal components of the velocity Vi == °Ui are 
introduced as a notational convenience. They satisfy 

R- 1 -P 2 1 + Vi = ei ; U;, Uo = ViVi • (3.3) 

The anisotropy-governing components of the Ein
stein tensor, the left side of Eq. (3.2), may be obtained 
by taking the variational derivative with respect to 
P;; in the Lagrangian1o•1l 

C = R3(ta;;a;; - pg Vg). (3.4) 

Here pg == !R-2, and R is treated as an externally given 
function of time. 

When there is no rotation,the traceless stresses 

0T;; - 115;; °Tkk 

vanish, so the equation for P;; is simply 

~=o, 
t5fJiJ 

where the notation t5Pi; indicates a particular kind of 
"variation in Pii" which leaves e~; symmetric and trace
less. As Misnerll has discussed, one actually varies e2P , 

but considers the coefficient of 

t5fJ = te-Pt5(e2/l)e-p• 

The subject of this paper will be the modifications due 
to the presence of matter. We shall show that, for 
simple adiabatic equations of state p = pep], the 
modification consists simply of the addition of a 
matter Lagrangian 

Cm = - R3Too = _R3(p + p)u~ + R3p. (3.5) 

The anisotropy enters (3.5) explicitly in the definition 
of UO, Eq. (3.3), and also implicitly in p and p because 
of the conservation laws (2.2) and (2.5) above. 

In order to show that Lm as defined by Eq. (3.5) is 
the correct matter Lagrangian, we now proceed to 
compute the variation. For later convenience, we shall 
compute the total variation 

t5 Too t5 Too .l> t5 Too .l>fJ (3 6) t5Too = - t5,Q + - un; + -- u ii' . 
b,Q bn; bPii 

The variation of other quantities (p, p, and u) appear
ing in Too are considered to be given by the variation 

of,Q and p, via the conservation laws, Eqs. (2.2) and 
(2.5). 

At this point we introduce more notation and state 
explicitly the properties we assume the fluid to have. 
We use the asterisk to denote the inverse of a function: 
p = P* [p]. Since the case p = 0 has been treated by 
MSW, we shall exclude it here. (It can be checked that 
the results found here correspond, in the limit p - 0, 
to those found in MSW.) We shall require 0 < P' < 
1 - y, where the prime denotes the derivative of a 
function with respect to its argument: P'[p] = dPjdp, 
and y > 0 can be chosen arbitrarily small. We also 
assume P [p = 0] = O. These are fairly restrictive 
requirements but admit all equations of state p = KP, 
K < 1, as well as polytropic equations of state for those 
values of the parameters that have P' < 1. It also 
includes the equations of state obtained from simple 
kinetic theory models, e.g., p = K(P)p as obtained for 
massive particles where K(P) - 0 as p - 0 and K(P) -
1 asp- 00. 

With the assumptions made above on P and P', one 
finds 

1 > dIn H > 0, 
din p 

(3.7) 

and defining 

Q[p] == (p + p)Jh, (3.8) 
one has 

1 > din Q = -p- > O. 
dIn p p + p 

(3.9) 

Note that Q' H = 1. Because both Q' and H' are 
positive, the inverses Q* and H* are well defined. It is 
straightforward to show that 

din Q*[x]Jd In x > 1. (3.10) 
Now, 

c5Too = c5{(p + p)h-1uo(huO) - p} 

= 3(p + p)u~t5,Q + t(p + p)c5(u~) + (u~ - 1)c5p, 

(3.11) 

where we grouped terms to take advantage ofEq. (2.5) 
and used the definition of h. 

We use Eq. (2.5) again, since 

p = pep] = P[Q*[M/(R3uO)]] 
yields 

c5p = P' ( M ) {3c5,Q - ~ c5(u~)}. 
Q' R3UO 2uo 

Use Eq. (2.5) to eliminate M, and remember Q'h = 1. 
Then we can rewrite Eq. (3.11): 

c5Too = 3(p + p)u~M}' + 3P'(u~ - l)(p + p)c5,Q 

+ !(p + p)(u~ - u~P' + P')uo2c5(u~). (3.12) 
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Now 

!!5(u~ = id(1 + R-2e/i2fJu2ninj) 

= (U~ - 1)15.0. - R-2eite"ituzuk!5{3u 

+ R-2e/i2fJu2ni!5nj + (u~ - 1)iu-2!5(U2
). 

(3.13) 

The variation !5(u2) is constrained by the conserva
tion laws [Eqs. (2.2) and (2.5)J. We have h = H[pJ = 
Alu, so that p = H*[A/u]. We equate this p = 
Q*[M/(R3UO)]' and,forming the variation of each side, 
obtain 

~ !5(R!UO) = ~, !5(~). 
Carrying out the indicated variations, and using Eqs. 
(2.2) and (2.5) to eliminate M and A, one obtains 

!U-2!5(U 2
) = !p'u;2!5(U:) - 3P'!5.o.. (3.14) 

To obtain Eq. (3.14), we also used Q'h = 1 and 
H'(p + p) = HP', 

Equation (3.13) now becomes 

tu;2!5(U~)(u~ - ugP' + P') 

= (1 - 3P')(u: - 1)15.0. - v;V j !5{3;i 

+ R-2eij2fJu2ni!5nj' (3.15) 

So we have, finally, 

!5Too = (p + p)(4u~ - 1)15.0. - ViV;~{3ii(P + p) 

+ R-2eij2fJu 2n;dnlp + p). (3.16) 

We must of course always take variations ~ni such 
that ni!5n; = O. If we recall the traceless nature of 
!5{3;i ,we see from Eqs.(3.16) and (3.2) that the Lagran
gian for the anisotropy in these fluid-filled models can 
be written 

r = R3(!(1ij(1ij - pgVg - Too), (3.17) 

where Rand ni are considered given functions of time. 
(R is given by the Too = Goo equation and nj is given 
by the equation of motion.) 

The Lagrangian of Eq. (3.17) differs from the form 
previously suggested by Hawking12 for radiation 
(P = tp) and by this author13 for general fluids with 
p = Kp. That previous form was 

(3.18) 

Equation (3.18) was not satisfactory because it ignored 
the constraint on u2 given by Eq. (2.2). In addition, it 
only worked for constant K and did not lead to as 
simple or useful forms for the quantities discussed in 
Eqs. (4.5) and (4.6) below. 

That Too acts as a potential in the anisotropic motion 
obviously agrees with the form pu~ found by MSW 
for dust. It should be recalled that the potential 
found by Misnerll in nonrotating type I universes for 
collisionless radiation (neutrinos) was also, aside from 
additive terms independent of {3, given by Too. 

There is an even closer analogy with the collision
less case, as we can see when we consider the asymp
totic large behavior of Too. During the early parts of 
the cosmological evolution, when the anisotropy 
is large, it is only when ,Too itself is large that we 
can expect it will be significant in the evolution of the 
model. We shall now make precise just what we mean 
by "Too large." We shall find that "Too large" always 
implies 1{31 » 1, although the converse is not true. 

Since Q'[p] > 0 and Eq. (2.5) shows that Q[p] < 
M R-3, we find that, near the singularity, 

p = Q*[M/(R3uo)] < Q*[MR-3], (3.19) 

no matter how large the anisotropy becomes. Equation 
(3.19) gives us the basis for our characterization of 
"Too large"; it means 

Too» Q*[MR-3]. (3.20) 

(If we were discussing dust, this would be the require
ment Too» M/Rs, while for radiation withp = p/3, it 
reads Too» Mt'IR4.) 

Because of (3.19), Too can satisfy Eq. (3.20) only if 
u~ » 1. We now show that Too does in fact become 
large if u~ » 1. The dominant term in Too (for large 
u~) gives 

Too ~ (p + p)u~ ~ (p + p)uouno, (3.21) 

where in the last term we write 

(3.22) 
with 

(3.23) 

Equation (3.22), hence also Eq. (3.21), holds when 
uo» 1. Now (p + p)uuo = AMR-3, so 

(3.24) 

when 

From the first member of Eq. (3.19) we see that 
Too --+ 00 at R = 0 if Uo is bounded, and Eq. (3.24) 
gives Too --+ 00 at R = 0 for uo » 1. We have just 
shown, therefore, that R = 0 gives a singularity in 
Too· In the Appendix we will show that in fact p --+ 00 

as R --+ 0, so there is a true matter singularity. 
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The form (3.24) compares directly to the form 
found by Misnerll for collisionless radiation in a 
nonrotating model. Misner's result was 

(3.25) 

with av constant. Aside from additive terms inde
pendent of p, Misner had 

Misner's potential form (in a nonrotating solution) 
is just the average over the sphere of the asymptotic 
form we obtained in rotating models, with a fluid 
source, when Uo » 1. 

This Uo » 1 regime is just where we expect matter to 
act like radiation, since it is then moving (relative to 
our {dt, Wi} Lorentz frame) with a speed near the speed 
of light. The matter potentials which have been called 
"rotation potentials" by MSW and by RyanS appear 
only when there is rotation in fluid-filled type IX 
models because only then is there a component of the 
velocity which can be blue-shifted by the anisotropy. 
When this matter is blue-shifted by an amount suffi
cient to give it a large velocity, one obtains the result 
expected from a (directed) stream of radiation tra
veling in the same direction. 

In Eq. (3.25) for coIlisionless radiation appears the 
quantity avR-4, which is defined as the energy density 
if f3 is instantaneously zero. It is interesting that, on the 
other hand, P + P appears in Eq. (3.21). Apparently, 
pressure and matter density enter equally into the 
matter potential. 

4. COMMENTS ON DYNAMICS 

If the anisotropy is small, approximation methods 
can give an accurate description of the anisotropy 
behavior. Discussions of this type are found in Ref. 12 
and for dust in MSW. (Detailed numerical calculations 
for the behavior near the maximum are also given in 
graphical form by MSW.) 

On the other hand, when the anisotropy is large, 
the matter potential for any fluid is (to within a multi
plicative constant) the same as it is for dust. Since the 
dust potentials have been extensively discussed by 
MSW, and in more detail by Ryan,S we shall confine 
ourselves to only general comments. 

We can get a general idea of the behavior of the 
solution by considering the region of p-space that the 
solution is allowed to occupy. Hence, we will con
centrate on the motion of the potential "walls," assum
ing large anisotropy. For the large anisotropy case, 

we can define a "matter potential" Vr,,c{3, n;) by 

Too c:::: AMR-4Vm({3, ni), 

Vm«(3, ni ) = (eij2Pninj)t. (4.1) 

This definition does not work when Too is small, but 
it will give an adequate description of the behavior of 
the matter potential walls. 

It is useful to write Eq. (1.5) as 

3Q2 - P - P - T g' (4.2) 
where 

PT = !O'ijO'ij + Po Vg + Too. (4.3) 

The evolution equation for PT is 

R- 6 d R6 n-l[. 3 n dO. PT = II O'ijO'ij - llO'ijO'ij 

aVg ] + P - 0' .. - (p + p)v.v.O'" gap. . 'J , J ZJ 
ZJ 

- 4pg Vg - (2u~ + l)(p + p) + 6p. 

(4.4) 

To obtain this form we used Eq. (3.16) for 15Too . The 
term in ni vanishes in virtue of the equation of motion 
(2.1). (This is a nonintegrabJe constraint, so we made 
no attempt to insert it previously.) The quantity 
multiplying Q-l in Eq. (4.4) vanishes in virtue of Eq. 
(3.2), and 

d 6 
dO. In (pTR) 

= _ 4pgVg _ (2u~ + l(p) + p) + 6p < O. (4.5) 

PT PT PT 

This reduces to the form found by MSW for dust. Its 
accuracy can also be checked for an isotropic model 
(P = 0 and Uo = 1) with P = Kp. Then Eq. (2.5) gives 

PT = P oc. R-3
-

3K or R-6 ~ (PT R6
) = (3K - 3)p. 

dO. 

Inserting p = Kp and u~ = 1 into (4.5), one verifies 
this relationship. 

We have seen that when the matter terms are impor
tant in the anisotropy motion, u~» 1. Hence, for 
large anisotropy situations, the matter terms on the 
right in Eq. (4.5) are negligible except when u~ » 1. 
The matter potential terms rise exponentially with (3 
in that case, as does Vg • So, for large anisotropy 

.!:..-. In (P
T

R6) '" _ 4pg V!l _ 2(p + p)u~ 
dO. PT PT 

c:::: _ 4PuVg _ 2AMR-
4
VmCB, ni ) (4.6) 

PT PT 
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Because of the exponential steepness of V m and Vg , 

A === P1,R6 is approximately constant except during 
approximately impulsive collisions with the potential 
walls, and all the potentials are negligible except for 
the occasional collisions. 

We shall find it useful to give a derivation of the 
limit Id{3/dOI < 1 of Eq. (1.12). We define 

{3 = OTbO, (4.7) 

where 0 is an orthogonal matrix, and b is a 3 x 3 
diagonalmatrix whose components are the eigenvectors 
of {3. The quantity !<1ii<1ii which appears in the 
Lagrangian is 

f<1;j<lij = tbjJii + !SmkSkm - !ek/2bSlme;;'pSpk' (4.8) 

where SZm = OlsO;m is an antisymmetric 3 x 3 ma
trix. We introduce SkI = €klmSm' where Si = SSi gives 
the angular velocity S and the direction Si (SiS; = 1) of 
the rotation described by OZm' The direction Si is 
intimately related to the direction of the fluid flow, 
since Eq. (104) can be rewritten (using the diagonal 
traceless nature of b) 

(4.9) 

where LIm is a diagonal positive-semidefinite matrix: 

Lim = diag {sinh2 [313+ - (~3)f3-]' 

sinh2 {3{3+ + (~3)f3-J, sinh2 [(2~3)f3-1). (4.10) 

Equation (4.9) is reminiscent of the relation between 
angular velocity and angular momentum in a tum
bling body. 

Using the definitions of s;, S, and Lim ,we find, for 
!<1ij<1ij , 

• • 2 
t<1i j O'ii = tbijbii + L1mSlSmS 

'2'2 2 
= 3(13+ + 13-) + L1mSlSmS 

= 31 d{3j2+ LZ2mSlSm A2~2 . (4.11) 
dt LabsuSb 4R 

This last form uses Eqs. (4.9) and (2.5). Hence, so long 
as P. is negligible, Eq. (1.12) follows from Eqs. (4.11) 
and (4.2). Inserting the large anisotropy behavior for 
Too, we rewrite Eq. (4.2), using Eq. (4.3): 

1 r-J I df3l2+ pgVg + AMR-
4 

Vm + L1mSIS'f/! A2M2 . 
dO PT PT L~bSaSb 4A 

(4.12) 

To discuss the motion of the potential "walls," we 
define {3w for each of the potentials. For instance, using 
the asymptotic form (1.9) for Vg , define {3g by 

Thus, 

tIn (4A/R!.) + in = fJy, (4.13) 

for the distance (3g of the center of the wall from the 
origin. One can also define the location of the tri
angular corner of the potential given by the triangular 
geometry fJc = 2{3g. 

A similar discussion can be carried out for the 
asymptotic parts of V m' In the frame in which fJ is 
instantaneously diagonal, one defines the {3+, (3- co~ 
ordinates of the "matter wall" by 

PT = AMR-4(e-2f1+-(2V3lfl-ni 

+ e-2Jl++(2V 3lJl-n; + e4f1+ni)!. 

Not all components of n can vanish simultaneously 
since then the solution must be nonrotating. By suit
able relabeling of the axes, we can make n; nonzero. 
Then one has 

AR-6 = AMR-4e2Jlm+ Inal, 
t In (A/(AMR~)] + 0= {3m+ + ! In (ni), (4.14) 

for the position fJm+ of the matter wall across the posi
tive {3+ axis. lfthe other components ofni are nonzero, 
then one has similar formulas for the walls in the other 
two (triangularly symmetric) directions. Notice that if 
n3, say, goes to zero, one has {3 m+ -+ + 00; the wall 
moves out as n3 vanishes, and disappears completely 
when n~ = O. A particularly interesting subset of 
rotating models which has been investigated by MSW 
and by RyanS has n3 = 1; it is called non tumbling 
.because one of the principal directions of {3 remains 
parallel to the 3-direction, and the other two principal 
directions rotate around this 3-direction. {3 has a block 
diagonal form, with off-diagonal terms only in the 
(l, 2) plane. Hence, Si has only a 3-component. 
We will restrict ourselves to these special models, for 
the rest of this section. 

We have just seen from Eq. (4.5) that dIn A/dO < 
0, so when n~ = 1, the wall of the matter potential 
moves inward, into the central part of the potential 
[compare fJm from (4.14) with {3c from (4.13)J, as we 
follow a solution toward the singularity. On the other 
hand, we have seen that dAJdO is on the average 
quite slow, while d{3cfdO c:::: 1. Hence, the relative dis
tance from the matter potential wall to the corner 
of Vg decreases and for a sufficiently large 0, a sketch 
of the potential would show {3m lying exactly on and 
across the corner of the potential, as accurately as the 
thickness of the lines in the sketch allows. 

In general the matter potential has very little effect 
on the dynamics of the models near the singularity. 
This is because there is a "kinematic" effect intro
duced via the term L!pS!SpS2 in the Lagrangian. This 
term gives rise to an effective centrifugal potential, 
which keeps the system away from the fJ+ axis (in these 
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nontumbling models). From Eq. (4.12), for the non
tumbling case, 

The limit, unity, describes the centrifugal potential 
wall around the {3+ axis. Now A decreases toward the 
singularity, so we assume that A2M2jA > 4. (Jacobs, 
Misner, and Zapolosky14 have shown A oc 0-2 for 
typical motion in the potential Vg .) We use the ex
ponential approximation for sinh (2.J3){3- and define 
the wall radius, {3r: 

{3 ,-.J __ 1_ In (4A) _ -I-In ( R~ ). (4.15) 
r 4.J3 R~ 4.J3 4A2M2 

On the other hand, straightforward geometry gives 
the equation 

(4.16) 

with {3g given by Eq. (4.13), for the equipotential con
tour of Vo' These two equipotentials will intersect at a 
{3+ coordinate ({3+i ) given by 

(3+i = tln(4A/R~) + n + iln [R~/(4A2M2»). (4.17) 

(There is a second intersection at {3+ r::: - (3g, but we 
shall not be concerned with that intersection.) 

The system {3+ coordinate therefore cannot exceed 

(3+i' 
Equation (4.17) should be compared with the result 

of Eq. (4.14) which shows 

{3m+ = {3+i - -! In 2. 

Because two quantities differ only by a small con
stant, the matter wall potential is comparable to the 
other potentials affecting the motion at the corner of 
the region allowed by Vg and the rotation terms, but 
only at the corner. The Vg potential and the kinematic 
"centrifugal repulsion" keep the system point from 
getting very close to the wall of V m • 

Thus one expects that the matter potential terms 
will in general be unimportant except for very partic
ular initial conditions, because the matter potential 
affects only the motion very near the corner. In these 
nontumbling cases at least, the chief effect of the 
rotation appears in the initial conditions, which permit 
an "angular momentum" of the system point in {3 
space. This "angular momentum" introduces the 
centrifugal terms, a kinematic effect which keeps the 
system away from the {3+ axis. Once the initial condi
tions start the system into its rotating condition (and 
the presence of matter is necessary for these initial 
conditions to be allowed) the further evolution is 

simply that given to a very good approximation by the 
equations without the matter terms. 

For a more detailed discussion of the motion of 
these models, we refer the reader to Ref. 8, which 
contains a detailed discussion of these questions for 
dust, including tumbling models. We have shown 
that the conclusions for dust hold, in the large 
anisotropy regime, for any fluid. 
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APPENDIX: R = 0 IS AN INFINITE-DENSITY 
SINGULARITY 

Shepley2 showed that for a dust-filled type IX cos
mology, the instant when R = 0 is a singularity, but 
the nature of the singularity (i.e., incompleteness, 
infinite density, or whatever) was not specified. 

Hawking and ElIis15 generalized this result to all 
spatially-homogeneous fluid-filled cosmologies with 
any transitive group of motions acting on 3-dimen
sional hypersurfaces. All such models are singular at 
R = 0 (i.e., where the time lines normal to the in
variant hypersurfaces intersect). Again, however, the 
nature of the singularity was not specified. 

Shepley16 has presented a model in which the matter 
(dust) behaves in a perfectly regular way through the 
surface R = O. There are, however, some incomplete 
null geodesics in that null surface. ShepleyI7 discusses 
the relation between his and Hawking and Ellis' proofs, 
and his example. The behavior of the matter near the 
singularity must apparently be investigated in each 
model. MSW showed that R = 0 is in fact an infinite
density singularity for dust-filled type IX models. We 
say in the text that R = 0 is a matter singularity for the 
fluid solutions with pressure, since Too --+ OCJ there. We 
show here that in this case also, the singularity is one 
of infinite density, p --+ 00, so long as the pressure obeys 
P = P[p] > 0, P [p = 0] = .0, and 0 < P' < 1 - y. 
The proof uses a generalization of the method found in 
MSW for dust. 

Recall Eq. (3.10): 

dIn Q*[x] 1 
d In x > . (Al) 

Since Uo > I, we have then 

pu~ = Q*[M/(R3UO)]U~ > N M3 u~ > NM (A2) 
R Uo R3 

as R --+ 0, for some constant N. Thus for any e one 
chooses, there is a value R. such that for all R < R., 

pu~ - Po = pu~ - !R-2 > pu~(1 - e). (A3) 
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Inserting this relationship into the Too equation (1.5), 
one finds that for R sufficiently small 

3(RJ R)2 > !O'iiO'ii' (A4) 

If we define lij = O'ii - nbii , then Eq. (A4) implies 

31nl > Iliil, i,j = 1,2,3. (A5) 

Then I/iivivil < 3 Inl (u~ - 1). 
From Eq. (3.15), we have 

i(u~)' = [1 - P'(u~ - 1)/u~r1 

x [-liiViV i - 3P'(u~ - 1)0]. (A6) 

Suppose n < 0; then, using Eq. (A5), we find 

i(u~)" > 30u~[u~ - P'(u~ - 1)]-1 

X [u~ - 1 - P'(u~ - 1)] (A7a) 

= 30u~{1 - rug - P'(u~ - 1)]-1} (A7b) 

> 30u~, (A7c) 

since the right side of (A7b) is negative. Hence, divid
ing by 0 < 0, we find du~Jdn < 6u~, or 

IUol < KR-3 (AS) 

near the singularity, for some constant K. (The same 
result is found, of course, if one assumes 0 > 0.) 
With this, we have 

Q[p] = MJ(R3uo) > M/(R3KR-3) > 0, (A9) 

so p does not vanish as R ~ O. 
To get some information about the behavior of the 

metric, we make use of the Roo equation (see Hawk
ing12). Using the Too equation (1.5) to eliminate 
O'iiO'il' it reads 

3(R/R)' = -9(R/R)2 + 2pg Vg 

+ {(p + p)u~ + !p - tp} - 2pg. (AlO) 

The bracket on the right is bounded below by 

(p + p)(u~ - 1) + fYP > 0, where 0 < P' < 1 - y. 

It is easy to see that this lower bound always dominates 
Pu near the origin R = O. Thus we find 

or 
-3(R/R)' < 9(R/R)2 

~ {(R/R)-1} < 3. 
dt 

Hence 3(RfR) > (-1. (We take ( = 0 to correspond to 
the singularity R = 0.) Therefore as (~O, 

Ra oc f', v > 1, 
and 

!l.. R3 < H for some constant H. (AU) 
dt 

The proof can now be given. As in the MSW dust 
proof, we shall prove by contradiction that P is un
bounded. We shall thus assume that p is bounded 
above. To show the contradiction, we return to the 
Too equation (1.5). For R < R., it gives 

liilii 1 2pu~ (1 ) --< --- -E 
(30)2 (30)2 . 

Now, 

pu~ = {uoQ*[M/(R 3uO)Wp-1 

and, because of Eq. (AI), we have 

Q*[M/R3uO] = (MJR3uo)1+r, r> O. 
Hence 

(Q*UO)2 = (MJR3)2+2ruo2r• 

Suppose that E < t; then 

liilii 1 (M/R3)2(M/R3uo)2r 

(30)2 < - (30)2 p 

= I _ M2 (M/R
3Uo)2r(dR

3)-2. 
p dt 

(A12) 

(A13) 

(A14) 

(At5) 

Now Eq. (A9) shows M/(R3UO) is bounded below, and 
we have just seen in Eq. (All) that dR3/dt is bounded 
above, near the singularity. Thus, 

(A16) 

where I > rJ > 0 is a fixed number. 
With Eq. (A16) in place ofEq. (A5), the procedure 

used above to prove Eq. (A8) can now be used to show 
that 

IUol < KR-3(1-~). 
But this last inequality requires 

since 

dQ*[x] > O. 
dx 

This contradicts the assumption that p is bounded. 
The proof originally given by Shepley2 showed that 

a singularity exists (although he did not specify the 
nature of the singularity as we have done here) so long 
as (p + p) > 0 at R = O. Our discussion has been 
limited to a rather more restricted class of models, 
since we had to require p < P and the invertability of 
Q. In addition, attention should eventually be given 
to nonadiabatic equations of state, since these are 
much more realistic from a physical point of view and 
allow dissipative mechanisms which may be extremely 
important in a thorough description of the universe. 
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A calculus of vectors in 2-dimensional symplectic spaces is developed from the concept of existence 
of local basis systems. The similarities, as well as the differences, of this calculus with the tetrad formu
lation of 4-dimensional curved spaces are discussed. The affinity and curvature of the symplectic space 
are derived and its relationships with the affinity and curvature of the usual spinor formalism are given. 
A system of hybrid geometrical objects displaying a tensor and a spinor index take over the role of the 
usual Hermitian matrices uffkI(x). 

INTRODUCTION 

The use of basis systems in the spinor calculus was 
suggested in connection with its applications to the 
theory of special relativity.! Presently, we extend the 
applicability of this concept to spaces with curvature. 
In this way, it is possible to construct, in the 2-
dimensional complex spaces with skew-symmetric 
metrics, a formalism of local basis systems which 
displays several similarities with the tetrad formula
tion on curved manifolds. The term complex 2-legs 
is used for characterizing the geometrical objects 
which correspond to the tetrad in 4-dimensional 
spaces. 

However, the geometrical object which corresponds 
formally to the tetrad in the usual formalism is not 
the complex 2-leg but, instead, a linear combination 
of these components. Such a combination involves a 
spinor and a tensor index. From the point of view of 
the 4-dimensional space, such an object behaves as a 
set of four null complex vectors. 

The notation used in this paper follows the 
usual conventions of the tetrad calculus, deneting 
local degrees of freedom by means of the same 
letter as the "coordinate" index, but inside a bracket. 

Here, both types of indices are spinor indices so that 
the above term "coordinate index" is purely formal. 
All types of spinor indices are denoted by capital 
Latin letters. Indices corresponding to the 4-dimen
sional space are denoted by Greek letters. 

1. RECIPROCAL BASIS SYSTEM IN Sa 

Let S2 be a 2-dimensional symplectic space, that is, 
a linear vector space over the field of the complex 
numbers in which there exists a nondegenerate skew
symmetric bilinear inner product. Explicitly, given u, 
v E S2 and at a complex number, we have the following 
axioms: 

U'v = -v' u, 

(atu) . v = atu· v, U· (atv) = at(u' v), 

(u + v) . w = u' w + v' w, 

u' (v + w) = u' v + u' w, 

u . v = 0, for all v E S2, implies u = O. 

We introduce into S2 a system of basis vectors hw and 
h(2) such that 

(1) 
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In this paper, we use explicitly the index notation 
since this is important for our purposes, as will 
become clear during the treatment. The realization of 
the above relations in this notation is obtained by 
introducing a skew-symmetric EAB' playing the same 
role as the symmetric metric tensor in 4-dimensional 
space: 

u • v = EABUAVB = UBVB. (2) 

The quantities h(1) and h(2) have contravariant indices, 

h(A) = (h~», 

but they may also be given covariant indices according 
to 

hmRl = hfR)EAB· 

Relation (1) then reads as 

h(1) • h(2) = EABhrt)h~) = hB(1)h~) = 1. 

A reciprocal basis system may be introduced as the 
set of two vectors of S2 which satisfy 

h
(A). h - h • h(A) _ -,,(A). 

(8) - - (B) - urn), 

that is, we have 

h~) = -hA(2) ' 

h (2) h 
A = A(1)· 

(3) 

(4a) 

(4b) 

It is possible to construct a unimodular matrix with 
the components of the vectors h(l) and h(2)' 

since 
IMI = h(1) • h(2) = 1. 

Note that 

h HA ) = -h~A)' h 2(A) = h~A)· 
As a result of (1), (4), and (6), we get 

hrt)hi:) + h(i)hj;) = CJ~. 

The inverse matrix of (5) is 

( 

h~2) 
M-1 = 

-h~l) 
It should be noted that 

(5) 

(6) 

(7) 

(8) 

Since the h(A) and the h(A) are basis vectors, we have, 
for any vector of S2, 

where 
U - u(A)h - u h(A) 

- (A) - (A) , 

U(A) = h(A) • U, 

U(A) = u· h(A). 

(9) 

In index notation, for u a contravariant vector, these 
relations read 

u A - u(B)hA - U h(B)A 
- (B) - (B) , 

U(A) = hjf)uB , 

(10) 

(11) 

U(A)=h~)UB· (12) 

As is clear from the foregoing, all vector indices are 
raised and lowered by the skew-symmetric matrices 
EAR and EAB which are given by 

EAB = EAB = (_~ ~), 
and all indices between brackets, denoting the 
different elements of the basis, are raised and lowered 
by means of the skew-symmetric matrices E(A)(B) and 
E(A)W) , with matrix elements 

(A)(B) (0 -1) 
E = E(A)(B) = 1 0· 

We may interpret the matrices E(A)(B) and E(A)(B) as 
the operators which transform the basis hW ) into the 
reciprocal basis h(B), and vice versa: 

h (B) - EW)(M)h 
a - (M)a, 

h - E h(M) 
(B)a - (M)(B) a . 

These equations may be written in 
notation as 

h(B) = E(B)(M)h(M) , 

h W ) = E(M)(B)h(M). 

(13) 

(14) 

the free-index 

Multiplying the first on the left-hand side by h(N), and 
the second on the left-hand side by h(N) , we obtain 

EW)(N) = h(N) • h W ), 

E(B)(N) = h(N) • h W ) , 

(15) 

(16) 

from which follow the matrix elements of the previous 
equation. Similarly, we obtain 

EBM _ hM hB(A) - _hM(A)hB 
- (A) - (A), 

EBM = hMwhjf) = -h<t1)hB(A) , 

(17) 

(18) 

which give the matrix elements written before. It 
should be noted that Eq. (7), which was used in the 
proof of (17), may be written in two forms which 
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differ by a sign: 

h
A h(K) - hA(K)h _ sA 
(K) B - - (K)B - uB' 

We can present Eqs. (15) and (16) and, similarly, (17) 
and (18), using again the fact that the EAB and the EAB 

lower and raise vector indices, in the form 

E(B)(M) = h~M)hif)EAR, 

E(B)(M) = htM)hfE)EAR' 

EBM - hM hB E(A)(R) 
- (A) (R) , 

EBM = h<;:)h1
R

)E(A)(R)' 

(19a) 

(19b) 

(19c) 

(19d) 

Clearly, Eqs. (10)-(12) and (19) present the same 
behavior as the equations which define a set of tetrad 
vectors in 4-dimensional space. The only differences 
are that we deal here with an antisymmetric E playing 
the role of a "metric tensor," and the h(A) and the 
h(A) are complex vectors with two components. We 
may call them "complex 2-legs" instead of tetrads. 

2. AFFINITIES AND CURVATURE IN S2 

Following the usual method of tetrad calculus, we 
may interpret Eqs. (10) and (11) as defining two vector 
spaces spanned, respectively, by the basis vectors 
hw and h A with components 

h(A) = (h(1), h(2), 

The elements of these vector spaces are the vectors 
u = (uA ) and u* = (U(A). In order to distinguish one 
from the other, we use the symbol * for the latter. In 
free-index notation, we have 

u = u(A)h(A) ' 

Therefore, we may define the covariant derivatives2 

of both u A and U(A) by the usual method: 

U (A) - U(A) + A(A) u(B) 
;1' -.1' I'(B)' 

From Eq. (3), we obtain 

h
(A) h(C)hD h(A) 
B;I' = - B (0);1' D . 

(20) 

(21) 

(22) 

Thus, the vanishing of hi1,);1' is implied by the vanish
ing of hk1~. We have 

h A - h A + r A hR A(R) h A (23) (B);I' - (E).I' I'R (E) - I'(B) (R)' 

Imposing the condition hi1,);1' = 0, we can solve (23) 
for the AI" We find 

A (R) - hM h(R)rA + h(R)hA 
I'(B) - (B) A I'M A (E).I" (24) 

Formula (24) closely resembles the relations which 
exist between the affinity r I' and the Christoffel 
symbols.3 Indeed, the conditions which leads to those 
relationships, namely, (11';V = 0, are formally similar 
to our conditions hi1,);1' = O. In passing, we note that 
the condition that the htm are constant under covari
ant differentiation implies, through (22), that the 
internal metric components may be considered 
constant under the operation of covariant differentia
tion: 

(25a) 

(25b) 

This, in turn, implies that the two matrices r I'AB and 
AI'W(B) are symmetric. A direct inspection of (24) 
shows that this symmetry property is satisfied for 
AI" if r I' is symmetric. The symmetry of r I' can be 
obtained from its explicit representation in terms of 
the matrices (1).,.

3 

Still, from (23), we may write 

h
A - r A hR + A(R) h A 
(B)./l - - /lR (E) I'IB) (R)' (26) 

Since the left-hand side of this equation is a gradient, 
the 4-dimensional curl of the right-hand side vanishes. 
This furnishes us with an integrability condition for 
the existence of solutions of (26). A direct calculation 
gives 

S (K) h(K)h R pA 
I'v(B) = A (E) /lvR' (27) 

where 

(28) 

(29) 

But these geometrical objects are just the internal 
curvatures defined by 

A A pA B (A) (A) _ S(A) (E) 
u;I'V - u;vl' = I'vBU, u;I'V - u;VI' - I'v(B)U , 

and we have the result that S~~im is the projection of 
P:'B over the space of the vectors U(A), according to 
the usual relations of the tetrad calculus. (By tetrad 
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calculus, we mean the calculus of point-dependent 
basis systems in four dimensions.) Obviously, we 
could have obtained Eq. (27) by using (24), (28), and 
(29), but we feel that our present method is more 
elegant. 

We finish this section by recalling that A~-n) and 
S~~lB) may be written in terms of the 4-dimensional 
objects {:,.} and R,.vpa by using the formulas which 
connect r:B and P:'B with {:«} and Rllvpa ' 

3. CONNECTION WITH THE METRIC IN 
4-DIMENSIONAL SPACE 

We may use the two vectors on S2 defined by 

J A - h A TA - hA 
- (1) , L - (2) • 

According to condition (1), they satisfy 

J'L = JAY = 1. 

(30) 

(31) 

With the vectors J and L, we form the mixed quan
tities 

where a bar over JB and LB means the complex con
jugate of those quantities. The two separate relations 
(32) and (33) may be written in a column as 

From (32) and (33), we get 

KAKB Ail. B8J J MAMB Ail. B8L L 
(II v) = (j(1l (jv) R 8, (,. v) = (j(1I (jv) 11 8, 

Using the equations 

iI. B8 R B8 2 il.8 
(j,.B(jv + (jvB(j1l = gllv" , 

for (34) and (35), we get 

KII'Kv = -Kv·KIl , 

MIl'Mv = -Mv'MII , 

KIl · Mv + Kv' Mil = 2g/lv' 

(34) 

(35) 

(36) 

These equations show that (K:) = KII and (M:) = 
M,. are a set of eight vectors of S2' The symmetrized 
scalar product of the vector Kil by the vector Mv 
gives 2gllv as a result. Multiplying (34) and (35) by 
gil v , we obtain 

KIlKB - MIIMB - 0 A /l - A II - , (37) 

(38) 

Equations (37) show that the M~ and the K~ are a 
set of 4-vectors of the 4-dimensional space with a 
null form. Each one of those vectors is a complex 
vector, so that we have, in all, four complex null 
vectors. 

Finally, we may write 

(39) 

(40) 

where the o(j" are the Pauli matrices for at = 1,2,3 and 
the 2 x 2-identity matrix for at = 4. The H!") are the 
tetrad components in 4-dimensional space, satisfying 

(41) 

where 0g,,). is the metric of special relativity. 
From the definition (32), or similarly from (33), 

we may re-obtain directly the relationship between the 
curvature tensor R~v« and the P:'B as the integrability 
condition for the existence of solutions of 

K1:v = O. (42) 

(This condition follows from (j::~ = 0, together with 
our conditions hfBl;v = 0.) Indeed, from (42), we 
get 

K1v = eJKt- r1RK:, 

and the condition that K1vp = K1pv gives as a result 

R;vpKt + P#.RK{j = O. 

After some calculation, using (32) again, we find 

(43) 

which is the well-known relationship between these 
two curvatures.4 

4. THE RELATIONS WITH THE TETRAD 
FORMULATION IN THE 4-DIMENSIONAL 

SPACE 

So far, we have established a calculus of local 
basis systems in S2, with the same general properties 
of the tetrad calculus in 4-dimensional space. However, 
such similarities are only possible to a certain extent. 
In the usual tetrad calculus, the role of the metric is 
assumed by the tetrad. In our present formulation, 
the substitute for the metric is not the tetrad (or, 
more properly, the complex 2-1egs), but a combina
tion of these quantities, as is shown by Eqs. (32), (33), 
and (38). That is, the role of the metric is taken over 
by a set of hybrid quantities displaying a vector and a 
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spinor index. Such quantities are complex 4-vectors relation we want to obtain: 
with a null norm, and are simultaneously vectors on 

. f . S(C) Ih(C)hB 0 PAS 0 T(a) the symplectIc space. I we Write I'v(M) = 4; A (M) (J (JaSB "v(P). (47) 

we obtain, from (37), 

V~V: - J~J: = 0, 

V"JB + J"VB 
- 0 A " A I' - , 

F'AF: - W'A W: = 0, 

W"WB + W"WB = 0 A" A" ' 

which are relations limiting the total number of 
independent components in the K: and M;4. . 

It is also interesting to note that we may construct 
a new set of null 4-vectors by taking the scalar 
product of the K" and the MIL with the 2-legs 

ap = J. Kp = if,fBJAJB , 

h" = L· K" = u-;BLAJB , 

c" = L' M" = u-;BLALB . 

All those 4-vectors are null 4-vectors, since the 

matrices multiplying (J:B in the above equations are 
singular Hermitian matrices. 

We now establish the relation 'existing between the 
present formalism and the usual tetrad formalism. 
This relationship is established by means of fonnulas 
relating the curvatures of both formalisms. 

Starting from (43), using the formula from the 
tetrad calculus which relates the Riemann tensor to 
the curvature in terms of tetrads and making use of 
the quantity T!~1p)' which is defined by 

A("') - A(a) = T I",) AlP) 
;pv ;v" "vIP) 

and which has the form 

R p - HP HIP)T la ) 
<lPV - la) <I pvlP) , (44) 

As we can show (see the Appendix), 

so that 
h IE) 0 ~AS _ MIE)J-s + K(E)L-S 

A fTi - - I).) (;.), (48) 

s~~lM) = HK(C)(P) M(M)(",) - Mlo)IP) KIM)I",»)T~"';IP)' 

with 

M - MIE)e IM)(a) - la) ~IB)(M) • 

Similar formulas hold for the KIC)(E) and KIM)(a) . 

APPENDIX 

From Eq. (32), by taking the projection on the 
2-legs, we obtain 

KIB) = h(B)KA = hIB)(JARJ .... 
" A I' A" '" 

which gives 

Thus, 
K(B) - H" KIE) - h(B) 0 ARh 

(;.) - I).) " - A fJA RO)' (AI) 

Similar calculations, starting with (33), give 

M (E) - hIE) O~ARh 
().) - A a;: R(2) • (A2) 

Multiplying (AI) by hSlll on the right-hand side and 
(A2) by hS

(2) (also on the right-hand side) and adding 
up both relations, we obtain 

KIE) h S(1 ) + MIE) h S(2 ) _ hIE) 0 .Ailh hSIM) 
().) I).) - A cr;: RIM) • 

Since 

h h
SIM) _ 51.S 

RIM) - -uR' 
we get 

hlJ) Ocrfil = _(Kg~)hRIO + Mg~)hRI2»); 
but 

h
RIl) _ (l)IK)hR _ hR _ rR 

- £ IK) - - (2) - -LJ , 

h
R(2) _ (2)(K)h R _ hR _ JR 

- £ IK) - 0) - • 

(A3) 

we get 
PA _ 1. 0 )'AS 0 TI,,) 

pvR - 4; (J (J"SR pvl).)· 
(45) Therefore, (A3) takes the form of Eq. (48). 

From (27), we have 

PA hA h(M)S(C) 
"vR = (0) R "v(M) • (46) 

These last two equations allow us to express the 
SIC)' f T(") h' h' th cvrvature "vIM) III terms 0 "vIP)' W IC IS e 
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The initial-value transport problem of monoenergetic neutrons migrating in a thin slab surrounded 
by infinitely thick reflectors is solved for isotropic scattering by using the normal-mode expansion tech
nique of Case. The results obtained indicate that the reflector may give rise to a branch-cut integral term 
typical of a semi-infinite medium while the central slab may contribute a summation over discrete residue 
terms. Exact expressions are obtained for these discrete time eigenvalues, and sample numerical results 
are presented showing the behavior of real time eigenvalues as a function of the material properties of 
the slab and reflector. In the limit of purely absorbing reflectors or a bare slab, the present solution has 
the properties which have been previously reported by others who used the approach of Lehner and Wing. 

1. INTRODUCTION 

A few time-dependent monoenergetic neutron
transport problems in plane geometry with isotropic 
scattering have been solved recently by applying 
Case's normal-mode expansion technique1.2 to the 
equation which results when the time dependence 
has been removed by a Laplace transformation. This 
approach was used by Bowden3.4 for his analysis of 
time-dependent I-speed neutron transport in a bare 
slab of finite thickness, a problem which had been 
treated extensively by Lehner and Wing.5.6 Another 
successful application of this technique was made by 
Kuscer and ZweifeF to the time-dependent I-speed 
albedo problem for a semi-infinite medium. Such an 
approach has also been utilized in one two-media 
time-dependent problem by Erdmann,B.9 who investi
gated. the time decay of a plane isotropic burst of 
monoenergetic neutrons introduced at the interface of 
two dissimilar semi-infinite media. In all of these 
time-dependent solutions, contributions due to various 
parts of the spectrum of the transport operator have 
been indicated by suitably deforming the integration 
contour of the inverse Laplace transformation. This 
approach is used in this paper to analyze a simple 
idealized two-media problem in which one would 
expect to find discrete time eigenvalues and to obtain 
some insight concerning their behavior as a function 
of material properties. 

To be specific, consider a slab of material which 
scatters neutrons isotropically, extends from x = -a 
to x = a, and is characterized by the nuclear proper
ties 0"2 and C2 • This uniform slab is surrounded by 
uniform infinitely thick reflectors of another material 
characterized by the properties 0"1 and C1 (see Fig. 1). 
For a physically meaningful system, these reflectors 

should be nonmultiplying media since they extend 
to infinity. Therefore, we take C1 < 1. For isotropic 
scattering of monoenergetic neutrons in a sourceless 
medium and plane geometry, the neutron angular 
flux 1p(x, ft, t) satisfies the equation2 

(:t + ft a~ + O"(X))1p(X,ft, t) 

= tc(x)O"(x) fl1p(X, ft', t) dft', (1.1) 

where t is the neutron speed multiplied by the real 
time and x and ft are shown on Fig. 1, while O"(x) and 
c(x) are given by 

O"(x), c(x) = 0"1, CI, for Ixl > a, 

= 0"2' C2 , for Ixl < a. (1.2) 

We seek the solution of this equation subject to the 
boundary conditions 

lim 1p(±x, ft, t) = 0 (1.3) 
1"'1--00 

and the continuity conditions 

1p(±a+, ft, t) = 1p(±a-, ft, t), (1.4) 

given the initial condition 

1p(x, ft, 0) = f(x, ft)· (1.5) 

The latter we assume satisfies (1.3) and is extendable 
without poles or branch cuts in the finite ft plane 
except, perhaps, for a discontinuity across the 
imaginary axis. When the material properties of the 
reflectors are taken to be those of a vacuum or a pure 
absorber, this problem reduces to those rigorously 
analyzed by the Lehner and Wing approach.5.6.lo.n 
Some preliminary results for the present problem 

2445 
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-a 

REFLECTOR SLAB REFLECTOR 

FIG. 1. Geometry of the problem. 

were given in Ref. 12, while many details can be found 
in Ref. 13. 

as 

2. TIME REMOVAL AND ELEMENTARY 
SOLUTIONS 

If we take the Laplace transformation of "P(x, fl, t) 

"Pix, fl) = Loo e-Bt"P(x, fl, t) dt, (2.1) 

then the inverse transformation required to recover 
the t dependence is 

1 iY+ioo 
"P(x, fl' t) = -. eBt"P.(x, fl) ds, 

211"1 y-ioo 
(2.2) 

where y is to the right of all singularities of "P.(x, fl) 
in the transform plane, that is, the s plane. It is ex
pected that the path of integration in Eq. (2.2) can be 
deformed to indicate more precisely the character of 
"P(x, fl, t). Since an arbitrary function of two variables 
!(x, fl) can be written as the sum of its even and odd 
parts, viz., 

!±(x, fl) = t[f(x, fl) ±!(-x, -fl)], (2.3) 

then the symmetry of c(x) and a(x) allows us to 
separate "P.(x, fl) into its even, "Ps+(x, fl), and odd, 
"PB-(X, fl), parts, which can be treated separately and 
combined at any stage of the calculation. If we define 
"Pi±(X, fl, s) and !i±(X, fl), j = 1, 2, as 

"PB±(X, fl);!±(x, fl) = "Pl±(X, fl, S);!l±(X, fl), Ixl > a, 

= "P2±(X, fl, S);!2±(X, fl), Ixl < a, 
(2.4) 

then Eqs. (1.1)-(1.5) become, under the transforma
tion (2.1), 

(fl :x + s + ai)"Pi±(X,fl, s) 

lim "Pl±(X, fl, s) = 0, 
1"'1 .... 00 

j = 1,2, 
(2.5) 

(2.6) 

and 
"P1±(a, fl' s) = "P2±(a, fl, s). (2.7) 

The notation gi±(a, fl) means the limit of g±(x, fl) as 
x -+ a from medium j. Solutions of Eqs. (2.5) are 
obtained by constructing even and odd particular 
solutions "Pi'P±(x, fl, s) and adding to them solu
tions of the corresponding homogeneous equations 
"Pic±(x, fl, s), so that conditions (2.6) and (2.7) can be 
satisfied; i.e., 

"Pj±(x, fl, s) = "Pic±(X, fl, s) + "Pi'P±(X, fl' s), 

j = 1,2. (2.8) 

The functions "Pi'P± and "Pic± are constructed from 
Case's elementary solutions, which we denote here as 
"Pjv(x, fl, s). 

The elementary solutions "Piv(X, fl, s) are solutions 
of the homogeneous form of Eq. (2.5) in the form 

"Piv(X, fl' s) = rpi.v{fl)e-(·+t1ll",'v, (2.9) 

where v is a complex parameter introduced in this 
separation of variables and rpj.v(fl) is normalized as 

f1rpj.v(fl) dfl = s + ai · (2.10) 

Bowden3.4 and Erdmann8.9 have investigated the 
solutions rpi.v(fl) and show that they are given by 

rpi.v{fl) = tcia;vP(v - fl)-l + Aj.(v)b(v - fl), 

vE(-l,+I), (2.11) 

where P denotes the Cauchy principal value, b(v - fl) 
is the Dirac 15 function, and 

A;.(V) = s + aj - c;a;v tanh-1 v. (2.12) 

Two discrete solutions are 

1 c;a;vo; 
rp±vol(fl) = 2- ..,... , S E S;;, (2.13) 

vo; T fl 

provided that the function 

Q;s(z) = s + a; - ciajz tanh-1 Z-l (2.l4) 

of two complex variables sand z vanishes at the two 
points ±VOj' The condition for this to happens.4 is 
that s lie inside the curve Ci (s E Si;; see Fig. 2) 
defined by 

{
s + a j , , I' 2f3' -1 (2f3')} C; = -- = at + if3 at = - tanh -. 

c;a j 7T 7T 

(2.15) 

We note that vo; is an analytic function of s for s E Sji, 
except for a branch cut on the real s axis between 
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---;~ItWfflWlW<~""",----,--------Re(s' 

FIG. 2. Regions in a single-medium s plane. Location of 1m (s) 
axis depends on whether ci ;:: I. 

-(Ii and -(1;(1 - c;), and have denoted by +'1'0; 
that zero of Qis(Z) for which Re (VOi) > 0, s ¢ 
[-(Ii' -(IiI - ci )]. The important result is that the 
general solution of the homogeneous form of Eq. 
(2.5) can be expressed as the linear combination 

V'lx, 1-', s) = [aiV'volx,l-', s) + biV'-voS<x,l-', s)]!5,(s) 

+ f1A,(V)V'iV(X, 1-', s) dv, (2.16) 

where we define !5i(S) as 

!5i(S) == 1, S E Sji' 

== 0, S E Sie' (2.17) 

and the S dependence of the expansion coefficients has 
not been indicated. To avoid confusion with our 
notation, ± for parity, the customary notation for 
the discrete modes has not been used. 

3. CONSTRUCTION OF TRANSFORMED 
SOLUTION 

The expression (2.16) is the general solution of the 
homogeneous form of Eq. (2.5), but it does not have 
definite parity. For the slab which is symmetric 
about x = 0, V'2C±(X, 1-', s) can be formed as 

V'2C±(X, 1-', s) 

= a2±[ V'V02(X, 1-', s) ± V'-V02(X, 1-', s)]c52(s) 

+ fA2±(V)[V'2Y(X, I-', s) ± V'2(-V'(X,I-', s)] dv. (3.1) 

For the reflectors which extend to infinity, the 
boundary condition (2.6) requires half of the coeffi
cients in Eq. (2.16) to vanish when Re (s) > -(II' 
The remaining coefficients in the right reflector are 
related to those in the left by using the continuity 
condition (2.7) and the parity of V'2C±(X, fl' s). We 

have 

V'lC±(X,I-', s) = al±V'-V01(x,l-', s)!51(s) 

+ fAl±( -V)V'H-v'(X, fl, s) dv, 

x < -a, 
= ±al±V'Y01(x,l-', s)!51(s) 

± fAl±( -V)V'lv(X, 1-', s) dv, 

x> a, (3.2) 
for Re (s) - (II' 

As can be seen by direct substitution, explicit forms 
of V'2p± and V'1rJ± can be written as 

V'2P±(X,I-', s) = [F2±(X' '1'02, s)V'yoix,l-', s) 

and 

± F2±( -x, '1'02' s)V'_YQ2(X' 1-', s)]!52(s) 

+ fF2±(X, V, S)V'2Y(X, fl, s) dv 

± fF2±( -x, V, S)V'2(-Y'(X, 1-', s) dv 

(3.3) 

V'lP±(X,I-', s) = {±[-F±(-a, '1'01' s) 

+ Fl±( -x, -'1'01' S)]V'YOl(X, 1-', s) 

± Fl±( -x, VOl' S)V'-Y01(X, 1-', s) }!51(s) 

± f[-F±(-a, V, s) 

+ Fl±( -x, -V, S)]V'lv(X, 1-', s) dv 

± fFl±( -x, V, S)V'H-Y'(X, 1-', s) dv, 

x> a, (3.4) 

for Re (s) > -(11, . with a similar expression for 
V'lrJ±(x, 1-', s), x < -a. Here, 

F±( -a, w, s) == Fl±( -a, -w, s) T Fl±( -a, w, s) 

(3.5a) 
and 

F· (x w s) =1'" C (x w)e<S+O'i''''o/co dx ,± , ,- i± 0 , 0 , 
l{j) 

(3.5b) 

with 

1(1) = - 00 and 1(2) = -a, (3.6) 

while the Ci± are full-range expansion coefficients of 
the function/i±(x, fl)/fl (e.g., see Ref. 4). 

The solutions in medium 1, Ixl > a, have been 
constructed so that the boundary condition (2.6) is 
satisfied. If we substitute x = a in Eq. (2.8), apply 
the continuity condition (2.7), and use the explicit 
forms of V'ic± given by Eqs. (3.1) and (3.2), we obtain 
a two-media full-range expansion involving the f{!jSY 
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which contains unknown coefficients a j ± and A i±' 
The same expansion is, of course, obtained for 
x = -a. ErdmannB proved completeness theorems 
which apply in two-media expansions in time
dependent problems while Kuscer, McCormick, and 
Summerfield14 derived orthogonality relations which 
are applicable to two-media expansions in time
independent problems. Their results are easily extended 
to obtain orthogonality relations in forms which are 
valid for all regions of the transform plane. As usual 
in problems involving a slab, we cannot obtain closed 
form solutions for the expansion coefficients. The 
continuum coefficients A2±CV) are given as the solu
tions of Fredholm integral equations, and all of the 
other coefficients are obtained from the A2±(V). 
Bowden, McCrosson, and Rhodes15 have shown how 
the normal-mode expansion coefficients such as 
A;(v) in Eq. (2.16) are related to a function which can 
be extended to the complex plane (v --+- z'). More 
specifically, we define 

(3.7a) 

and 

E1±(V, s) == A1±( -v)ni.(v)nt;(V)e-(8+a I Jalv, (3.7b) 

where 

are the limiting values of the function ni8(z) of Eq. 
(2.14) on the real Z axis (-1, 1). Throughout, we 
use + and - superscripts to denote the limiting 
values of a function on its branch cut as the argument 
approaches the cut from the upper ( + ) and lower ( - ) 
half-planes. We use orthogonality relations and obtain 
the following list of equations for Re (s) > -O'm: 

=t= C20'2X O( -z, S)27Ti 

x 2±, 0 , dz', i E (z' s)X (-z' s)e-2(8+a.J alz' 

C' 02.(Z')(z' - z) 
(3.10) 

12±(z, s) 

= C20'2 L1±( -a, z, s) + (~ n28
( 00) Xo( -z, S») 

C10'1 27Ti nb ( 00) 

and 

11±(z, s) 

x (± f L2±(a, z', s)Xo( -z', s) dz' 
Jc' C20'2n28(Z')(Z' + z) 

+ .01.(00) f L1±( -a, z', s) dz' ), 
.02.( 00) Ja' C10'1XO( -z', S)n18(Z')(z' - z) 

(3.11) 

= =t=L1±( -a, z, s)e-2(8+0')Jalz 

where, for Re (s) > -O'i' 

Li±(x, z, s) 

= f'" e-(s+O'I)(",-",OJ/Z(tCiO'i f
1
f i±(XO' _po) ~ 

Jl(j) Jo po + Z 

i1 dpo 
- !CjO'i fi±(XO,po)--

o po - z 

+ ;fi±(XO' Z)ni.(Z») dxo, (3.13) 

with l(j) given by Eq. (3.6). In the above equations, 
z does not lie outside the contour C' which encircles 
VOi as shown in Fig. 3, and O'm is defined as 

(3.14) 

Im(z') 

BRANCH CUT OF \ljs (Zl) 

-----j\'VV'vVVVVVV'Wt'VVVVINWV'\III\j-'-----+-- Re(z') 
-1 +1 

FIG. 3. The contour C'in the z' plane. 
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The restriction Re (s) > -Gm is discussed in the next 
section. The L i ± functions were introduced as 

L ( ) F ( )n.+( )n.-( ) -(8+a;)",/. 
;± x, v, s = i± X, V, S l>.I.i8 V 1>.1.;8 V e , 

O:::;;v:::;;1. (3.15) 

In addition, we have used the Xo; functions which, as 
Kuscer and ZweifeF have shown, are continuous 
across the curves C i in the s plane (see Fig. 2). For 
two material media, we take the ratio of their single
medium XOi functions, 

where 

and 

XO;(z, s) = (VOi - z)Xi.(z), 

= (1 - z)Xis(z), 

(3.16) 

(3.17) 

X i8(z) = _1_ exp [~ f\n (O~(V»)~J. 
1 - z 2m Jo 0i.(v) v - z 

(3.18) 

For Re (z) < 0, Xo(z, s) given by Eq. (3.16) is a non
vanishing analytic function of z and s provided that 
s ¢ [-Gi , -Gi (1 - ci)], the branch cuts of VOi(S), 
j = 1, 2. The quantity 

k8 = S(C1G1 - C2( 2) + G1G2(C1 - c2) (3.19) 

is related to the difference between medium 1 and 
medium 2 continuum solutions. 

Noting that, if s E Sii' then [Oi.(Z)]-1 has a pole at 
z = VOi whose residue leads to a discrete term, we 
obtain the usual expressions for Ei±(v, s), v E (0, 1) 
[and hence Ai±(v)],when the contour C' is collapsed 
onto the branch cut (0, 1). When s E Sje, 0i8(Z) 
does not vanish. The discrete coefficients ai ± are 
obtained from 

and 

where 

OJ.(z) = ~ Oj8(Z). 
dz 

(3.20a) 

(3.20b) 

(3.21) 

The solutions tpic±(X, ft, s) and tpjp±(x, ft, s) can 
now be written similarly as 

1 (1 E2±(z', s)e-(s+a2 )(a+",)Iz' , 
tp2C±(X, ft, s) = 2---: n. ( ')( , ) dz 

7T1 C' 1>.1.28 Z Z - ft 

± 2± , dz' i 
E (z" s)e-(s+a2 )(a-",)/z' ) 

c, 02.(Z')(z' + ft) , 

Ixi < a, (3.22) 

for Re (s) > -Gm , 

1 i E
1
±(z', s)e(o+al)(",+a)/z' , 

1/l (x II. s) - - dz 
l'lc± ,., - 2' , n. ( ')( , +) , 7T1 C 1:.-'1. Z Z ft 

x < -a, 

± 1 i E (z' s)e-(s+a1)(x-a)/z' 
= - 1± , dz', 

hi C' 018(Z')(z' - ft) 

X > a, (3.23) 
for Re (s) > -Gm , 

1 (f L2±(X, z', s) d' 
tp2p±(X, ft, s) = 27Ti Je' 02.(Z')(Z' _ ft) z 

± f L 2±(-x, z', s) dZ'), 
Je' 020(Z')(z' + ft) 

for Re (s) > -G2, and 

tp1P±(X, ft, s) 

= _1_( f L1±(X, z', s) dz' 
27Ti Je' 018(Z')(z' - ft) 

Ixl < a, 

(3.24) 

+ f M±(x, z', s) ± L1±( -a, z', s)e -(o+ad(a-",)/z' dz'), 

Jc' 018(Z')(Z' + ft) 
x < -a, 

= _1_( f L1±( -a, z', s)e-(s+atl(a+x)/z'± M±(x, z', s) dz' 

27Ti Je' 0l.(Z')(z' - ft) 

i L1±( -x, z', s) d ,) ± z , x> a, 
e' 018(Z')(Z' + ft) 

(3.25) 

for Re (s) > -a1. The functions M±(x, z, s) are also 
integrations over the initial distribution/1±(x, ft) and 
are given by 

M±(x, z, s) 

=i-a 
e-(8+ul)(lxl+xO)/z(tc1a1 ffl±(XO' ft) ~ 

-1"'1 Jo ft + Z 

i1 dft 
- tc1a1 fl±(Xo, -ft) --

o ft - z 

+ ;f1±(XO' -Z)010(Z») dxo, Ixl > a, (3.26) 

for Re (s) > -a1 and z not outside C'. Again, the 
discrete and continuum terms which appear in Eqs. 
(3.1)-(3.4) are due to the zeros and branch cuts of 
O;.(z) which appear in the integrands of Eqs. (3.22)
(3.25). 

4. PROPERTIES OF TRANSFORMED 
SOLUTION 

Analytic properties of tp.±(x, ft) as a function of s 
must be investigated before we can recover the 
time-dependent solution tp(x, ft, t) according to the 
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inverse Laplace transformation given by Eq. (2.2). 
We need to know the behavior of lJls± in some right half 
S plane. First note that, for arbitrary initial distributions 
f(x, fl), lJls±(x, fl) is not analytic for Re (s) < -(Jm· 
This is true since each of the inhomogeneous terms 
I i ± of Eqs. (3.9) and (3.10) contains both L1± and 
L2±,as can be seen from Eqs. (3.11) and (3.12),and 
therefore, in general, is not analytic for Re (s) < -(Jm, 
where (Jm is given by Eq. (3.14). In particular, note 
that, for Ixl > a, lJll±(X, fl, s) never appears to be 
analytic for Re (s) < -(Jm. However, for special 
cases of material properties and initial distributions, 
1Jl2±(X, fl, s) can be shown to be analytic for -(J2 < Re 
(s) < -(Jl except perhaps for poles. 

We now look at the behavior of lJls± for Re (s) > 
- (Jm. Observe that the transform plane for the present 
problem must be taken as a superposition of two 
"single-medium" planes, that is, one for each material 
medium in the problem. The expressions (3.1)-(3.4) 
for the transformed solution were not defined for 
s E Ci and outwardly appear to be discontinuous at 
SEC i. However, this is not the case. The complex 
representation of E j ± given by Eqs. (3.9) and (3.10) 
shows that such coefficients are continuous across 
the curves Ci • Thus, it is seen from the representation 
of lJls± given in Eqs. (3.22)-(3.25) that 1Jls± is indeed 
continuous across the curves C i • 

It is convenient to introduce at this point the solu
tion of the associated eigenvalue problem, that is, the 
solution of Eq. (2.5) subject to the boundary condi
tions (2.6) and (2.7) withfi±(x, fl) == O. Such solutions, 
denoted with a bar, have the form 

1ps±(x, fl) 

= bl±lJl-vOl(X, fl, s)<5l(s) + IBl±( -V)"PH-v)(x, fl, s) dv, 

x < -a, 
= ["PV02(X, fl, s) ± "P-V02(X, fl, s)]<52(s) 

+ f B2±(V) ["P2.(X, fl, s) ± "P2(-v)(X, fl, s)] dv, 

Ixl < a, 

= ±bl±"PvOl(X, fl, s)bb) ± i1Bl±( -V)"Pl.(X, fl, s) dv, 

x > a, (4.1) 

where, obviously, Bi ± and bl± can be obtained from 
the Ei±given by Eqs. (3.9) and (3.10) forfi±(x, fl) == O. 
As we shall see, the solution "Ps± has poles at those 
values of s for which the associated eigenvalue problem 
has nontrivial solutions. It can be shown13 that, as 
the slab thickness becomes very large, this eigenvalue 
problem has only trivial solutions for Re (s) > -0"2 

except, perhaps, on the branch cuts ofvoi(s). Since in 

previously solved time-dependent problems, singular
ities of the transformed solution always occur on these 
cuts, we assume for all values of a that the singularities 
of "Ps± occur on the branch cuts ofvoi(s). In any case, 
we show that the only other singularities of "Ps±' 
Re (s) > -(Jm, which could occur off the branch cuts 
of vOi(S) are poles whose residue could readily be 
added to the time-dependent solution. 

In order to see the behavior of lJls± on the branch 
cuts of VO;(s) , we first look at 1ps± in the region 
s E Sli n S2i. For this region, the expansion coeffi
cients are given by the equations 

o ~fl ~ 1, (4.2) 

Bl±( -fl) T C2(J2 B2±({l)e(tT1-tT.)aIIJ 

Cl(Jl 

= ±tks n2.(oo) hl(fl)( hb02) ± h2(-V02) 
~s(oo) gl(fl) fl - '1'02 fl + '1102 

+ il B2±(V)h2(V) 2tplSP(V) dV), (4.3) 
o Cl(Jlfl 

and 

=Fhl( -vOl)bl± 

= h2(v02) ± h2( -'1102) 

+ (V~2 - V~1)ilB2±(v)hb) 2 dv 2' (4.4) 
o v - VOl 

where 

and 

h () X 2S( - eo) -(s+tT2)alro 
2eo =eo e , 

Xli -eo) 

h ( ) 
_ nls( (0) X lS( -eo) e(s+tTtlalro 

leo - eo , 
.02.( (0) X2.q( -eo) 

gifl) = flnt(fl)ni.(fl)· 

In addition, the eigenvalue condition 

(4.5a) 

(4.5b) 

(4.5c) 

o = hb02) ± h2( -'1102) + f l
B2±(v)h2(v) ~ 

VOl + '1102 '1'01 - '1'02 Jo V + '1'01 

(4.6) 

must be satisfied. Since the eigenvalue condition (4.6) 
has different limiting values as s approaches the branch 
cut of VOleS), we conclude that there are only trivial 
solutions of the associated eigenvalue problem on the 
VOleS) cut. When s belongs to the branch cut ofv02(s), 
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which is not also part of the "01(8) cut, i.e., when 
Re ("oJ = 1m ("01) = 0, it appears that nontrivial 
solutions of the associated eigenvalue problem may 
exist. From the results for the bare slab,3-6 it is ex
pected that Eqs. (4.2) and (4.6) are satisfied only at 
isolated points {8n }. 

If material properties are such that -0'2 < -0'1' 
then a portion of the branch cut of "02(8) lies in 
8 E S21 n Sle' In this region, however, 8 < -O'm = 
-0'1 and, for such values, the solution tP.±(x, p,), 
Ixl > a, that is, tP1±, is not bounded as Ixl- 00. 
However, tP2± may have nontrivial solutions on such 
a portion of the branch cut of "02(8). The equations 
for B2± and the additional constraint for this region 
are 

B
2
±(p,) = ±lk • .02.( 00) ("~2 -l) hlp,) Xli -p,) 

.011(00) g2(p,) X 01.(-p,) 

x (h2("02) X 1.( -"02) ± h2( -"02) X 1.("02) 

p, + "02 X 01.( -"02) p, - "02 X 01.("02) 

+ [lB2±(,,)hb) X lB( -,,) ~), 
Jo Xoti -,,) " + p, 

o ~ p, ~ 1, (4.7) 
and 

O - h ( ) X 1s( -"02) ± h (_ ) X 1s("02) 
- 2 "02 2 "02 

X 01s( -"02) X01,("02) 

11 Ii X lB( -,,) + D2±(,,)hb) d". 
o X 01s( -,,) 

(4.8) 

The zeros of Eq. (4.8) can, under some conditions, be 
poles of 'P2± and, therefore, may contribute discrete 
modes in 'P(x, p" t), Ixl < a. For this reason, we are 
interested in where these zeros lie and refer to them 
as pseudoeigenvalues. 

We now indicate how the solution of the associated 
eigenvalue problem tP.± is contained in the inhomo
geneous solution "Ps±' The original expansion coeffi
cients of Eqs. (3.1) and (3.2) can be written as 

Ai±(p,) = [a2± + lF2±(a, "02' s)]Bi±(P,) + Bi±(p,) 

(4.9a) 
and 

a1± = [a2± + lF2±(a, "02' s)]h1± + b1±' 

s E Sli n Su, (4.9b) 

where B i ± and hl± are given by Eqs. (4.2)-(4.4). The 
coefficients B i ± and bl± are given by 

B1±( -,,) T C20'2 B2±(,,)e(a1-aslalv 
C10'1 

and 

= ±lk • .02.(00) hb) 
.o1s( (0) gb) 

x [lF2±(a, "02' S)( hb02) T h2( -"02») 
" - "02 " + "02 

+ [l[B2±(p,) + F2±(a, p" s)]h2(p,) 2p18V(P,) dp, 
Jo C10'l" 

T t F1±( -a, p" S)h1(p,) ("~1 - P,:) ~] 
Jo ("02 - P, ) p, + " 

T [F1±( -a, ", s) - C
20'2 F2±(a, ", s)e(a1-allaIV], 

C10'1 

(4.11) 

T hi -"ol)[bl± - F±( -a, "01, s)] = fJ1±' (4.12) 

The coefficient [a2± + lF2±(a, "02' s)] is given by 

[ 1F ( )] -"01fJl± + fJ2± a2± + ~ 2± a, "02' S = . 
("011lt1± - 1lt2±) 

(4.13) 

In these equations, ([.j± and fJi± are 

1lt1± = hl"02) ± h2( -"02) 

+ ("~2 - "~1) [lB2±(p,)hlp,) 2 dp, 2' (4. 14a) 
Jo p, -"01 

1lt2± = "02h2("02) T "02h2( -"02) 

+ ("~2 - "~1) t B2±(p,)hlp,) : dp, 2' (4. 14b) Jo p, -"01 

(4.15a) 
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and 

Pu = tFU(a, '1'02' S)V02 

X [h2(v02) ± h2( -'1'02)] + (V~2 - V~l) 

11 ft dft 
X [Bu(ft) + Fu(a, ft, s)]h2(ft) 2 2 

o ft - '1'01 

=F (V~l - V~2) (lFl±( -a, ft, s)hrCft) ft dft 
Jo ft2 - V~2 

=F [volFl±( -a, '1'01' s)hl(vOl) 

- vOlFl±( -a, -'1'01, s)h l ( -'1'01)]. (4.lSb) 

In terms of these quantities, the solutions "Pi± can 
be written as 

"Pu(x, ft, s) 

and 

= [a2± + tFu(a, '1'02' s)]Viu(x, ft, s) 

+ fB2±(V) ["P2vCX, ft, s) ± "P2(-v)(X, ft, s)] dv 

+ f [Fu(x, V, S)"P2vCX, ft, s) 

± Fu( -x, V, S)"P2(-V)(X, ft, s)] dv 

+ UF2±(x, '1'02' s) ± F 2±(-x, -'1'02' s)] 

X "Pvoix, ft, s) 

+ UF2±(x, -'1'02' s) ± F2±( -x, '1'02, s)] 

X "P-V
02

(x, ft, s), Ixl < a, (4.16) 

"Pl±(X, ft, s) 

= [au + tF2±(a, '1'02' S)]Vil±(X,ft, s) 

± [b l± - F±( -a, '1'01' s) 

+ Fl±(-X, -'1'01' s)]"PVoJx, ft, s) 

± Fl±( -x, '1'01' s)"P-Vo/ x, ft, s) 

± f[Bl±( -V) - F±( -a, V, s) 

+ Fl±( -x, -V, S)]"Plv(X, ft, s) 

± Ll
F1±( -x, V, S)"PH-v)(x, ft, s) dv, x > a. 

(4.17) 

The solution "P1±(X, ft, s) for x < -a has a similar 
form. In these equations, Vii±(X, ft, s) are the parts of 
Vi8±(X, ft) which are given by Eq. (4.1). Equation (4.4) 
is written in terms of OC1± as 

(4.18) 

Consider now what happens on the branch cut of 
VOl(s), where '1'01 = i 1'1'011 for 1m (s) = 0- and '1'01 = 
-i 1'1'011 for 1m (s) = 0+. From the above equations, 
it can be seen that the quantities Bu , B1±' Bu , Bl±' 

OCl±' OC2±, P1±' and P2± do not inherit the branch cut of 
'1'01 (s). Equations (4.18) and (4.12) show that b1± and 
b1± have branch cuts due to that of '1'01 (s). Equation 
(4.13) indicates that [au + tF2±(a, '1'02, s)] has the 
branch cut due to VOleS) unless OCl±!OCU is equal to 
P1±! PU' In general, this will not be true, since P1±! Pu 
depends on the arbitrary initial distribution f±(x, ft), 
whereas OC1±!OCU does not. Therefore, it is concluded 
that both "P1± and "Pu inherit the branch cut ofvol(s). 

On the branch cut of V02(s) , the quantities Bu , 
B1±' b1±' P1±' and P2± are single valued. Since the 
quantities OC1± and OCu of Eq. (4.14) are related above 
and below the branch cut of V02(s) by 

[oci±]+ = ± [oci±]-' (4.19) 

it follows from Eq. (4.13) that, on that part of the 
branch cut of V02(s) which is not also part of the VOleS) 
cut, i.e., for Re ('1'02) = 1m ('1'01) = 0, we have 

[a2± + tF2±(a, '1'02' s)]+ = ± [au + tF2±(a, '1'02, s)]-, 

(4.20) 

if the denominator of the rhs of Eq. (4.13) does not 
vanish. It is seen from Eqs. (4.1)-(4.4) that, for this 
same region, 

[Vis±(x, ft)]+ = ± [Vis±(x, ft)]-· (4.21) 

Hence, the product 

[a2± + tF2±(a, '1'02, s)]Vis±(X, ft), (4.22) 

which appears in "Ps±' does not inherit the branch 
cut ofv02(s). However, the denominator of 

[au + t F2±(a, '1'02' s)], 

namely, (VOloc1± - OC2~' is equivalent to the eigen
value condition (4.6). Thus, if the associated eigen
value problem has a nontrivial solution at s = sn' 
Re (s) > -am' then "Ps± has a pole there. 

We briefly summarize the analytic properties of the 
transformed solution "Ps±(x, ft). For arbitrary initial 
distributions f±(x, ft), "Ps± is not analytic to the left of 
Re (s) = -am in the s plane, whereas, to the right of 
Re (s) = -am' it is analytic except for the branch 
cut along [-am, -al (1 - Cl)] [due to the branch 
cut of VOleS)] if (1m > (11(1 - c1) and except for poles 
at the values of s at which the associated eigenvalue 
problem has nontrivial solutions Vis±' We have as
sumed that, for arbitrary slab thicknesses a, these 
poles, if they exist, lie on the branch cut of V02(S), since 
this is the rigorous result obtained for the case when 
c2a2a is large and by others5.6.lo.11 for several special 
cases of the present problem. For special values of 
material properties and initial data, "Ps±(x, ft) for 
Ixl < a (that is, "P2~ may be analytic in the region 
-a2 < Re (s) < -a1 , except perhaps for poles. 
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5. RECOVERY OF TIME·DEPENDENT 
SOLUTION 

The time-dependent solution "P(x, #' t) is obtained 
from the inverse Laplace transformation (2.2), where 
y is to the right of all singularities of "Ps(x, #) in the 
s plane. From the analysis of the preceding section, 
we expect that we can choose any 

y > max [-0'1(1 - cI ), -0'2(1 - c2)]. 

In order to show the time dependence of the solution 
"P(x, #, t) more explicitly, we deform the inversion 
contour as far as possible to the left in the s plane by 
making use of the analytic properties of "Ps(x, #) 
obtained in Sec. 4. 

The contour Re (s) = y crosses both of the curves 
Cj , and it has been shown that "Ps± is continuous 
across these curves. As Isl-- 00 on such a contour, 
s E SIB n SZe, and it is readily seen that "PH is not 
necessarily o (S-I). However, the parts which are not 
can be easily inverted as follows. We define lor all s 
the function "PU8±(X, #) as that part of "P8± which is 
not O(S-I) and, upon making the substitution 

x-xo=#t, #>0, 

Xo - x = 1#1 t, # < 0, (5.1) 

we see that "Pu.±(x, #) can be written as 

for x > a and # < O. That "Pu± describes the motion 
of uncollided neutrons from the initial distribution 
can be seen by direct substitution into the equation 

a"Pu± a"Pu± at + # a;- + O'(x)"Pu± = O. (5.7) 

In the limit t -- 0, we note that 

"Pu±(x, #' 0) = I±.(x, #). (5.8) 

For an arbitrary I(x, #) which vanishes as Ixl-+ 00, 

"PU8±(X, #) as it is given by Eqs. (5.2) and (5.3)-(5.6) is 
an analytic function of s for Re (s) > -O'm for almost 
all x and #. If II± == 0 (/2± == 0), then "Pus± is an 
analytic function of s for Re (s) > -0'2 [Re (s) > 
-0'1]' Therefore, the function <P8±(X, #) defined as 

<Ps±(x, #) == "Ps±(x, #) - "Pus±(x, #), Re (s) > -O'm, 

(5.9) 

has the same analytic properties as "Ps± in the right 
half-plane Re (s) > -O'm' except that it is O(S-l) as 
Isl-- 00. 

The definite parity parts of the time-dependent 
solution, therefore, can be written from Eq. (2.2) as 

1 fY
+

iOO 

"P±,(x, #' t) = "Pu±(x, #' t) + -. <Ps±(x, #)est ds. 
27Tl y-ico 

"Pus±.(x, #) = LX> e-st["Pu±(X, #' t)] dt. (5.2) (5.10) 

That is, the parts of "Ps± which do not behave as 
O(S-l) as Isl-+ 00, Re (s) = y, can be inverted by 
inspection. The solution "Pu±(x, #' t) is given by 

"Pu±(x, #' t) 

= e-aS'l'2±(X - #t, #), t < (a + x)/#, 
= e-alt~-{at-al)(a+",)I"'fl±(X - #t, #), t > (a + x)/#, 

for Ixl < a and # > 0, 

"Pu±(x, #' t) 

(5.3) 

= e-aZ'l'2±(X - #t, #), t < (a - x)/I#I, 
= e-ulte(a2-al)(a-z)/"'fl±(X - #t, #), t > (a - x)/I#I, 

(5.4) 
for Ixl < a and # < 0, 

"Pu±(x, #' t) 

= e-a1'l'1±(x - #t, #), t < (x - a)/#, 
= e-a• te("2-al)(x-aJ/"'fz±(x - fl- t, fl-), 

(x - a)/fl- < t < (x + a)/fl-, 
= e-alie-(a.-atlZal"'fl±(X - fl-t, fl-), t > (x + a)!fl-, 

(5.5) 
for x > a and fl- > 0, and 

"Pu±(x, #' t) = e-tT1'l'l±(x - #t, fl-), (5.6) 

Now, using the analytic properties, we can deform 
the contour to the left and obtain, in general, 

"P±(x, fl-, t) 

= "Pu±(x, #' t) + 1 Res ["Ps±(x, fl-)est
] 

8=8n 

-O'm < -0'1(1 - c1) < Sn' (5.11) 

where Cp is a small circular contour of radius p with 
center at s = -0'1(1 - C1)' Generally, the point s = 
-0'10 - c1) will not satisfy the eigenvalue condition 
(4.6), and the contribution from the contour Cp 

vanishes as p -- O. If, however, s = -0'1(1 - c1) 

happens to satisfy Eq. (4.6), the contribution from 
the contour Cp has the form of a discrete residue term. 

Equation (5.11) is the solution of the time-dependent 
problem written in a form in which the uncollided 
portion of the initial distribution I(x, fl-) has been 
separated. For arbitrary I(x, fl-), the contour cannot 
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be deformed further to the left. In the final section, 
it is shown how this solution reduces to those obtained 
previously by others for special cases of the present 
problem. 

We close this section by indicating the form of 
some parts of Eq. (5.11). The uncollided term 
'Pu±(x, f-t, t) is given explicitly by Eqs. (5.3)-(5.6). 
The form of 1JI8±(X, f-t) on the branch cut [-am, 
-0'1(1 - C1)] was given in Sec. 4. From those results, 
it is seen that, on this branch cut, ['Ps±(x, ,u)]- -
(1JI8±(X, f-t)]+ can be written from Eqs. (4.16) and (4.17) 
as 

[1JIs±(x, f-t)]- - [1JIs±(x, f-t)]+ 

= {(a2± + tF2±(a, V02, s)]-

- [a2± + tF2±(a, V02 , S)]+}1jj2±(X, f-t, s), (5.12) 

for Ixl < a, and as 

['P.±(x, f-t)]- - [1JIs±(x, ,u)]+ 

= [a2± + iF2±(a, 1'02, S)]-[1jjl±(X, f-t, s)]-

- (a2± + tF2±(a, 1'02' S)]+[1jj1±(X, f-t, s)]+ 

± {[bl± - F ±( -a, 1'01' s)]-1JIVOl (x, f-t, s) 

- [bl± - F±( -a, VOl' s)]+1JI-VOl (x, ,u, s)}, (5.13) 

for x > a, where [au + !F2±(a, 1'02, s)] is given by 
Eq. (4.13), 1jji±(X, f-t, s) by Eq. (4.1), and 

(bl± - F±( -a, 1'01' s)] 

by Eq. (4.12). The solution 1JI8±(X, f-t) has poles at 
s = so, ... ,SN due to the poles of 

[ + IF. ( )] i(HO a2± 2" 2± a, 1'02, s 1'02 • 

Again, from the results given in Sec. 4, it follows that 

Res ['P8±(X, f-t)est]." 

= es"t{ 1jjs±(x, f-t)[1'ol(H1)]}." 

x Res {v!~Hl)[a2± + iF2±(a, 1'02' s)]}.". (5.14) 

Note that the factor v!~H1) is introduced so that 
ip.±V;2!(H1) and (a2± + lF2±(a, 1'02' s)]v~~H1) are single 
valued on the branch cut of 1'02 (cf. Eqs. (4.20) and 
(4.21)]. These terms have an exponential time depend
ence es"t, and we have obtained the implicit equations, 
viz., Eqs. (4.2) and (4.6), from which the eigenvalues 
{sn} can be computed. Since information concerning 
the behavior of eigenvalues (e.g., number, location, 
etc.) as a function of material properties is not readily 
obtained analytically from such expressions, we have 
made a numerical study of real time eigenvalues, and 
the results are discussed in the next section. 

6. CALCULATION OF REAL TIME 
EIGENVALUES 

We first note that the eigenvalues and pseudo
eigenvalues depend on five parameters (Cl' 0'1' C2 , 0'2, 

and a) and, therefore, many numerical computations 
would be required in order to see the specific depend
ence on each parameter. As we shall see, the bare
slab results of Bowden,3.4 the theorems of Hintzll 
for slabs surrounded by pure absorbers, and some 
observations of the present numerical results for a 
few reflected slab cases allow us to speculate about 
the behavior of eigenvalues for reflected slabs as a 
function of the slab half-thickness a. However, rather 
than compute eigenvalues {sn} in terms of C1 , 0'1, C2' 

0'2, and a, we define a nondimensional variable' and 
nondimensional parameters 0' R , aD, and A as 

0'1 - 0'2 
O'D=--- , 

C20'2 

and A = C20'2a. (6.1) 

In terms of these quantities, the branch cut of 1'02 

becomes the real interval (0, 1) and the branch cut of 
1'01 becomes the real interval (-O'D, -aD + O'R)' 

Since O'j and cj are nonnegative, it follows that 

(6.2) 

where the equality holds only if 0'1 = O. Also, we 
have restricted C1 < 1 so that -aD + O'R ~ 1 implies 
that c2 < 1. Obviously, O'R = 0 when the reflector is 
a pure absorber or a vacuum and O'D = 0 when the 
total macroscopic cross sections of the two media are 
the same. We have seen from the last section that, in 
general, the inversion contour can be deformed to the 
left only as far as Re (s) = -am, which corresponds 
to Re (') = max ( - aD' 0). However, there are no 
eigenvalues on the branch cut of 1'01 so that the region 
of the real , axis where the eigenvalues {'n} should 
appear is 

max (-aD + O'R' 0) < 'n < 1. (6.3) 

This interval corresponds to s E Sli tl S2i, and Eqs. 
(4.2) and (4.6), written in terms of the quantities of 
Eq. (6.1), are solved numerically to obtain the real 
eigenvalues gn} for specified O'R' aD' and A. In 
addition, the pseudoeigenvalues are obtained numeri
cally by solving Eqs. (4.7) and (4.8), also written in 
terms of the quantities ofEq. (6.1). Details concerning 
numerical procedures and computational equations 
are given in Ref. 13. The calculations were done on a 
Control Data 6600 computer system at NASA 
Langley Research Center. 
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The time dependence of discrete modes is seen 
from Eqs. (5.11) and (5.14) to be 

(6.4) 

Now 'n = -an + aR implies that 

Sn = -al(l - Cl) ~ 0 

since Cl < 1 and the equality holds only if al = O. 
Therefore, such 'n correspond to time-decaying modes 
regardless of the value of C2 • For values of 'n within 
the interval (6.3), the time decay or growth depends 
on whether c2'n is less than or greater than unity, as 
can be seen from Eq. (6.4). A discrete mode represents 
a critical system if C2'n = 1. 

Many different combinations of material param
eters could be considered, but here we restrict our 
study of the eigenvalue behavior to the case of over
lapping branch cuts. As aR departs from zero, we 
would like to see how the eigenvalues depart from 
those previously reported3•4 for a bare slab. The 
present eigenvalues {'n} for vacuum reflectors, i.e., 
aR = 0, and those of Bowden3.4 are in good agree
ment. In addition, critical dimensions obtained for 
bare slabs, spheres, and infinitely reflected slabs are 
also in good agreement with those previously reported 
by others.16- lS 

• BARE SLAB EIGENVALUE 
o REFLECTED SLAB EIGENVALUE * EIGENVALUE AND BRANCH POINT SAME 

1.0 
LEFT END OF BRANCH CUT 

0.8 OF VOl 

0.6 
OR RIGHT END OF BRANCH CUT 

0.4 OF vOl 

0.2 

FIG. 4. Dependence of eigenvalues Cn on (]R; (]D = 0, A = 5. 

The results presented here were computed for 
A = 5. A bare slab of such thickness has five 
eigenvalues3.4 which were investigated as aR departs 
from zero for several values of an' In Fig. 4, results 
are given for an = O. Our calculations show that the 
largest eigenvalue '0 is present up to aR = 0.9999. 
Apparently, this eigenvalue remains up to aR = 1, 
which is only obtained for C2 < 1. All other eigen
values disappear into the branch cut of YOI at '71 = aR, 
labeled with an asterisk, which corresponds to a time
decaying mode, regardless of the value of C2 • In fact, 
on Figs. 4-6, we indicate the points at which an 

OR 

1.4 

1.0 

0.8 

0.6 

0.4 

0.2 

Q 
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Q 

• BARE SLAB EIGENVALUE 
o REFLECTED SLAB EIGENVALUE 
~ REFLECTED SLAB PSEUDOEIGENVALUE * EIGENVALUE AND BRANCH POINT SAME 

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 
~ 

Flo. 5. Dependence of eigenvalues Cn on (]R; 

(JD = O.5(]R - 0.65, A = 5. 

eigenvalue or pseudo eigenvalue coincides with the 
branch points of YOI by an asterisk. Even though such 
points appear to have a discrete eigenvalue type of 
time dependence, we feel that they are properly part 
of the branch-cut integral contribution. We note that 
the branch points of YOI are located at , = -an and ,= -an + aR and find that the limiting form of the 
condition which determines whether or not such points 
are eigenvalues (or pseudoeigenvalues) no longer 
depends explicitly on aR or an' The theorems of 
Lehner10 apply for aR = 0 in Fig. 4 . 

In Fig. 5, results are presented for an = -0.65 + 
O.5aR' These typify results for - an values in the 
range between zero and ['O]"R=O' where the notation 
['n]"R=o means bare-slab eigenvalue, which we note 
depends on C2 , a2 , and a. The open and closed circles 
represent eigenvalues as in Fig. 4 while the half-closed 
circles are pseudoeigenvalues corresponding to S < 
- am = - al . Again, the largest eigenvalue '0 appears 
to remain provided that C2 > 1. Here, as in Fig. 6, 
results for aR = 0 agree with the theorems of Hintzll 

which apply only for C1 = O. Basically, his result is 

• BARE SLAB EIGENVALUE 
Q REFLECTED SLAB PSEUDOEIGENVALUE * EIGENVALUE AND BRANCH POINT SAME 

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 l.0 

~ 
FlO. 6. Dependence of eigenvalues ~n on (JR; 

(]D = (]R - I, A = 5. 
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that the strip Re (D between 0 and -aD belongs to 
the continuous spectrum and that the bare-slab eigen
values lying in this interval are not eigenvalues of the 
slab surrounded by perfect absorbers. He finds that 
there are no eigenvalues if -aD> ['O]aR=O, but says 
nothing about the physical significance. It is seen from 
Eq. (6.2) that for such cases '0 < l/c2 and corresponds, 
therefore, to a time-decaying mode. In other words, 
stationary (critical) or time-increasing modes cannot 
disappear into the continuous spectrum as material 
properties are varied. In fact, we have seen that, when 
aR ~ 0, such modes cannot disappear into the branch 
cut of VOl either. In Fig. 6, results are given for 
-aD + aR = 1, which we recall implies C2 < 1. For 
this case, all of the bare-slab eigenvalues lie in the 
continuous spectrum found by Hintz when aR = O. 
In both Figs. 5 and 6, S = -am corresponds to 
, = -aD' 

All numerical results indicate that real time eigen
values {'n} for material reflectors are finite in number 
and tend to eigenvalues previously obtained for a 
vacuum as aR ---+ 0, as do the pseudoeigenvalues for 
S < - am' If the set {'n} is empty, then the neutron 
density is necessarily decaying in time. Conversely, 
if the neutron density is stationary or increasing in 
time, then the set gn} is not empty. As expected, if 
C2 > 1, then a critical thickness can be found, i.e., the 
largest eigenvalue '0 must be present for large enough 
slab thicknesses for the given C2 > 1. 

As pointed out at the beginning of this section, we 
can draw some conclusions concerning the behavior 
of {'n} for reflected slabs as a function of the slab 
half-thickness a. We base the following conclusions 
on the observation that, if '0 at aR = 0 lies to the 
right of - aD' then it appears to remain to the right 
of -aD + aR as aR increases until -aD + aR = 1. 
(See Figs. 4 and 5.) The dependence of ['O]aR=O on 
slab half-thickness is given in Ref. 3. First, if 
-aD + aR ~ 1 (recall that this implies C2 < 1), 
then the set gn} is empty for all a. However, there 
may be pseudo eigenvalues if -aD> O. Next, if 
-aD + aR < 1, then two cases arise, depending 
on the value of aD: 

(a) When -aD> 0, then, regardless of the value 
of C2 , we can find an a* such that a < a* implies 
that the set gn} is empty, whereas a > a* implies 
that the set gn} is not empty. The number a* is ob
tained from the bare-slab result ['O]aR=o as 

['0(C2, a2, a*)]aR=o = -aD' (6.5) 

(b) When -aD ~ 0, the set gn} is never empty. 
Thus, given C j, a j, and a and the bare-slab eigen
values corresponding to C2 , a2 , and a, we can say 

whether or not the set gn} is empty. Furthermore, 
the number of eigenvalues {'n} will not exceed the 
number of bare-slab eigenvalues {['n]aR=o} which are 
greater than - aD' Finally, the number of real 
reflected-slab eigenvalues and pseudo eigenvalues does 
not exceed the number of bare-slab eigenvalues. 

7. CONCLUDING REMARKS 

It has been shown by using Case's method that the 
solution to the initial value problem of monoenergetic 
neutrons migrating in a finite slab (properties C2, ( 2) 
with infinite reflectors (properties Cl' al) can be 
written in the form 

1 J-am+ioo + -. ['If.(x,,u) - 'lfu.(x, ,u)]est ds, 
27Tl -am-ioo 

-am < -al (1 - cl ) < Sn' (7.1) 

Some terms of the solution (7.1) will not be present if 
-am 1=: -aj(l-cl){:sn·Thatis,if-al(1-cl)< 
- am' then the branch-cut integral does not appear. 
Likewise, if all sn < -al(1 - cl ), then there are not 
residue terms. These discrete eigenvalue terms are 
characteristic of a finite slab while the branch-cut 
integral term is typical of a semi-infinite medium. 
The term 'lfu(x, ,u, t) describes the behavior of neutrons 
from the initial distribution f(x, ,u), which have not 
suffered a scattering collision, and its definite parity 
parts are given in Eqs. (5.3)-(5.6). The discrete 
eigenvalue terms in Eq. (7.1) are given by Eq. (5.14), 
while the integrand of the branch-cut integral is given 
by Eqs. (5.12) and (5.13). The definite parity parts of 
the last integrand are given by Eqs. (5.2) and Eqs. 
(3.22)-(3.25). The eigenvalues {sn} can be computed, 
as was demonstrated in the last section; thus, every
thing which appears in Eq. (7.1) can be calculated. 

In all special cases of the present problem, which 
have been solved by using the approach of Lehner and 
Wing,5.6.l0.1l Cl = O. Thus, in these cases, there is 
no branch cut due to VOleS) and the branch~cut integral 
is not present in Eq. (7.1). It was shown that as 
Cl ---+ 0 the eigenvalues {sn} which are greater than 
-am approach those for a bare slab, as do the 
pseudo eigenvalues for S < -am' The solution 'If.± 
has the proper behavior as Cl ---+ 0 since those terms 
of Eq. (3.11) and (3.12) which appear to blow up in 
such a limit actually cancel when the contour C' is 
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collapsed onto the portion of the branch cut of 
Ojs(z'), 0::;; z' ::;; 1. When the uncollided term is 
combined with the last integral, it is then seen that 
the solution (7.1) and the eigenvalues {sn} have the 
behavior required by the theorems of Lehner10 and 
Hintz.u The present problem reduces to those 
considered by Lehner and Hintz when 

(7.2a) 

and 

(7.2b) 

In order to describe the same physical problem 
in the slab as that solved by Lehner and Wing,5,6 we 
must not only have 

Cl = 0 and 0'1 = 0, (7.3) 

but also 

lex, f-l) = 0, for x < -a, f-l > 0, 

and x> a, f-l < O. (7.4) 

In other words, neutrons from the initial distribution 
outside the slab cannot impinge on the slab faces at 
times t > O. Lehner and Wing solved the time
dependent problem with boundary conditions 

1J!(±a, f-l, t) = 0, f-l:;: 0, t > O. (7.5) 

Restrictions (7.3) and (7.4) in the present solution 
make 12±(f-l, s) and, therefore, A2±(f-l) depend only 
on properties of the slab. Then, in looking for solu
tions inside the slab (Ixl < a), the inversion contour 
alongRe (s) = -O'mcan be deformed back to Re(s) = 
-0'2, apd we pick up a residue contribution from any 
pseudoeigenvalue in the region and thus obtain the 
Lehner-Wing results. That is, the solution has the 
proper form, and all bare-slab eigenvalues are 
recovered. 

The analogous problem for C1 =P 0 in which the 
inversion contour can be deformed to the left of 
Re (s) = -O'm for Ixl < a is obtained when 0'2> 0'1 

and!1(x, f-l) == O. That is, if 

lex, f-l) == 0, Ixl > a and 0'2 > 0'1, (7.6) 

then all terms in 12±(f-l, s) which contain (s + 0'1) 

factors in the exponentials are identically zero; this 
allows us to deform the contour along Re (s) = -O'm 

back to Re (s) = -0'2 when Ixl < a. Such a deforma
tion is not possible for Ixl > a; for this latter range 
of x, we must stop at Re (s) = -O'm = -0'1' If 
there are pseudoeigenvalues in -0'2 < Re (s) < 
-0'1 = -O'm (see, for example, Fig. 5), they will 

appear in the solution for Ixl < a as residue terms 
which have the exponential time dependence. They 
are not eigenvalues for the reflected slab though, since 
such terms do not appear for Ixl > a. Erdmann8•9 

solved the time-dependent problem for two semi
infinite media, where an isotropic pulse of neutrons 
was introduced at the interface, and found that the 
inversion contour for x E medium j could be deformed 
to the left as far as Re (s) = -O'j' In the present 
problem, such deformations can be made only when 
conditions (7.6) are satisfied. It appears that the 
contour Re (s) = -O'm cannot be deformed to the 
left of Re (s) = - 0'2, since the equations which 
determine A2±(f-l) (Sec. 4) require Re (s) ;;:: -0'2' 

Apparently, Re (s) = - 0'2 is the edge of a continuous 
spectrum in all cases for the reflected slab. 

We briefly summarize the results which have been 
obtained. The present solution has been shown to have 
the required properties in all special cases which have 
been solved previously by others using the approach 
of Lehner and Wing. However, in all of these rigorous 
solutions, there was no scattering outside the slab. 
We have seen that, with infinite reflectors on the 
slab and neutrons anywhere outside the slab initially, 
it is possible for some neutrons which have spent their 
entire history in the reflector to impinge on the slab 
faces at times t > O. Such neutrons have a collision 
rate which is characteristic of reflector properties and 
this, in general, restricts us from deforming the 
inversion contours to the left of Re (s) = -O'm' We 
have illustrated two cases in which a further deforma
tion is possible for Ixl < a, by eliminating neutrons 
outside the slab initially which can later impinge on 
the slab faces. This is equivalent to a further restriction 
on the Hilbert space which has been used in some of 
the above-mentioned rigorous solutions. The exact 
eigenvalue condition has been obtained, and real time 
eigenvalues have been calculated for a number of 
combinations of material parameters. 
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Vacuum fields which admit a covariant constant vector are investigated in order to find "curvature 
coll!neat!ons," !.e., £R~!i = O. For ~I~ discussed types of pp waves it is shown that proper curvature 
collineatJons eXist. We state the explicit form of these transformations. 

I. INTRODUCTION 

A special symmetry property of Riemannian mani
folds called "curvature collineations" (CC's) was 
recently proposed.1 This symmetry is defined by 
£sRik!i = ° for infinitesimal transformations Xi = 
Xi + ~i(J€, where £f denotes the Lie derivative and 
Ri

kl1 denotes the mixed Riemann tensor. The impor
tance of CC symmetries for general relativity was 
pointed out and the close connection with covariant 
conservation laws stated. 

In this paper, we investigate CC's admitted by 
vacuum fields, i.e., Rik = 0, which possess a covariant 
constant vector. Such fields are called plane-fronted 
waves with parallel rays or pp waves. There are 
several reasons why we turn our attention to pp waves. 
First, they have been extensively studied so that all 
possible occurring isometry groups together with a 
representative metric are known.2,3 Second, for 
vacuum fields the more familiar symmetries such as 
projective collineations and conformal collineations 
are subcases of CC's. Finally, pp waves are gravita
tional null fields for which a covariant conservation 
law follows if they admit a CC. 

So we start with a brief summary of CC's and related 
symmetries for the case of vacuum fields. Section III 
is devoted to the definition of pp waves, the general 
form of the metric and components of the Riemann 
tensor. 

In Sec. IV, we write down the explicit equations for 
the vectors ~i defining CC's. Formally, we get 20 
coupled partial differential equations of first degree 

with nonconstant coefficients. However, by pure 
algebraic manipulations, it is possible to reduce them 
into two sets. One set (10 equations) are relations only 
between the partial derivatives of the vector ~i itself, 
not containing the unspecified function of the pp 
waves, while the other set, depending on the special 
structure of these functions, can be reduced to two. 
We can then integrate the first 10 equations to obtain 
the necessary structure of the vectors ~i for CC's. 
We then give the solutions of the second set of 
equations for five types of pp waves. The result is that 
general pp wave admits CC's only in the lightlike 
direction of the covariant constant vector. For plane, 
cylindrically symmetric, and screw-symmetric waves, 
more general CC's exist. For all types, we give the 
form of the vectors ~i and compare them with their 
corresponding Killing vectors (Table I, Sec. V). 

In Sec. VI, we show that all the types discussed 
admit, in general, proper CC's, i.e., the ~i satisfy 
CC's but not a higher symmetry. 

Finally, we discuss the covariant conservation law 
following from a CC. We do not attempt in this paper 
to give a physical interpretation to the CC's found. 

II. CURVATURE COLLINEATIONS AND 
RELATED SYMMETRIES 

A Riemann space-time admits a CC if, for infini
tesimal transformations Xi = Xi + ~i(J£, the Lie 
derivative of the Riemann tensor Rik!i in the direction 
of ~i vanishes: 

(1) 
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I. INTRODUCTION 
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recently proposed.1 This symmetry is defined by 
£sRik!i = ° for infinitesimal transformations Xi = 
Xi + ~i(J€, where £f denotes the Lie derivative and 
Ri

kl1 denotes the mixed Riemann tensor. The impor
tance of CC symmetries for general relativity was 
pointed out and the close connection with covariant 
conservation laws stated. 

In this paper, we investigate CC's admitted by 
vacuum fields, i.e., Rik = 0, which possess a covariant 
constant vector. Such fields are called plane-fronted 
waves with parallel rays or pp waves. There are 
several reasons why we turn our attention to pp waves. 
First, they have been extensively studied so that all 
possible occurring isometry groups together with a 
representative metric are known.2,3 Second, for 
vacuum fields the more familiar symmetries such as 
projective collineations and conformal collineations 
are subcases of CC's. Finally, pp waves are gravita
tional null fields for which a covariant conservation 
law follows if they admit a CC. 

So we start with a brief summary of CC's and related 
symmetries for the case of vacuum fields. Section III 
is devoted to the definition of pp waves, the general 
form of the metric and components of the Riemann 
tensor. 

In Sec. IV, we write down the explicit equations for 
the vectors ~i defining CC's. Formally, we get 20 
coupled partial differential equations of first degree 

with nonconstant coefficients. However, by pure 
algebraic manipulations, it is possible to reduce them 
into two sets. One set (10 equations) are relations only 
between the partial derivatives of the vector ~i itself, 
not containing the unspecified function of the pp 
waves, while the other set, depending on the special 
structure of these functions, can be reduced to two. 
We can then integrate the first 10 equations to obtain 
the necessary structure of the vectors ~i for CC's. 
We then give the solutions of the second set of 
equations for five types of pp waves. The result is that 
general pp wave admits CC's only in the lightlike 
direction of the covariant constant vector. For plane, 
cylindrically symmetric, and screw-symmetric waves, 
more general CC's exist. For all types, we give the 
form of the vectors ~i and compare them with their 
corresponding Killing vectors (Table I, Sec. V). 

In Sec. VI, we show that all the types discussed 
admit, in general, proper CC's, i.e., the ~i satisfy 
CC's but not a higher symmetry. 

Finally, we discuss the covariant conservation law 
following from a CC. We do not attempt in this paper 
to give a physical interpretation to the CC's found. 

II. CURVATURE COLLINEATIONS AND 
RELATED SYMMETRIES 

A Riemann space-time admits a CC if, for infini
tesimal transformations Xi = Xi + ~i(J£, the Lie 
derivative of the Riemann tensor Rik!i in the direction 
of ~i vanishes: 

(1) 
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The Lie derivative can be written explicitly either in 
terms of partial or covariant differentiation4 

£~RikIJ = RikU.m;m - Rmkl;;i.m + Rimu;m.k 

+ Rikm;;m.! + Rik!m;m.;, (2) 

where, as usual, a comma indicates partial differentia
tion and a semicolon covariant differentiation. From 
the relation (we drop the ;, since it is always under
stood) 

we note that, if £gik = 0, then £R\u = 0 is equivalent 
to £RikU = O. We assume that gik has signature 
(+++-). 

Following Ref. I, a CC is called proper if it does 
not imply one of the following higher symmetries: 

conformal collineations (Conf C's) given by 

£r i (~itl + ~i t! ist! ) -1 
;h = U;<;;lh Uh<;;!j - g;hg <;;18 n , 

n = 4 dimension of the space, 
projective collineations (PC's) 

£r~h = Cd:;~lh + d~;~!;)(n + lrt. 
affine collineations CAC's) 

and motions (M's) which are defined by the Kil
ling ,equations 

£gik = O. 

For vacuum fields Rik = 0, every PC and Conf C 
is a CC; we thus have, in order of decreasing sym
metry, 

ConfC 

M----->A/ ~cc, 
~ / 

PC 

where the preceding symmetry always implies the 
following one. Therefore, a CC is proper if it is 
neither a Conf C nor a PC. 

III. pp WA YES 

If a vacuum field admits a covariant constant 
vector its Riemann tensor is of degenerate type5 N 
and the covariant vector is necessarily lightlike. 

These fields are called plane-fronted waves with 
parallel rays or pp waves. 

The metric of pp waves can always be written in the 
form 

ds2 = dx2 + dy 2 + 2dudv + 2H(x,y, u)du2
, (3) 

where HCx,y, u) is any arbitrary function in x, y, 
and u which satisfies the vacuum field equations 
Rik = O. 

For the metric (3), the field equation for H reads 
simply 

(4) 

where H.,., and HlIlI mean second partial derivatives 
with respect to x and y, respectively.6 The covariant 
constant vector is k i ""' di with kt; = 0 and kiki = O. 

From Eq. (3), one obtains the nonvanishing r's to 

r~o = -HI' rgo = -H2' rgo = H o, 

r~1 = HI, r~2 = H 2 • (5) 

If we use the notation of Ref. 2, where the sign of 
the Riemann tensor is defined by 

where the subscript brackets mean antisymmetrization, 
then the tensor RikU is given by 

and, for Rik!J' one gets the following nonvanishing 
components with the help of Eq. (4): 

RIOlO = -R2
020 = -R3

ll0 = R 3
220 = Hll , 

R 2
0l0 = Rlo20 = -R3

l20 = -R3
2l0 = Hu. (6) 

Only two of them are independent, but for CC's we 
need all components because they lead to different 
Eqs. (I). . 

IV. THE EQUATIONS £RiklJ = 0 

From symmetry properties of Eq. (I),taking into 
account the cyclic identity on the mixed curvature 
tensor, there are formally n2 [tn(n - I) - I] = 80 
equations. But since only a few components of the 
Riemann tensor are nonzero, this number is strongly 
reduced. Note that zero components also contribute 
to Eq. (1) when three indices belong to a nonvanishing 
component. 

Introducing the result (6) into Eqs. (2), we get 
first for the contributing zero components the 
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equations 

£R0
010 = -Hll~o,1 - H12~O,2 = 0, (7) 

£R
3
010 = -HU (e,1 + e,o) - H12(e,2 + e.o) = 0, 

(8) 

£R0
020 = -H12~O.1 + HU~O.2 = 0, (9) 

£R3
020 = -H12(e,1 + e.o) + Hll(~3.2 + ~2.0) = 0, 

(10) 

£R3
120 = £R3

210 

= -H12!~! - H12(~O,O + ~1.1 + ~2.2 - e,3) 

- HU (e,2 - e.1) = 0, (29) 

£R 3
220 = Hlll~! + Hu(~O,o + U 2.2 - e.3) 

- 2H12~1.2 = 0. (30) 

By simple algebraic calculations 

Hu [Eq. (26) - Eq. (27)] + H12 [Eq. (28) + Eq. (30)], 

£RO
llO = -£R0

220 = Hll~O.3 = 0, 

£R\lO = H U (e. 3 + ~O.1) = 0, 

£R2uo = -HU e. 3 + H12~O.1 = 0, 

(11) we get 

(12) ~2.1 + ~1.2 = ° (31) 

(13) and, from Eq. (26) - Eq. (27), then 

£R0
120 = £R0

210 = H12~o.3 = 0, (14) 

£R\20 = H12(~1,3 + ~O.1) = 0, (15) 

£R2
120 = H12e.3 + HU~O.1 = 0, (16) 

£R\lO = H12~1.3 + HU~O.2 = 0, (17) 

£R2
21O = H12(~2.3 + ~O.2) = 0, (18) 

£R1
220 = -Hll~1.3 + H12~O.2 = 0, (19) 

£R2
220 = _HU(~2.3 + ~O.2) = 0. (20) 

Because, for (Hll)2 + (H12)2 = 0, space is fiat, 
which we exclude, it follows from Eqs. (11) and (14) 
that 

~O.3 = 0, 

from Eqs. (7) and (9) that 

(21) 

~O.l = 0, ~O.2 = 0, (22) 

and then from Eqs. (12), (15), (17), (19) and (13), 
(16), (18), (20) that 

~1.3 = 0, ~2.3 = 0. (23) 

The remaining two Eqs. (8) and (10) lead finally to 
the relations 

e.2 + ~2.0 = 0, 

~3.1 + e.o = 0. (24) 

For the nonvanishing components of the Riemann 
tensor, Eq. (1) gives 

£R\lO = -£R2
020 

= Hllle + 2Hll~o.O - H 12(e. 2 - e.1) = 0, 

(25) 
£R2

010 = H12!~1 + H12(U
O.O + ~1.1 - e.2) 

- 2Hu~2.1 = 0, (26) 

£R\20 = H12!~! + H12(U
O.O - ~1.1 + e.2) 

+ 2Hu e.2 = 0, (27) 

£R\lO = -H11!~! - Hu(~o.o + 2~1.1 - e. 3 ) 

(28) 

~\ - ~2.2 = 0. (32) 

With these results, we go back to Eqs. (25)-(30); it 
turns out that Eq. (26) = Eq. (27) and Eq. (28) = 
-Eq. (30). Adding Eq. (28) and Eq. (25), using the 
results obtained so far, we have 

~1.1 = t(~o.o + ;a,3)' (33) 

Now Eq. (25) = -Eq. (28) = Eq. (30) and Eq. 
(26) = Eq. (27) = - Eq. (29). So, finally, there remain 
only two coupled partial first-order differential equa
tions 

H11!~! + 2Hll~O.O + 2H12e.1 = 0, 

H12!~! + 2H12~O.O - 2Hu~\ = 0. (34) 

From Eqs. (21)-(24) and (31)-(33), which do not 
involve the function H(x, y, u), we can draw con
clusions about the general form of the vectors ~i in 
order that these be CC's. 

First, we see that ~o = ~O(u) is only a function of u, 
while ~1 and ~2 are independent of v. Equations (31) 
and (32) are just the Cauchy-Riemann differential 
equations, so that ~1 and ~2 are, in x and y, real and 
imaginary parts of a complex function of z = x + iy, 
also depending on u. 

Using the relations (24) and the integrability 
condition ~3.21 = ~3.12' we see that 

e.02 = ~2.01 = 0. 

An ansatz for ~1 and ~2 with the above results and 
with the aid of Eq. (33) leads, after a straightforward 
calculation, to the structure of the ~i: 

~o = J [2c(u) - b(u)] du + g, 

e = c(u)x + d(u) + ay, 

e = c(u)y + e(u) - ax, 

e = -[lc'(u)(x2 + l) + d'(u)x + e'(u)y] 

+ b(u)v + feu), 

(35) 
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TABLE I. Restrictions on the arbitrary functions of Eqs. (34) in order that the vectors ~t define CC's or M's. 

Type of wave H(x,y, u) CC Killing vectors 

General pp a=g=O feu) = const 
b(u) = c(u) = d(u) = e(u) = 0 

",(x,y) a=O feu) = const Screw symmetric 
b(u) = c(u) = d(u) = e(u) = 0 

Cylindrically 
symmetric 

b(u) = c(u) b(u) = c(u) = 0 
feu) = const d(u) = e(u) = 0 

Plane wave !F(u)(x 2 
- y") + G(u)xy 

F(u) ~ G(u) 
a =g = 0 b(u) = c(u) = 0 

feu) = const 2c(u) = b(u) 

Plane wave HX2 _ y2) a=O 

d(u)F + e(u)G = dH(u) 
d(u)G - e(u)F = eH(u) 

linearly polarized 2c(u) = b(u) b(u) = c(u) = 0 
feu) = const 
eH(u) + e(u) = 0 
dH(u) - d(u) = 0 

where a and g are real constants, and b(u), c(u), d(u), 
e(u), andf(u) are arbitrary functions of u only. c'(u) 
means differentiation with respect to u. 

It is easily verified that this vector actually satisfies 
the required relations. In order to be a CC, the ~i 
have to be a solution of the remaining two Eqs. (34). 
Thus, for every possible H(x,y, u), the arbitrary 
functions in Eqs. (35) have to be chosen to satisfy 
Eqs. (34). 

V. SPECIAL CASES FOR H(x,y, u) 

In Ref. 2, a detailed discussion of pp waves is 
given. They are classified in terms of isometry groups 
for different types of the function H(x, y, u). 

We proceed to investigate possible solutions of 
Eqs. (34) for five of these types. The obtained vectors 
~i define CC's and can be compared with their corre
sponding Killing vectors. 

First,' let H(x, y, u) be restricted only by the 
vacuum field equation (4). Since the vectors ~i given 
in Eqs. (35) have a fixed x and y dependence, while 
H(x,y, u) is arbitrary up to Eq. (4), inspection of 
Eqs. (34) shows us that only the trivial solution with 

a = b(u) = c(u) = d(u) = e(u) = 0 

is possible. The component ~3 does not enter in Eqs. 
(34), so that there is no restriction on the function 
feu). Therefore, general pp waves admit CC's of the 
form 

(36) 

Because £Ri
k1i = 0 is an integrability condition for 

the Killing equation £gik = 0, the Killing vectors 
must be obtained as special cases from the admitted 
CC's. In general, pp waves admit only a G1 , which 
acts in the direction of the covariant constant vector. 

Thus, the Killing vector is lightlike and in the direc
tion of propagation, i.e., in our coordinates 

~i = t5~. 

If one restricts H(x, y, u) to special functions, then 
nontrivial solutions of Eqs. (34) also exist. Results for 
special types of pp waves are listed in Table I. 7 

The first column denotes the type of wave and the 
second gives the corresponding form of H(x, y, u). 
The third column gives the restrictions on the con
stants a and g and the functions b(u), c(u), d(u) , 
e(u), and feu), which occur in Eq. (35), so that the 
vectors ~i define CC's. Constants or functions not listed 
remain arbitrary. The fourth column states further 
restrictions on these functions, so that the corre
sponding vectors are also Killing vectors. Note that 
all restrictions of the preceding column must also 
hold here. Finally, the order of the isometry group of 
the Killing vector is given; e.g., we infer from the 
table that screw-symmetric pp waves admit CC of the 
form 

~i = gt5~ + j(u)t5L 

while the Killing vectors of the 2-parameter isotropy 
group are given by 

~i = gt5~ + jt5~, j = const. 

VI. PROPER CC 
So far, we have seen that all listed waves admit a 

CC, which only for very special choices of the arbitrary 
functions are also M, so that, in general, £gik =F O. 
To confirm that the CC found are proper CC, we 
must show that they are not Conf C's or PC's. 

First we deduce that for all cases, in general, 
£r~l =F 0, which is equivalent to 

~i;ki + ~k;ii =F O. 
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There are 40 equations, but if one component does 
not vanish, the vector ;i cannot be an AC. By looking 
at the ;0;0 term, we infer that ;0;00 =;f: ° for each of the 
cases. 

A necessary condition for a CC to be a PC or 
Conf C is that 

;i;iik = 0. (37) 

The only nonvanishing component for ;i from Eq. 
(35) is 

;0;000""" c"(u). 

For the last three types of Table I there is no restric
tion on c(u); c"(u) is in general different from zero 
and thus the corresponding CC's are not PC's or 
Conf C's. Together with the above result that £r~z =;f: 
0, the ;i are proper CC's. 

For the more general types, we note that c(u) = 0, 
and the necessary condition is fulfilled. However, 
also ;i'i = ° and, from the definitions of Conf C's and 
PC's i~ Sec. II, we see that the vectors ;i are then 
Conf C's or PC's only if the relation £qz = ° also 
holds, which is not true. We may thus state the follow
ing result. 

Theorem: In a space with Rik = 0, general pp 
waves admit lightIike proper CC's in the direction of 
the covariant constant vector. 

VII. CONSERVATION LAW 

It is well known that the existence of symmetry 
properties of the Riemannian manifold under con
tinuous groups of motions lead to conservation laws, 
such as energy, linear and angular momentum.8 

More general symmetry transformations have been 
discussed in connection with conservation laws, 
showing that, e.g., AC's or PC's are related to the 
existence of conserved quadratic first integrals.9.1O 

We want to discuss briefly a conservation law 
following from the existence of CC's for null gravita
tional fields. The theorem given in Ref. I states the 
following: If, in a space with Rij = 0, a null field 
admits a CC, then it admits a covariant conservation 
law of the form 

[( _g)tTikil;;1;! = 0, (38) 

where Tiki! is the Bel-Robinson tensor which, for 

pp waves, has the structure 

Tiki! = Ikikkkikl, (39) 

with ki;i = ° and kiki = 0, where 1 is a scalar de
pending on the function H(x, y, u) of Eq. (3), and 
where k i is the lightIike covariant constant Killing 
vector which has components k i ,...., <5~ . 

If we substitute for TikiZ from Eq. (39) into Eq. 
(38), we obtain 

kikz;i;1 = 0. 

This is satisfied by all CC's because of Eqs. (21) and 
(23). 

For ki;i ¢ 0, one deduces from Eq. (38) a con
servation law which was first given by Sachsll for 
null fields: 

(40) 

For general pp waves, the CC's have ;i = <5lf(u) 
and, therefore, ki;i = ° for all such vectors ;i. It is, 
therefore, not possible to obtain in this general case 
the conservation law Eq. (40) from Eq. (38). 
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. The equ!valence of analytic functions in complex variable representations with conserved functions 
m real vanable representations is utilized to write eigenvalue equations for the energy and momentum 
?n the ~omplex plan~s. A self~consis~ent field m~thod is then developed and used to study the scalar 
mteractlons ~f a par~I~le .gas wIth ~rbltrary couplIng strength. The eigenvalue equations for momentum 
and energy YIeld eqUlhbnum solutIOns whIch are functions only of the initial values and a renormalized 
coupling strength. The results are applied to the electron gas and to the Bose gas. 

INTRODUCTION 

In earlier studies or" the analytic properties of 
functions of two complex variables, a self-consistent 
field method was developed for obtaining the energy 
and momentum eigenvalues for an interacting particle 
gas to first order in perturbation theory.l Subse
quently, a self-consistent field method suitable for 
strong interactions was developed2 and applied to the 
interaction of a spinor and a scalar field. We consider 
now a problem of interest when there are many 
particles interacting by means of scalar fields of 
arbitrary strength. It is well known that the formula
tion of this problem in terms of an expansion in 
2-body potentials is not convergent. We consider 
instead a single particle interacting with the remaining 
particles by means of an effective field defined by the 
inhomogeneous wave equation. The field consists of a 
constant term plus a term representing the fluctua
tions and oscillations. The eigenvalues for the constant 
field are assumed known, and the wave equation is 
then solved self-consistently with the interacting 
Hamiltonian for the new eigenvalues. 

Our method makes use of transformations of the 
form 

pt(z) = e'P(z)e-' 

= P(z) + [z, P] + Hz, [z, P]] + ... 
oP a2 02p 

= P(z) + a - + .2- +... (1) 
• oz* 2 OZ*2 ' 

where z is a normalized complex scalar and a. is a 
constant. The transformation of the second line to 
the third line follows from the fundamental quantum 
conditions taking Re z and 1m z for the canonical 
variables. 2 We now look for values z' for which 
pt = P, that is, z' satisfying 

lim [z, P] = a., oP == 0, (2) 
Z ... S' OZ·' 

and it can be shown that, if (2) holds, all the higher
order terms vanish in (1). Now oP/oz* = 0 are the 
Cauchy-Riemann equations which give the necessary 

condition that P be analytic in z so that, provided P is 
differentiable, (2) defines the analytic region of P on 
the z plane. Thus the eigenvalues z' satisfying (2) 
define the analytic region. Also, if pt(z') = P(z'), 
then (I) is clearly a unitary transformation and the 
z' are conserved or, conversely, the z' are the con
served eigenvalues under the transformation. It 
follows that the analytic function P(z') corresponds 
to a conserved function for real variables so that the 
problem of obtaining the new eigenvalues, in an 
interacting particle gas, for example, reduces to finding 
the analytic region, that is, the solutions of (2). 

Our procedure then is to obtain equations such as 
(2) for all of the conserved variables, that is, momen
tum, energy, and particle number in an interacting 
system, and solve them simultaneously for the new 
eigenvalues. We work, therefore, entirely in momen
tum and energy space and, since the momentum and 
energy are complex, the eigenvalues k' and E' give 
also the interaction range and decay time of the 
particle excitations (we define particle excitation as 
a particle plus its associated short-range field) and 
the particle excitation eigenvalues give just the 
renormalized particle levels, including the effects of 
finite range and line width. 

The generality of this procedure is due to two 
factors: (i) the use of complex variables throughout, 
which allows an exact solution of equations such as 
(I) and (2), whereas for real variables the equivalent 
of (2) is a minimization condition which, however, 
does not insure that the higher-order terms vanish; 
(ii) with the use of symmetry transformations such 
as (1), one avoids dealing with equations of motion 
which, of course, cannot be solved for strong coupling 
without additional constraints. 

1. DERIVATION OF THE EIGENVALUE 
EQUATIONS 

If we consider the stationary states of the density 

p(x, t) = eiH<t-to) p(x, to)e-iH<t-to) 

= p(x, to), (3) 

2463 
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then the density equation of motion becomes 

[H, p] = 0, (4) 
where 

H(x, t) = -(2m)-1V'2 + Vex, t), (5) 

and V is defined by the inhomogeneous wave equation 

o U(x, t) = Ap(X, t), (6) 

where A is the coupling strength. Now (3) is evidently 
a conservation condition on the density; but this 
constraint has no great physical significance, whereas 
conservation conditions on H are of fundamental 
importance. But, if (4) holds, then - [H, p] occurs as 
the first-order term in 

(7) 

so that (4) is satisfied provided Ht = H. In this case 
the density is conserved in the interacting system, and 
it can easily be shown that transformations such as (7) 
with pI Po replaced by klko also conserve momentum 
if Ht = H. There is a similar transformation for 
energy conservation. The transformation (7) and 
similar transformations on the momentum and energy 
planes are obviously unitary, provided that Ht = H 
for each transformation. We must therefore obtain H 
as a function of momentum and energy by Fourier
transforming Hand (6). We then consider the analytic 
properties of H(k, E) after con!inuation onto the 
lower semiplanes. !tis obvious from (4) that dHldp* = ° so that, provided H is differentiable, H is then an 
analytic function of p and in this case the function 
continued into the fourth quadrant satisfies dH*ldp = 
O. Since the kinetic energy is obviously an analytic 
function of k and E, it follows that V is also analytic 
in both variables. From dH*ldp = 0 it is evident that 
the continuation of the kinetic energy and V* are also 
analytic in the fourth quadrant. Since H is analytic, 
it is invariant under all rotations if the Hamiltonian 
represents a rigid body, as seems evident if the density 
is conserved; otherwise, H is invariant under positive
sense rotations only, whereas H* is invariant only 
under negative-sense rotations. That H is invariant 
under rotations in the positive sense, provided that H 
is analytic, follows from a consideration of the 
infinitesimal inhomogeneous rotations 

( 1 + z* ~)H = (1 + is. + iiL.)H 
oz* 

where, with z = Zl + iZ3' 

(7'a) 

(7'b) 

are operators representing the radial deformations 
and pure rotations on the z plane. With the Cauchy
Riemann equations 

oH .oH 
- = -{-, 
OZI GZ 2 

(7'c) 

it can easily be shown that SzH = -iLzH so that H 
is conserved in (7'a) but not under 1 + is. - iL •. 
On the other hand, the operator zoloz gives S. - iL. 
so that H* is conserved, since 

oH* .oH* 
-=1-, 
OZI OZ2 

(7'd) 

but H is not conserved. 
In order that H be a rbtational invariant on the 

entire plane, it is necessary that H be analytic on the 
entire plane, that is, a constant. We therefore carry 
out the continuations by rotations in the positive 
sense, mapping the first quadrants onto the third 
quadrants so that k -4- -k, q -4- -q, and E -4- -E. 
Writing Ht for the resulting function, we now carry 
out the transformation 

H'(k, E) = eP*(k.E)/PoH\ -k, _E)e-P*(k.E)/Po 

= Ht + POl[p*, Ht] + ... 
t a! dH

t 

=H +--+ .... 
Po dp 

(7'e) 

The terms oHtjop, o2Htjop2, ... are obtained by 
taking as canonical variables the real and imaginary 
parts of p and using the fundamental quantum con
ditions; a general formulation for several complex 
variables is given in Ref. 2. We now look for eigen
values k' and E' for which Ht = H', that is, for which 

t 
lim lim [p*, Ht] = a! dH 
/C-+k'E-+E' dp 

= a*(OH
t + dE' oH

t + dk' oHt) 
P op dp oE' dp ok' 

In general, 
== O. (8) 

dE' ~ 0 dk' ~ 0 
dp 'dp , 

(8') 

since p is a continuous function of k and E, and p 
does not conserve momentum or energy (for complex 
functions oElop = 0 insures that op/oE = 0). From 
the three terms on the rhs of (8), we obtain three 
eigenvalue equations which give the constants of 
motion for the interacting system (see Appendix). 
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From (9) and the second term of (8'), we obtain an 
eigenvalue equation for the energy, 

* oHt 
lim [E*, Ht] = IIE'-
E~E' oE' 

q, E,and O;we choose U such that 

H(k, E) = Ep - Ek + U(q, E) 
+ boundary and initial values (13) 

where 

=0, (9) U(q, E) = Ar(q, E)p(q, E) 

where Re E' and 1m E' are canonical variables satis
fying the fundamental quantum conditions. Obviously, 
(9) provides the condition that the E' be constants 
of the motion, according to the elementary definitions 
of the commutator of any variable with H. It is not 
difficult to show that (9) imposes energy conservation 
on Ht. Thus, in 

• t • H'( -k, E) = eE IEoH (-k, -E)e-E lEo 

= Ht + EO'1[E*, Ht] + ... , (9') 

Ht = H' for E' satisfying (9); then, with Ht = H~ + 
ute -k, -E), the E' are the new eigenvalues. 

Similarly, we obtain from (8') and the third term in 
(8) the eigenvalue equation for the momentum, 

1· [k* Ht] * oHt 1m "" = IIk,,,,-
k",-+k",' ok~ 

= 0, (10) 

which guarantees momentum conservation in H by 

• t • H'(k, -E) = ek", IkoH (-k, -E)e-k", Iko 

= Ht + kO'1[k:, Ht] + ... , (11) 

where ka is a complex scalar obtained from k . £ 

with £ being a vector with unity modulus. In (10) 
Re k~ and 1m k ~ are canonical variables satisfying 
rk:, k~*] = const. As for E' in (9), Eq. (10) provides 
the condition that the k' be constants of the motion 
(see Appendix). 

And, finally, the first term in (8) yields 

lim [p*, Ht] = II; OH: = 0, (12) 
p~p' op 

which conserves the number of particles in the final 
state equilibrium. One should note at this point that 
(9), (10), and (12) hold, provided that there exists 
only a single set of canonical variables satisfying the 
canonical equations (see Appendix). 

Finally (9), (10), and (12) hold simultaneously so 
that k', E', and P must be simultaneous eigenvalues 
satisfying all three equations. For these reasons we 
must take k(E) and E(k) in (9) and (10). 

2. SOLUTIONS OF THE EIGENVALUE 
EQUATIONS 

Taking matrix elements of (4) between initial state 
p and final state p + q = k, E and of (6) between 

+ boundary and initial values, (14) 
and where 

is the field propagator. The kinetic energy in (13) is 
obviously an analytic function of the momentum and 
energy, and it is evident H is analytic in all variables 
provided that there exist k', E', and p' satisfying (8) 
and (12). Now, carrying out the analytic continuations 
of (13) and (14) by rotations in the positive sense, we 
see from the discussions of (7'a)-(7'd) that H is 
invariant under the rotations provided that H is 
analytic in all variables. Then with (9), (10), and 
(12) we obtain H analytic on the entire planes, so 
that H is invariant under all possible rotations. Now 
(10) gives 

k' = m au. 
a ok' 

a 

(16) 

The variation with respect to ka is finite, and (16) can 
be evaluated by means of (14). Thus 

Combining (16) and (17) gives, for the momentum 
eigenvalues, 

k' = mAr (-2 r + ~ _ 2E r OE) 
a 1 _ 2mApr2 PaP ok~ c2 p ok~ . 

(18) 

The first factor gives for the renormalized propagator 

r'= __ r __ 
1 - 2mApr2 

( 

2 E2 2mp )-1 
= - q - c2 - A q2 _ E2/C2 ' (19) 

which has a characteristic form for a field interacting 
with particles; the third term in the denominator 
results from the interaction and may be interpreted 
as the eigenvalue of a mass operator inserted into the 
wave equation (6). 
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The energy eigenvalue equation (9) gives With (18) and (25) we now obtain 

and 

[E*', U(q, E')] 

I. * oU = 1m (JE-
E .... E' oE 

(20) 

= (J;'Ar[~ + 2 (ka - Pa) oka - E
2
') prJ. (21) 

oE' oE' c 

Now combining (20) and (21) gives 

k oka _ mAr [~ 2(- oka _ E') rJ 
a oE' - 1 _ 2mApr2 oE' + Pa oE' c2 P , 

(22) 
which has the same form as (18). 

Equation (22) may be written 

Oka(k + 2mApp .. r
2 

) 

oE' a 1 - 2mApr2 

_ mAr (~ _ 2E' pr) 
- 1 - 2mApr2 oE' c2 ,(23) 

but taking the limit as ka -- k~ yields an identity. 
However, for dka/dE' = 0 corresponding to free
particle excitations or zero group velocity (for com
plex functions, dka/dE' = 0 requires also that 
dE' /dka = 0), consistent solutions of (18) and (23) are 
given by 

(24) 

which may also be written 

(25) 

obtained by equating the rhs of (23) to zero. In (25) 
the equilibrium density and propagator are taken 
either in the noninteracting system if Uo = 0, in which 
case r 0 = l/p2, or in the interacting system if Uo :F 0; 
in the latter case, Po = Po(p, q') = PoCk') - Po(p), the 
difference of the excited and ground state densities, 
and r 0 = (p2 - E~/c2)-1 and Eo is a function of the 
coupling strength [see discussion of Eq. (40)]. 

(26) 
so that 

q~ = - Pa[P/(P - gpo)], (27) 
where 

g = a;lpor~, ao = (217mA)-1, (28) 

ao is the 2-particle scattering length, g is a dimension
less renormalized coupling strength which is a func
tion of the initial values, and we have absorbed a 
factor 17-1 into A. Note that the sign of g now depends 
upon Po, which introduces the many-body effects, as 
well as upon the 2-particle scattering length ao so that 
the effective interaction may be attractive or repulsive 
depending upon the sign of a;1 Po. 

Writing P = Po + PI, we see that (27) becomes 

q~ = -Pa(l + g ) (29) 
1 - g + PI/PO 

and for PI/Po« I the term in parentheses becomes 
1/(1 - g) which gives an expansion in powers of 
g = I/aop, in agreement with the result obtained from 
perturbation theory.l [It can easily be shown that (27) 
does not diverge in equilibrium; see Eq. (40).] 

Now taking the limit of (24) as q -- q' gives 

E,2 2( P )2 P 
-=P +-
c2 P - gpo poro' (30) 

and with these expressions the new propagator 
becomes 

r' = lim lim r 
0 .... 0' E .... E' 1 - 2mApr2 

Po 
= roo (31) 

P - gpo 

Obviously, as P -- Po, also g -- 0 and r' reduces to 
the initial propagator. From (27), (30), and (31) it is 
evident that all of the new variables in the interacting 
system are obtained as functions of the renormaliza
tion factor p/(p - gpo). 

With q = 17 + iK, (27) gives, for real Po, 

, Re p(Re P + Po Re g) + 1m pOrn P - Po 1m g) 
(32) 17a=-Pa 

(Re P - Po Re g)2 + (1m P - Po 1m g)2 
and 

, 1m p(Re P + Po Re g) - Re p(lm P - Po 1m g) 
K .. = - P.. (Re P _ Po Re g)2 + (1m P - Po 1m g)2 

(33) 

so that the interaction range diverges as the coupling is switched off. 
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Now (25) evidently reduces the field U to the zero
order value Uo = Aporo; however, by integrating (16) 
with k' obtained from (26), we see that U equals Uo 
times a renormalization factor, which is a function 
of p, g, and the initial values, and equals r' times a 
constant. The field may now be obtained in the form 

U = Apr' 

= [p/(p - gpo)]Uo, (34) 

and from (30) we obtain also 

ro = (P2 _ E~/e2)-1 (35) 

[see discussion of Eq. (40)]. The new variables (30)
(34) are all functions of the renormalized coupling 
strength g and the final and initial densities. 

Finally, with (27) and (34) the Hamiltonian may be 
written as 

H(p) = £(1 - g2p~ 2) + Uo P ,(36) 
2m (p - gpo) P - gpo 

where p = p(k', E'), from (26) and (30), which gives 

(37) 

We now require that the Hamiltonian (36) satisfy 
the third eigenvalue equation (12) in the limits 
k--k' and E--E'. Thus 

lim lim [p*(k, E), H\k, E)] 
k-+k' E-+E' 

* oH\k', E') 
= (} p op(k', E') = 0, (38) 

so that we need to evaluate 

lim oH
t 

= gpo (p2 gpo _ Uo) 
p-+p' op (p' - gPo)2 m (p' - gpo) 

=~ 0~ 

which gives for the equilibrium density 

p' = gpO(p2 + Uo) 
Uo m 

= (1 + g)po (40) 

with the requirement that p -- Po as A -- 0; this re
quires that r 0 = p-2 in the limit so that Eo/e = 0 in 
the limit. Note that with (27), (34), and (37) one can 
verify that H is invariant under the inhomogeneous 
rotation operator 

1 + k*Vk = 1 + HSk + iLk)' (41) 

where Sk and Lk are defined by (7'b). 
And finally, using (40), we see that the equilibrium 

momentum, energy, and field become 

q~ = -p«(1 + g), 

E,2 l 1 
- = - (1 + g)2 + - (1 + g), 
2me2 2m 2mro 

and 
U' = (1 + g)Uo 

= (g/2mr 0)(1 + g) 

(42) 

(43) 

(44) 

so that Uo = g/2mr 0 and, since r 0 -- p-2 as A -- 0, 
we find that Uo = 0 in the zero coupling limit. The 
Hamiltonian now becom~s 

H = Ep - Ek + U' 
p2 g 

= - (1 -l) + - (1 + g), (45) 
2m 2mro 

so that we find the following relation, 

E,2 p2 E2 
- = - (1 + g)2 - _0 (1 - l) + H, (46) 
2me2 2m 2me2 

between the excitation energies and H. Note that the 
g(1 + g)/2mr 0 term in H appears as a function of the 
m2 eigenvalue in the expression for the excitation 
energy. 

As to the particle energies, particles in excited 
states obviously have kinetic energies k'2/2m = 
g2p2/2m, while those in the ground state initially have 
kinetic energies p2J2m. But the interactions between 
particles in excited states and antiparticles in the 
ground state and among particles in excited states and 
among particles and antiparticles in the ground state 
give rise to additional interactions which add terms 
to the initial kinetic energies. That is, the particles are 
"dressed" by short-range collective fields and interact 
also with the long-,range fields. We note, however, 
that Eqs. (42) and (43) give the momentum and 
energy levels of the field so that particles with 
g2p2/2m < V' or p2/2m < V' will occupy these levels. 
Hence, the energies and momenta of particles bound 
in the interacting system are given directly by (42) 
and (43). Moreover, if g is negative, all the levels 
E'2/2mc2 are less than the initial particle levels and, 
in this case, (43) gives the complete set of particle 
levels in the interacting system. This condition depends 
upon the relative occupation of the ground state 
and excited states, so that for no(p)/no(k') > 1 we find 
that g < 0, whereas for g > 0 we have no(p )/no(k') < 1. 
In the latter case the attractive potential between 
particles in excited states and the ground state and 
antiparticles in the ground state is less than the 
repulsive potential among particles in excited states 
and the ground state and among antiparticles so that 
the particle spectrum extends into the continuum. 
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The (l + g)2 term in (43) gives the renormalized 
kinetic energy and (l + g)/ro is an m2 eigenvalue 
resulting from the interactions. Since Uo < 0, we see 
that, in 

E,2 
&'=-- - U' 

2me2 

p2 2 1 + g g 
= - (1 + g) + -- - - (1 + g) 

2m 2mro 2mro 

= p2 (1 + 2g) + _1_ + g2E~ , (47) 
2m 2mro 2me2 

the g/r 0 terms cancel in (39) and (40) and the g2p2j2m 
terms cancel as well. The cancelled terms appear to be 
identified with long-range and short-range parts of the 
interactions; but U'is a functional of the distribution, 
whereas the long-range field is an average macroscopic 
field independent of the particle levels. Hence, we 
must assume that U' is just the average short-range 
field and the cancelled terms in E'2j2me2 are average 
values in each order. 

3. APPLICATIONS 

We consider now two problems of interest: first, the 
electron gas with arbitrary density and coupling 
strength and, second, the Bose gas under the same 
conditions. 

A. Electron Gas 

We consider electrons with Coulomb interactions at 
arbitrary density. With Eo/e = a;;\ which follows 
from considerations of Eo at zero group velocity, and 
with it = 47Te2, ao = fj2jme 2

, Po = pJrno(p, q'), and 
p = PF, we obtain for the coupling strength 

(48) 

where 'fJT = rzT + i{3T' rxT = ro(O)po(T) Re no(p, q'), 
(3T = ro(O)po(T) 1m no(p, q'),and 

Re no(p, q') = Re no(k') - no(p) 

is the difference of the Fermi functions for particles in 
excited states and in the ground state. We see that g 
is a variable coupling parameter proportional to 
(1 - ot2r:)-2 and with apparently a singularity at 
rzr. = 1. We find, however, that 

Po = PoCk') - Po(p) = 0 

at this point, since otr. = 1 requires that the den
sities in the ground state and in excited states be 
equal; that is, the excited state density is propor
tional to a;3 so that Po(k')/ Po(p) = a;3p;3 = rx3r: and, 
when rxr. = 1, it follows that PoCk') = Po(p). Since 

rxT ~ Re no(k') - no(p) III (48), it IS evident that 
rxT -- 0 as rxr. -- 1. 

With (42) we obtain 

qF = -PF(1 + 'fJTr. ), 
(1 - 1X2,~)2 

(49) 

and 

_ p~ 'fJTrs (1 + 'fJT'. ) 
- 2m (1 - rz2r~) (1 - 1X2r~)2 . 

(51) 

In the high-density region, (49) gives 

Req' = 7T' = -PF(l + IXT'.) (52) 
and 

Imq' = K' = -PF{3"r. , (53) 

which are the momentum eigenvalues for Coulomb 
interactions obtained in perturbation theory.3 Now 
(50) gives 

E,2 1 
Re -- = - (7T,t - K,2 - PF7T') (54) 

2mc2 2m 
and 

E,2 , 
1m --2 = ~ (27T' - PF)' 

2mc 2m 
(55) 

These results agree with perturbation theory1.3 also, 
except that the energy contains additional terms 
associated with the mass shift (1 + g)/r 0, which 
terms are not present in the perturbation theory of 
the electron gas. It is evident that these are to be 
associated with the hole states so that p~(l + IXTr.)/2m 
gives the renormalized energy of the hole states; 
moreover, these hole excitations decay in 'T = 2m/PFK' 
seconds, as the first term in (55) gives the decay time 
for electron excitations obtained in perturbation 
theory. Finally, the average field is 

Re U' = (2m)-1[7T'(7T' + PF) - K'2] (56) 
and 

1m U' = K'(2m)-1(27T' + PF)' (57) 

Equation (56) is a sum of attractive and repulsive 
potentials, with the latter evidently due to the finite 
effective radius of the electrons, whereas the attractive 
potential is associated with the oscillations of the 
distribution function. Obviously, U' is closely related 
to E'2/2me2 and differs from it only by the PF7T' term. 
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Hence we expect, as pointed out in the discussion of 
(47), cancellation of terms between the average 
contributions represented by U' and the particle 
excitation contributions represented by E'2/2me2. The 
ground-state values for the momentum and energy 
have already been discussed,3 except for the hole 
contribution, which adds 

-2.21 r-;2(1 - locol rs) Ry (58) 

to the electron energy. On the other hand, the field 
gives 

lim Re V' = - 2.21 1ocol (1 - locol rs) Ry, (59) 
T"'O rs 

where locol = ioc(t)t. Adding (54) and (59) gives 

2.21 r-;2(2 - 21ocol rs) Ry, (60) 

so that the total excitation energy is just the free
electron energy plus the 2-particle exchange plus the 
free hole energy. 

In the low-density region the interaction terms vary 
as ocTloc4r; and OCT > 0 corresponding to no(k')1 
no(p) > I, that is, more particles in excited states than 
in the ground state. At high density we find 

(61) 
and 

(62) 

which reduce to TT' = -PF and K' = 0 in the limit. 
Obviously, (61) and (62) represent the momentum of 
excitations having very weak polarization fields; the 
latter are seen to vary linearly with the density, since 
(ocrs)-3 = poa

3 where Po = (PF/OC)3. Hence, at low 
density the momentum contribution from the polari
zation .field decreases as Po. For the excitation energy 
we obtain 

Even at moderate densities, say r. = 10, the interaction 
terms in (63) contribute very small terms, except 
for the oc2r: term in (63), and also y' ~ O. The leading 
term gives, for ocr B » 1, 

= -0.60 Ry, (65) 

which can be taken as the total energy for the dilute 

gas. Finally, the average field in the high-density 
region is 

I p~ 1 [( OCT ) P;, ] Re V = - - - OCT 1 + - --
2m oc2rs oc4r~ oc6r! 

(66) 

and 

(67) 

Comparing (63)-(67), we see that the lowest-order 
interaction term in U' is of order r-;l; but this term is 
exactly cancelled by the last term in the excitation 
energy (63) so that, after the oc2r; term has already 
been calculated, the next-lowest-order term is of 
order r;3. Hence the total energy is nearly 

( -0.60 + 2.21 r-;2) Ry 

with the remaining terms of order r;5 and smaller. 

B. Bose Gas 

We consider boson interactions near the stationary 
limit. With a(jl = E1POa2 , where E1 is obtained from 
the 2-particle scattering length, p~ = Re [Po(p) -
Po(k')], and Eole = a;l, we find that 

R 
E2(poa3)!(1 - b/a) 

e g = (68) 
(1 - EaPoa

S)2 

where E2 = E1nO(p), E3 = EL b = a, Re no(k')/no(p) is 
the scattering length for attractive interactions, Po(p) 
and Po(k') are the densities of particles in the ground 
state and in excited states, and a factor (4TT)! has been 
absorbed into E1 . In obtaining (68), we have evaluated 
P in the noninteracting ground state; that is, Po = 
(4TTPoa)!, where a is the hard-sphere diameter, since 
ro is the initial propagator. From (42) we obtain, 
for the real momentum, 

Re q' = TT' = - p(l + Re g) 

= -(4TTpoa - 4TTPob)t 

X (1 + E2(poa
3
)t(1 -3 b!a») , (69) 

(1 - E3POa ) , 

valid for b < a. In obtaining (69), we have added to 
(42) a zero-order term for attractive interactions; 
that is, we take p = (4TTpoa - 4TTPob)t in order to 
account for the "depletion" effect in the ground 
state. In the case of no excited states, (69) gives, for 
hard-sphere interactions, 

TT~ = -(4TTPoa)t(1 + E2(poa
3
)ts 2) (70) 

(1 - E2POa ) 

and, for poas « 1 and with E2 = 128/3OTTt, we obtain 
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for the new kinetic energy a result from perturbation 
theory found earlier.4.5 However, it is doubtful that 
this is the correct coefficient. It certainly is not at 
He II densities, for which the first-order perturbation 
term is of the order of the zero-order term; thus, at 
He II density, poa3 is of order 0.35 so that 12S(Potr)!1 
301T! is larger than the zero-order term. 

The appearance of 1 - bla in the interaction term 
(the attractive term appears also in the interaction 
term obtained from self-consistent perturbation 
theory) is justified by the case of dilute-gas interactions; 
as a - 0, corresponding to point sources, there can be 
no interactions unless the (b/a)(potr)t term appears. 
Evidently, b < a corresponds to less particles in 
excited states than in the ground state. But, for this 
condition, momentum is added to the initial particle 
momenta, and energy minimization requires that 
b = a. In the limit b = a, we get 1T' = 0 corresponding 
to equal attractive and repulsive interactions. For 
exact equality of particles in excited states and in the 
ground state, the attractive and repulsive interactions 
cancel, all excitation momenta are zero, and only the 
long-range collective excitations can occur. This is 
evidently the condition for the existence of the super
fluid state, and it clearly requires that the densities 
in both states be equal, a result found already by 
Parry and ter Haar6 and observed in the region 
T::;; T;..7 Further, it is to be expected that no short
range collective excitations occur at T = 0 so that 
/(' = 0; e.g., the interaction range remains infinite. 
In the normal state, however, one would expect 
screening and finite-range effects, since it has been 
established that these control the density and would 
act to maintain equal densities in the superfluid and 
normal states at finite temperature. In this picture, 
one must regard the superfluid current as resulting 
from the long-range collective excitations associated 
with equality of the densities. 

The apparent singularity as E2POa3 
- 1 corresponds 

to close packing in the ground state and, therefore, 
to no interactions in the ground state. No singularity 
occurs, however, since bla = 1 in the limit, because 

PoCk') 1 3( 3)t 
-- f'-J -- = El poa , 
Po(p) (aop)S 

so that for E2POas = 1 we find a = b. 
The interaction range r' is obtained from 

where 

K' = -pImg 

= [Ezpoa2f(1 - EspoaS)2] 1m no(k'), 

(71) 

(72) 

which for poa3 « 1 also gives the perturbation theory 

result, and 

1m no(k') = -z sinyf(z2 - 2z cos Y + 1), 

Re no(k') = (z cos y + 1)/(z2 - 2z cos Y + 1), (73) 

and 

y = /(' ao1 Re no(p, q')lmKT, 

z = exp [(Ret! k' - Im2 k' - p,)!2mKT] (74) 

are obtained from the Bose distribution for complex k. 
Thus 1m no(k') is an oscillating function of the tem
perature and interaction parameters. It can be shown 
that 1m no(k') = 0 at zero temperature and no 
screening occurs in the ground state as expected. In 
the normal fluid, however, we expect the thermal 
motions to be screened by short-range collective 
excitations with ranges obtained from (72). 

The phase of the short-range collective excitation 
can be determined from (73) and (74) from the con
dition of equal densities and z = 1. Then 

y = [2E1POa(41TPow)! log 21mKT)t (75) 

and thus 

(76) 

so that 

1m g = no(p) (2mE1aKT log 2)t, 
(1 - Espoa3)2 (41TPoa)t 

(77) 

Finally, 

I no(p) [ ( 3 t ! 
K = - 3 2 41TE1 poa /1T) mKT log 2] , 

(1 - ~3POa ) 
(7S) 

and the interaction range varies as T-t. With Po = 
2.1022/cm3 and a = 2.6 A, we obtain for the interac
tion range 

r' = S.6r-! A. (79) 

From (73) and (74), we can also estimate T;. from 
the condition of equal densities, which in the inter
acting system corresponds to the Bose-Einstein 
transition in the nonintera.cting system. Thus (73) 
gives 

(1 + cos y)!(l - cos y) = 1 (SO) 

or cos y = O. This gives 1m no(k') = -! and 

so that 

I (k') _ 1 _ ymKT;.ao 
mno - -11" --

Po 

( 
2mKT;. Jog 2 )! 

= 31" ' E1Poa(41Tpoa ) 

T;. = .! EIPOa(41TPoa
3
)t 

8 mK log 2 

= 2.1°, 

(81) 

(82) 
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with the proportionality constant El equal to 2.8. 
This latter value is obtained from a(j'"l = E1poa2, where 
ao is the 2-particle scattering length, which we have 
taken to be 2.6 A. While this value is about 15 % 
higher than the observed distance of closest approach 
from neutron scattering, the observed value of 2.27 A 
gives values of T;" T I., and Troton ' which are all con
sistently in error by at least 15 %. On the other hand, 
the 2.6 A value yields estimates within 4 % of T;" 
within 8 % of T "', and within 11 % of Troton • 

The energy eigenvalues obtained from (43) and 
(44) are 

E,2 p2 
Re - = - [(1 + Re g)2 - 1m2 g] 

2mc2 2m 

+_I_(I+Reg) 
2mro 

= 27T(poa - pob)[(1 + E2(pOa
S
)t(1 - b/a»)2 

m (1 - Espoa
S)2 

n~(p) 2mEl aKT log 2 

(1 - Espoa
S)2 (47TPoa)t 

+ (1 - E a3)(1 + E2(pOa
S
)t(1 - b/a))] 

3PO (1 3)2 - E3POa 

and 

E,2 p2 1 
1m - = - (1 + Re g) + -- 1m g 

2mc2 m 2mro 

27T(poa - Pob) = -
m 

x [(1 + E2(pOa
3
)!(1 - b/a») 

(1 - E3POaS)2 

(83) 

+ no(p) (2mE l aKT log 2)h. (84) 
(1 - Espoa3) (47TPoa)! , J 

(83) has the form of Landau's dispersion equation in 
the roton region with 

which is obtained at the minimum for the kinetic 
energy [see Eq. (83)]. With E~/p2 « 1, this gives 

T = 27TPoa(1 El(poa
3
)!) 

6 + 32 
m (1 - E3POa ) 

= 8.2°, (86) 

with El' Po, and a as in the previous calculation. 

For the average field we find 

and 

, Re g 1 
Re U = -- (1 + Re g) - -- 1m2 g 

2mro 2mro 

= 27T(poa - POb)[E2(Poa3)!(1 - b/a) 

m 1 - Espoas 

X (1 + E2(poa
3
)!(1 - b/a») 

(1 - E3POa3)2 

_ n~(p) 2mEl aKT log 2J 

(1 - E3pOaS)2 (47TPoa)! ' 

1 
1m U' = -- [1m g(l + 2 Re g)] 

2mro 

m 1 - Espoa3 

X (2mE2no(p)aKT log 2)t 
(47TPoa)! 

(87) 

X (1 + 2Elpoa
S
)!(1 - b/a») (88) 

(1 - Espoa3)2 

gives the decay time for the field. 
For b = 0, Eq. (83) gives the excitation energy in 

the hard sphere case· and, for b :F 0, the excitation 
energy with attractive interacti~ns. At low density, 
(83) is in agreement with earlier calculations6•7 for the 
particle energies, except that additional terms appear 
due to the presence of b in the first-order interaction 
term. These appear also in the perturbation· theory 
result obtained from self-consistent field theory and 
are to be associated with particles in excited states. 

The decay time given by (84) is that for particle 
excitations, that is, for the noninteracting bosons 
plus their short-range polarization fields, whereas 
1m U' in (88) gives the decay time for the average 
field. 

The first term in (84) is of the form 7T' K'/m, where 
7T' and K' are given by (69) and (72). Thus, at low 
density, y' varies as T!, which is the same dependence 
obtained by Parry and ter Haar6 from the Brueckner
Sawada theory and observed by Larsson and Otnes.s 

Thus (84) gives 

m 
Troton = p2(1 + Re g) 1m g 

- ~[(1 + E2(poa
3
)! ) 

27Tpoa (1 - Espoa
3)2 

X no(p) (2mElaKT log 2)h-l (89) 
(1 - Espoa

S)2 (47TPoa)t I J 
so that, at poa3 « 1, Troton "" r-t and no(p) con
tributes an exponential factor which, for a Boltzmann 
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distribution, is the factor obtained by Parry and 
ter Haar.6 However, at He II densities, poa3 « 1 does 

dy oH 
(A7) 

not hold, and the strong coupling factors (1 - €3Poa
3)2 and 

contribute significantly. With the strong coupling 
factors included, (S9), in fact, gives 

[I', H] = dt = ow' 

[E H] = 2i oR = dE 
, oE* dt' 

(AS) 

7"roton = 6.7 X 10-12 sec 

at T = I.So and is to be compared with the value of 
6.10-12 secs obtained by Parry and ter Haar6 and 
Larsson and Otnes.8 Near the dispersion minimum, 
however, we find that 1 + Re g = 1m g so that 
7"roton ,...., T-1 and, with the strong coupling factors 
included, 7"roton = 5.10-11 sec. 

Finally, we should note that, with the interacting 
density p' given by (40), we are able to calculate the 
expectation values of the remaining observables by 
means of the familiar formula 

X' = f d3x Xp'(X), (90) 

where X is an operator corresponding to an observable 
in the noninteracting system. 

APPENDIX: CANONICAL COORDINATES 
FOR SEVERAL VARIABLES 

With k = P + iq, we have for the classical case 

dp oH 
[p, H] = dt = - oq , (AI) 

dq oH 
[q, H] = dt = op , (A2) 

and 

(A3) 

The second equality in (A3) is obtained with 

p = t(k + k*), q = -tiCk - k*), (A4) 
and 

2 ~ = 2 dp i + 2 dq i. (AS) 
ok* dk* op dk* oq 

Using the fundamental quantum conditions and 
h = 1, we see that the rhs of (A3) becomes just 
CTkOH/ok* = dk/dt, where CTk is a constant. 

Now consider H as a function of E = w + iy. Then 

dw oR 
[w, H] = di = - 01' , (A6) 

and, again using the quantum conditions, we see that 
the rhs becomes CTEOH/oE* = dE/dt, where CTE is a 
constant. 

With 

dw = dw dp + dw dq 
dt dp dt dq dt 

dwoH dwoH 
= dp oq - dq oq , (A9) 

we find the operator canonical to w is given by 

o dw 0 dw 0 -=-----
01' dq op dp oq 

(AIO) 

and, with an expansion for dy/dt similar to (A9), we 
find 

o dy 0 dy 0 
-=-----
ow dp oq dq op 

(A 11) 

In general, for any variables z(p, q) = Z1(P, q) + 
iz2(p, q), the operators canonical to Z2 and Zl are given 
by 

o OZ2 0 OZ2 0 -=-----
OZ1 op oq oq op 

---+ i[q, Z2] ~ + i[p, Z2] ~ 
oq op 

(AI2) 

and 

o OZI 0 OZ1 0 -=-----
OZ2 oq op op oq 

---+ -i[p, Zl] ~ - i[q, Z1] ~, 
op oq 

(A13) 

where the second lines of (AI2) and (A13) are obtained 
from the fundamental quantum conditions applied to 
the classical brackets. 
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First, for a classical discrete approximation to the Heisenberg ferromagnet, in a Euclidean space of 
dimension 2k where k is a positive integer, the correlation is nonnegative and a monotonic increasing 
function of interactions. Second, for the quantum mechanical Heisenberg ferromagnet itself, the corre
lation is nonnegative but not necessarily a monotonic increasing function of interaction. Both results allow 
for long-range interactions. Third, a family of inequalities on the number of connected components in 
graphs is deduced. 

1. INTRODUCTION 

Griffithsl - 3 has shown that, for Ising ferromagnets 
of arbitrary spin, the correlation is nonnegative and a 
monotonic increasing function of the interactions. It is 
natural to enquire whether the corresponding assertion 
is correct for the Heisenberg ferromagnet and its 
various approximations. 

One such approximation is the classical discrete 
Heisenberg model in which the spin vector can take 
only the directions ±xi , i = 1, ... , d, where the Xi 

are mutually orthogonal unit vectors in a d-dimen
sional space. In Sec. 2 of this paper, the monotonicity 
of correlations is proved for the cases d = 2k by re
placing the problem by an equivalent ferromagnetic 
Ising model and using the results of Ref. 4. In Sec. 3, 
this result is obtained by using a combinatorial formu
lation. A further extension to the case where an ex
ternal magnetic field is present is given, using both 
approaches, for d = 2. The question of the mono
tonicity of correlations for the case where the spin is 
2 dimensional and is approximated by eight equi
spaced unit vectors remains open, as is the case with 
all extensions which replace 2d directions of spin by a 
larger but finite number. 

For the case of the quantum mechanical Heisenberg 
ferromagnet, the correlation is shown to be nonnega
tive and, by means of an example, not necessarily a 
monotonic increasing function of the interaction. 
These questions, which are dealt with in Sec. 4, were 
raised by Dyson5 simultaneously but independently of 
the current investigation. It may be that, for interesting 
subclasses of quantum mechanical Heisenberg ferro
magnets, the monotonicity holds, but that question is 
not settled here.6 

2. THE CLASSICAL DISCRETE HEISENBERG 
MODEL 

Let N = {I, 2,· .. ,n} be a collection of spin 
locations. At this stage, there is no assumption of 
dimensionality. Now choose a real Euclidean space of 
dimension d and fix a complete orthonormal set 
{Xl' ..• ,xd} in this space. Let D = {Xl' .•• , Xd-, 

-Xl' ... , -xd}. The spin a is a function from N to 
D and, therefore, for j E N, a j E D. Let the Hamil
tonian of the system be 

H = - I Jiiai • ai' 
i<j 

withJii ~ 0, because we are considering ferromagnets. 
If A = {i,j}, then let (fA = a i • a j , so that 

H = - I JAa.d., 
#A=2 

with JA ~ 0. In the rest of this section, A, B, and C 
(with or without subscript) stand for 2-element sub
sets of N. We wish to establish 

First proceed as in KS, utilizing its notation without 
additional comment. The partition function of the 
system is 

Z = I ... ~ exp I J Aa.d., 
a I "nED A 

Consider 
~ ... ~ a.d. 1 ••• a.A.k. (2.1) 

GleD fineD 
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If Ar = {i,j} and, for spin configuration 0, aA , = 
OJ • OJ = 0, then the summand aAl ••• aAk with aA , as 
a factor vanishes. 

From this, it follows that a spin configuration which 
yields a non vanishing contribution to (2.1) must be 
such that, if the A are considered as edges of a graph, 
then on each connected component (henceforth, just 
component), which may be an isolated vertex, the 
spins are all in the same or directly opposite direction, 
e.g., on one component the spins are all horizontal 
while on another component all the spins are vertical. 

Let ft be a multiplicity function on the A in the sense 
of KS. Let yCft) be the number of components of the 
graph formed by taking the complete graph on the 
vertex set N and deleting those edges A such that 
ft(A) = O. Note that the isolated vertices in the 
resulting graph contribute to the count of components. 
From the above considerations, we obtain 

and 

SinceJij ~ 0, wehaveJ" ~ 0, Z ~ O,and(aR) ~ O. 
Thus, in a classical discrete Heisenberg ferromagnet 
where the spins are d dimensional, the correlation is 
nonnegative. It should also be noted that, when d = I, 
the expansion for Z, etc., corresponds to the classical 
Ising-model results as given in KS. 

Just as in KS, the monotonic increasing character of 
(aR ) as a function of J 8 is equivalent to 

If one normalizes by multiplying both sides by Z2, 
one can investigate whether, for each fl such that 
~ft = R~S, the coefficient of J" on the left-hand side 
dominates the coefficient of J" on the right-hand side, 
as in KS. This reduces to 

dY(V)+Y("-V+l{B}+l{S}) dy (v+l{R})+Y(/l-V+l{S}) 

! ~!-----
O:S/l v! (fl - v)! 0:S" v! (fl - v)! 
Av~'" Av=R 

(2.2) 

As in KS, it is sufficient to establish (2.2) for the case 
fl ~ 1. If both sides of (2.2) are multiplied by fl! , the 
factors fl!/v! (fl - v)! represent the number of ways 
the choices of v could be made if each unlabeled edge 
A were replaced by fleA) labeled edges, so that in the 
configuration with labeled edges the multiplicity is at 

most one. For this case, (2.2) becomes 

.Y dy(v)+Y{"-O+1{B}+1{S}) ~ .y dy(v+1{li}>+y(,,-v+1{8}). 

v:S" 0:S" 
40=4> 4v=R 

(2.3) 

A direct proof of (2.3) for the case d = 2k, fl(R) = 
ft(S) = 0 is given in Sec. 3. By departing from the 
previous convention on fl, this case can be formulated: 
fl ~ 1, ~fl = rp, and ft(R) = ft(S) = I imply 

.y dY(v)+y(,,-v) ~ .y dy(o)+Y(Il-v). (2.4) 
0:S". Av=4> v:s".4v=4> 

v(R)=v(8)=0 v(R)=I.o(8)=0 

An indirect proof of (2.2) can be given for d = 2. 
However, this involves first proving the monotonicity 
of correlations as functions of the interactions. The 
proof required here uses an idea from Mills' thesis, 
which ultimately derives from Potts. 7.8 Consider an 
Ising model with the set NI = {I, 2, ... ,2n} of spin 
locations, with interactions Kij such that 

1 ~ i sj ~ n ~ Kii = Kn+i •n+j = Vii' 

i ~ n < j or j S n < i ~ Kij = O. 

Of course, the Hamiltonian is 

H = - .y Kijaia i . 
i< i 

This Ising model consists of two classical Ising 
models which are replicas, have internal interactions 
! that in the classical discrete Heisenberg model we 
have been studying, and do not interact with each 
other. With each a: NI -+ { -I, I} associate a 0: N -+ 

D as follows: 

0 1 = (Ha. + aMi), Ha, - an+i»' 

Note that this assignment yields 

0i • OJ = H(ai + an+i)(aj + an+i) 

iEN. 

+ (ai - an+i)(aj - an+;)] 

= Haiaj + an+ian+;)·. 

Thus, the Hamiltonian for a particular a in the Ising 
model is equal to the Hamiltonian for the correspond
ing 0 in the classical discrete Heisenberg model. Thus, 

(Oi • OJ) = !«aia;) + (an+ian+j ». 
Since both terms on the right-hand side are monotoni
cally increasing functions of any Krs ' the term on the 
left is a monotonically increasing function of Jr.' 
This result also holds in the strong sense of KS, so 
that (2.2) and, in particular, (2.3) follow for the case 
d= 2. 

For the case d = 2\ we note that there are 2k+J 

different spin states at each spin location. Accordingly, 
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we consider an Ising model with the set N k = {I, 
2, ... , (k + I)n} of spin locations. We define pro
jection operators 

k 

P Li = 2-k II (1 + (-1)L1
0'l1l+i)' 

1=1 

where L = {LI' ... , L k } and L, = 0, 1. There will be 
a unique operator PLi corresponding to .each of ~he 
directions Xl' ••• , Xd for d = 2k. The eqUIvalent Ismg 
Hamiltonian is defined as 

H=- 2 JiJ20'iO'jPLiPLj, (2.5) 
l:5i<i:5n L 

which, when expanded, is a ferromagnetic Hamil
tonian of the type considered by KS. In particular, 

a i • ai = O'IO'i 2 PLiPLi 
L 

is a sum of terms of the form aAiO'A, considered in KS, 
where A· = i + S, S is a subset of {O, n, 2n, ... ,kn}, 
A· = j -+- s, and all terms have coefficient 1 or o. 
Hence, the results of KS may be used immediately to 
demonstrate the monotonicity of correlations and, 
hence, the inequality (2.3). For the case k = I, we 
have 

a i • ai = to'iO'j[(l + O'n+i)(1 + O'n+i) 

+ (1 - O'n+t)(l - O'n+i)]' 

= H O'iO',. + O'iO'n+iO';O'n+")' 

and, if we redefine O';O'n+i as O'n+i, we recover the ex
pression already employed for d = 2. 

The effect of an external magnetic field can be 
easily incorporated. If we add to (2.5) a term 

-2 HiO'iPLo;' Hi ~ 0, 
i 

where Lo = {O, 0, ... ,O}, we can include the effect 
of the external field. This additional term is also of the 
type considered by KS, because all coefficients are 
ferromagnetic. Hence, Griffiths' theorems apply to 
this case also. 

3. COMBINATORIAL APPROACH TO THE 
CLASSICAL DISCRETE HEISENBERG 

MODEL 

The quantity y(p,) introduced in Sec. 2 is a familiar 
quantity in topology, and is, in fact, the simplest 
Betti number9 R~. There exists a well-known relation 
between R2 and R~, which is what is usually known as 
the cyclom~tic number m(p,) for a graph p,. The relation, 
which is a particular case of the Euler-Poincare 
relation, is stated as follows. Let rxO be the number of 
vertices of a graph and rx1 the number of edges. Then, 

(3.1) 

or, in the notation usually used in graph theory, 

y(p,) = rxO - (Xl + m(p,). (3.2) 

In particular, for the graphs v and p, - v considered 
in Sec. 2, we have 

y(v) = n - (XI(V) + m(v), 

yep, - v) = n - (Xl(p, - v) + m(p, - v); 
thus 

y(v) + y(p, - v) = m(v) + m(p, - v) 

+ 2n - #{A :p,(A) > O}. 

If we multiply both sides of (2.4) by d -2n+#U:I'(A»O}, 

we obtain the equivalent relation 

2 dm(vl-t-m(/l-V) ~ 

.:5/l. lJ.'=41 
v(R)=v(S)=O 

2 dm (v)+m(l'-v). 

.:51'. lJ.v=41 
.(R)=1. v{S)=o 

(2.4') 

Theorem A: 2m(v)+m(/l-.) is a positive definite func
tion of v. 

Proof: Let G ~ {v ~ p,:Av = 1>} be the group of 
cycles of p,: 

Ga. ~ {p:Ap = 1>, A (p (l rx) = r/>}, V rx E G; 

then 
2 XGa.(v) = #{rx:v E G,,} = 2m(v!+m{II-.I, (3.3) 

",eO 

where XA is the characteristic function of A. Since the 
characteristic function of a closed subgroup is always 
positive definite, Theorem 1 follows. 

Corollary AI: For any positive integer k, 
2k[m(vl+m(/l-v)] is a positive definite function of v. 

The application of Corollary 1 yields (2.4') for the 
case d = 2k. 

In order to extend this type of argument to the case 
where an external magnetic field is present, we intro
duce a ghost state Go = Xl' and let the index set N be 
augmented to 

N D~ NU {O}. 

The quantity yep,) is now defined by first considering 
the graph with the vertex set N and the edge set 
{A :p,(A) > O} U {R} and then by counting the number 
of connected components not touching 0, where iso
lated vertices other than 0 are counted as connected 
components. This is because any connected compo
nent which touches 0 is counted only once, instead of 
d times, because all spins in this component must be 
parallel to Xl' Griffiths' I Theorem 1 is trivial, as before. 
For Griffiths' Theorem 2, it is necessary to establish 
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the desired inequality (2.4). We use the relative homol
ogy theory and the Euler-Poincare relation for K -
L, where K = graph (complex) with edges {R} U 

{A: yeA) > O} and vertices Nand L = {O}, the com
plex consisting ofthe single vertex {O}. In this language, 
we replace y(v) + y(ft - v) by R~(v, L) + R~(ft - v, 
L) and then, following Lefschetz,9 replace this by 
R~(v) + R~(ft - v). The argument then follows as 
before. 

In this section and the preceding one, we have been 
concerned with establishing (2.3), or its equivalent, 
(2.4), for the case ft(R) = ft(S) = O. As an example, 
we now consider another case, where !1ft = R!1S and 
ft ~ 1. In particular consider the case ft(R) = 1 and 
ft(S) = O. The analog to Eq. (2.4) is that 

2 5 

3 4 
FIG. 2. ft of (3.4). 

while 

{i:v(Ri) = I} even 

:::;.!1v = !1(v I ({A:A c N}",{R}». 
!1ft = cp, ft(R) = 2, ft(S) = 1, ft(A) ~ 1, 

V A ~ R, Note that!1il = cp, since!1ft = R!1S. Now the validity 
of (2.3) in the case where !1ft = R!1S, ft(R) = 1, and 
ft(S) = 0 is implied by the validity of 

imply 

! dY(v)+Y(p-v) ~ :2 dY(p)+y(p-v). (3.4) 
V~Jl V'SJJ 

4V=4> 4V=4> 
v(R)5l v(R)~l 
v(8)=0 v(8)=0 

This can be reduced to the previous case as follows. 
Introduce symbols Rl and R2 to replace R, thus 
replacing an unlabeled edge by two labeled edges. The 
appropriate multiplicity function ft is now less than 
or equal to 1. 

Define ill ({A:A c N}",{R}) U {R]} U {R2} QY 

ill ({A:A c N}",{R, S}) = ft I ({A:A c N}",{R}) 

U {R1 } U {R2} 

and il(R1) = il(R2) = il(S) = l. For all v ~ il, let 
!1v be a subset of N defined by the action of !1 as a 
boundary so that !1R; = R, j = 1, 2, and 

{i:v(Ri) = I} odd 

:::;. !1v = R!1(!1(v I ({A:A c N}",{R}» , 

2 5 

3 4 
FIG. 1. ft of (2.3). 

:2 dY(v)+y(fo-v ) ~ 

v5p 
4V=4> 

(fo-v)(R2)=l 
(,,;-v) (8)=1 

:2 dY(V)+Y(fo-v ). 

v5p 
4V=4> 

V(R2)-l 
(,,;-v)(8)=1 

This last follows from (2.4). 

(3.4') 

Example 1: N = {I, 2, 3,4, 5}, R = {4, 5}, and 
S = {2, 3}. ft [of (2.3)] takes the value 1 on {I, 2}, 
{I, 3}, {4, 5}, and the value 0 on all other subsets of 
N. !1ft = R!1S, ft ~ 1, ft(R) = 1, and ft(S) = O. Let 
d = 2. (See Fig. l.) ft [of (2.4); see Fig. 2] takes value 
1 on {I, 2}, {I, 3}, {2, 3}, but it takes value 2 on {4, 5} 
and value 0 on all other subsets of N: 

!1ft = cp, ft(R) = 2, ft(S) = l. 

il [of (3.4'); see Fig. 3] takes value 1 on {I, 2}, {l, 3}, 
{2, 3}, {4, 5}1, and {4, 5h, but value 0 on all other 
subsets of N: 

2 

FIG. 3. ft of (3.4). 

\ 5 
\ 
\ 
\ 
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I 

: {4.5}2 , , 
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On the left-hand side of (3.4), there is only one v: 
v\hs = 4>. Thus, 

Jhs = 21 (<J>}+1(/l) = 25+2 = 27, 

On the right-hand side of (3.4), there is only one 
'1': 'Prhs = 2(1 (R}) and 

rhs = 2y(2(1{R}»+Y(1l-2(1{p}», 

= 24+3 = 27. 

Since 27 ~ 27, Eq. (3.4) is satisfied. 
On the left-hand side of (3.4'), there is only one 

'1': 'Prhs vanishes for all "subsets" of N, 

Ihs = 2y(q,}+y(Jl) = 25+2 = 27. 

On the right-hand side of (3.4'), there is only one 
'1': 

DrhsC{4, 5h) = 'PrhsC{4, 5h) = I, 

but lIrhs vanishes for all other "subsets" of N: 

Since 27 ~ 27, Eq. (3.4') follows. 
While only the case p. S 1, !J.p. = R!J.S, p.(R) = 1, 

and ft(S) = 0 has been analyzed, similar considera
tions apply to the remaining two subcases of p. ~ 1 
and !J.ft = R!J.S as well as to the general case where 
p. ~ 1 is relaxed. 

4. FERROMAGNETIC HEISENBERG MODEL 

In this section, we are concerned with the question 
of whether Griffiths' Theorems 1 and 21- 3 can be 
extended to the quantum mechanical ferromagnetic 
Heisenberg modeL It is shown that Theorem 1 can be 
extended if we restrict ourselves to binary interactions 
even When an external magnetic field is present, but 
that Theorem 2 is not true in general. 

For this model, the appropriate expressions for the 
partition function in the absence of an external field is 

Z = Tr (exP!Ji;oi' OJ), (4.1) 
i<j 

where the 0i' i E N, are a collection of Pauli spin 
matrices satisfying the usual commutation and anti
commutation relations: 

[(J'il' , (J' ;111- = 2ic5i;E:l'QT(f;. , 

[O'il" (J'iq]+ = 26l'Q' (4.2) 

The correlation functions (Ok' ( 1) are defined, as 
usual, by 

(Ok' at) = Z-l Tr (Ok' 0z eXPi~/ii( 0i' 0;») 

= Z-l oZ = o(log Z) . 
OJkl OJkl 

(4.3) 

It is co~venient to add a constant to the exponent 
in (3.1) which will not alter (Ok' (1), so that (4.3) may 
be replaced by 

(Ok' at> = Z*-1 Tr (Ok' 0l exp,~/ij(l + 0t' OJ)), 

(4.4) 
where 

Z* = Tr (exPi~/iJ(1 + 0t' OJ)). (4.5) 

In the presence of an external field, (4.1) is replaced 
by 

Z = Tr (exPi~/ijOi' OJ + ~ HiO'iS)' 

and we have 

(4.6) 

(Ok) = Z-l Tr [Ok exp C~/ijOi' OJ + t HiO'i') J 
(4.7) 

We immediately find that 

because 
«J'k;c) = (O'k'll) = 0, 

<(1k$,~) 

= Z-l Tr [IT (J'/z(J'kX,lI 
(=1 

X exp (!JOOi ' OJ + ! HiO',z) IT (J'IZ] 
j<j i 1=1 

= _Z-l Tr [(J'k'l),VeXP C~/ijOi' OJ + t HiO'i') 1 
= -«(1k'X,y/. 

On the other hand, 

«(fk,,)H, = Z-l Tr [IT O'I'JO'kz 

X exp (IJijO i ' OJ + ~ H;(1;.)' Ii: (fIll] 
i<; i /=1 

= _Z-l Tr [O'bexP C~/iiOi' OJ - f Hi(J'i.) ] 

= -(O'b/-Hi' (4.8) 

If we introduce a ghost spin 0 0 with corresponding 
state Iso> and use the preceding results, we can write 
(4.8) as 

(O'k.) H i = lZ-l Tr [( O'kx(fOIC + (1k'll(J'Oli + (1k.O'O.) 

X exp C~/iJOi . OJ + f HiO'i.(10.) J. (4.9) 

where Tr ( ... ) is taken over Iso) as well. A further con
venient change is to replace 0' •• (10. in the exponents of 
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the numerator and denominator by (1 + aiZaO.). We 
can now assert that Griffiths' Theorem 1 is 

Theorem 1: 

(Ok· 0l) ~ 0, 0:::;; k, I:::;; n, (4.10) 
ghost 

where the average is taken with respect to Z;host, 

which is given by 

Z;host = Tr [exp C~/i;(l + 0i • OJ) 

+ + JOi(1 + aiZaoZ») 1 (4.11) 

where JOi = Hi. Equation (4.10) states that the 
correlations and mean spin are nonnegative. 

The second theorem refers to the sign of the deriv
ative of the correlations with respect to the bond 
energies. We have 

a2
(log Z) = Z-1 ~ _ Z-2 aZ aZ 

aJklOJrs oJk!oJrs aJk! aJrs 

aJk!aJrs 

(4.12) 

For the case of the Ising model and the classical dis
crete Heisenberg model, it has been shown that the 
expression (4.12) is positive and that this implies 
the monotonicity of the correlations. This result has the 
important consequence that a simple proof of the 
existence of a phase transition can be constructed for 
models with long-range bonds in an arbitrary number 
of dimensions, once it is known that a phase transition 
exists in a sufficiently simple case. Unfortunately, for 
the Heisenberg model, it is not known rigorously 
whether a phase transition exists even for very simple 
cases, nor, as will be seen from the content of the next 
theorem, even if a simple case with a transition is 
known, that a transition exists for more complicated 
cases. We show the following result. 

Theorem 2: 

a2
(log Z;host) 0 . j: 
aJklJJrs 

in general, even when all Jkl ~ o. 
Proof of Theorem 1: If we define 

Pkl = HI + Ok· 01), (4.13) 

it is well known from Dirac's work10 that the Pk ! have 
the same algebraic properties as the set of transposi
tions of Sn+l, the symmetric group on n + 1 objects. 

Hence, a representation of 0i is also a representation 
of transpositions. With the interpretation of 0t as spin 
operators, this representation is 2nH dimensional. 
A typical basis vector in this representation can be 
written as ISos1s2 ... SN), where the Si = ± 1 are the 
eigenvalues of the operators aiz , i E N + 1. Such 
vectors form a complete orthonormal system with the 
usual unitary metric. In this basis, we have 

Pkl Iso· .. Sk ... SI ... sn) = Iso· .• S, ... Sk ... sn), 

(4.14) 

so that the matrix element of Pk ! will be 1 or 0 only, 
and in each row and column of this matrix there will 
be only one nonzero entry. 

We also define the projection operators 

(4.15) 

which have the following properties: 

Qklso·· ·Sk···) = ISo···sk· .. ), if So =Sk, 

and 
= 0, if So ¥= Sk, 

Pk!Qk = Q'Pkl> k, I ¥= 0, 

PkOQk = Q~kO' I = o. (4.16) 

Qk has the effect of locking Sk to SO, and is diagonal in 
the basis chosen. 

If we expand the exponential in (4.11) as a power 
series and use (4.16) to move any factors Qk to the 
right, we obtain 

Z;host = ~ C,.+v Tr (IT Qa IT Pbc IT Q), (4.17) 
v " v 

where the C,.+. are positive coefficients and the prod
ucts IT" and IT. are taken over fl and 'jI terms, respec
tively. We have also used the properties of the trace to 
insert a factor IT. Qa on the left-hand side. Because the 
operators Pbc are noncommuting, the product IT" Pbc 
is some permutation operator whose form depends on 
the order of the factors. It is clear from the preceding 
remarks that Tr ( ... ) ~ ~ and, hence, that 

Z:bost > O. (4.18) 

Therefore, Theorem 1 will be proved if we can show 
that 

where 

and 

Tr (Q.(2Pkl - l)P"Q.) ~ 0, 

Q. = II Qa, P" = II Pbc , 

v " 

0:::;; k, I:::;; n. 

(4.19) 

A cyclic permutation (m ... m' ... m") is said to be 
tied to 0 if, for at least one index in the cycle, say m', 
the projection operator Qm' appears in Q •. 
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Lemma: If P,.. E S,,+1' then, in the 2"+1-dimensional 
spin representation, 

Tr (Q.P,..Q.) = 2ml+m.+"+mn+1, 

where mv is the number of cycles in P,.. of length p 
which are not tied to O. 

Proof: Let the decomposition of P,.. into cycles be 

ffll rna m3 

P,.. = II (irl) II (irBir.') II (irairs,iran) ... , 
rl =1 rl=1 r3=1 

and then 

(SOSI' .. s,,1 Q.P,..Q.ISOSI ... S,,) = 0, 

unless S = s' = s" = ... = s(:I» for all spin locations 
in a given cycle of length p and if So = t' = ... for 
spins which are locked to so. Since So and s can take 
two values, only the result follows. 

In order to prove (4.19), we consider the two 
possibilities for the cyclic decomposition of P,.. : 

(i) P,.. = (k' .. k'l· . '1')( . .. )( ... ) ... , 

where the first cycle has length p = p' + p" and 
( ... ) ... denotes the remaining cycles, and 

(ii) P,.. = (k' .. k')(l' . . 1')( . .. )( ... ) ... , 

where the first cycle has length p' and the second has 
length p", with P = p' + p". 

We also need a further subdivision into the cases 
where (k ... k') and (I . .. 1') are tied to 0 or are not. 

For case (i), we have 

PkIP,.. = (kl)(k' .. k'l· . . 1')( . .. ) .. . 

= (k' .. k')(l· . . 1')( . .. ) ... . 

Then we have the following cases: 
(a) (k" . k'), (1 ... 1') both tied [and so (k'" 

k'l· .. 1') is tied]: 

For case (ii), we have 

PkIP,.. = (kl)(k' .. k')(l' . '1')(' .. ) 

= (k' .. k'l· .. 1')(' .. ) .... 

(a) Tr (PkIP,,) = 21+m1+", 

Tr«2Pkl - l)P,..) = 22+m1+"'_ 21+m1+'" > o. 
(b) Tr (PkIP,..) = i+··+mp"-1+"', 

Tr «2Pkl - l)P,..) = 21+m "+"'- 21+m,,"+" = O. 

(c) is the same as (b). 

(d) Tr (PkIP,..) = . 21+mp+1+mp'-1+mp"-1+"', 

Tr «2Pkl - l)P,..) = i+m,,+mp'+m,,"'" 

_ 21+mp+m,,'+m,,""'= O. 

Hence, we have proved (4.19) and, consequently, 
Theorem 1. 

ProofofTheorem 212: In order to prove Theorem 2, 
we exhibit a simple counterexample to the contra
dictory assertion. Consider the case of a Heisenberg 
lattice with three spin locations, and put 

Z* = Tr [exp 2(J12P12 + J23P23)]. (4.20) 

The operators P12 and P23 are represented by a 
23 = 8 - dimensional representation of S3, and this 
reducible representation decomposes into four 1-
dimensional and two 2-dimensional irreducible repre
sentations according to 

8 = {3}4 + {2, 1}2. 

For these representations, we have 

{3}:P12 = P23 = (1), 

{2, 1}:PI2 = (~ ~l)' P23 = (t~; 

(4.21) 

h/3) 
t ' 

(4.22) 

Tr (PkIP,J = 21+m1+m.+ ... , and the eigenvalues of J12P12 + J23P23 are therefore 
Tr«2P

kl 
- l)P,..) = 22+ml+m.+ ... - 21+ml+m.+ .. > 0; 

(b) (k" . k') tied, (I ... 1') not tied [and so (k' .. 
k'l· .. 1') is tied]: 

Tr (PkIP,..) = 21+···+mp"+1+"', 

Tr «2Pkl - l)P,,) = 23+···+mv"+··· - 2 1+'+m,,"+'" > 0; 

(c) is the same as (b), but withp' replacingp". 
(d) (k' .. k') ... (I . .. 1') both not tied [so (k' .. 

k'l· .. 1') is not tied]: 

Tr (P P) = 2"'mp-l+mp'+I+mp"+I+1 kl ,.. , 

Tr «2Pkl - l)P,..) 
= 23+mp+mp'+mp"'" _ 21+m ,,+mp'+mp" > O· 

{3} :J12 + J23 , 

(4.23) 

Hence, we have 

Z* = 4(e2
(JlI+J 23l + cosh 2(J;2 + J:3 - J I2J23)1) 

(4.24) 

and, if we expand log Z* for small J12 and J23 , we find 
that 

log Z* = log 8 + (112 + J23 ) 

+ t(J~2 + J:3) - (J~2 + J~3) 
- !(Jt2 + J:3) - Jf2J~3 + .. '. (4.25) 
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Hence, 

a2(log Z*) 
~ ~ = -4J12J23 + ... < 0, 
uJ12uJ23 

(4.26) 

for J12 and J23 sufficiently small and positive. Hence, 
Griffiths' Theorem 2 cannot be true when posed in its 
most general form. It is not known whether additional 
conditions can be imposed to restore this theorem. 
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A subcollection of the correlation inequali.ties recently. obtained by Ginibre for Ising ferromagnets is 
~hown ~o be. enough to guarantee that an ISIng magnet In an external magnetic field with only 2-body 
InteractIons IS a fer~omagnet. T~us, one has ~ necessary and su~cient se~ of correlation inequalities to 
guarantee that an ISIng magnet In a nonnegatIve external magnetIc field With only 2-body interactions is 
a ferromagnet. 

Ever since Griffiths1 obtained inequalities fOf the 
correlation functions oflsing ferro magnets with 2-body 
interactions it has been a natural question2 to obtain 
enough inequalities on the correlation function of an 
Ising magnet with 2-body interactions that guarantee 
that it is the correlation function of an Ising ferro
magnet. Recently, Ginibre3 has given inequalities 
generalizing those of Griffiths,l Kelly and Sherman,2 
and Sherman.4 This paper shows that a subcollection 
of Ginibre's inequalities resolves the aforementioned 
natural question. Ginibre's results and notations will 
be followed so that: 

"We consider a finite set A of N sites. Each site 
carries a spin t, that is a finite set with two elements 
called up and down. A configuration of the system is 
defined by the set of down spins, which is a subset of 
A. Configurations are denoted by capital letters A, B, 
R, S, etc. The set of configurations r is a finite set 
with 2N elements. The product RS of two configura
tions is defined as their symmetric difference RIlS = 
R u S - R (\ S. With this product, r is a com
mutative finite group. The unit element is the empty 
set 0 and every element is of order 2: R2 = 0. With 
spin r is associated a function ar which is 1 for up 

and -1 for down. The spin products 

aR = IT ar 
reR 

are functions on r. In fact, they are the characters of 
the group r. They satisfy 

aRas = aRS ' (1) 

aR(A)aR(B) = aR(AB), (2) 

aRCA) = a.iR) = C _lr(AnR), (3) 

where nCR) denotes the number of sites in R. A 
physical system is defined by a potential J, which is 
a real function on r, and with which are associated, 
respectively, a Hamiltonian, a probability density, a 
partition function, and correlation functions by the 
formulas 

H = - IJ(P)ap , 

Per 

W = Z-1 exp (-H), 

Z = Iexp [-H(P)], 
Per 

(aR) = I aR(A)W(A). 
.Aer 

(4) 

(5) 

(6) 

(7)" 



                                                                                                                                    

2480 C. A. HURST AND S. SHERMAN 

Hence, 

a2(log Z*) 
~ ~ = -4J12J23 + ... < 0, 
uJ12uJ23 

(4.26) 

for J12 and J23 sufficiently small and positive. Hence, 
Griffiths' Theorem 2 cannot be true when posed in its 
most general form. It is not known whether additional 
conditions can be imposed to restore this theorem. 

ACKNOWLEDGMENT 

The stimulating suggestions of A. Lenard are grate
fully acknowledged. 

JOURNAL OF MATHEMATICAL PHYSICS 

• Supported by ARGC Contract 66/15220 and NSF GP 7469. 
1 R. B. Griffiths, J. Math. Phys. 8, 478 (1967). 
2 R. B. Griffiths, J. Math. Phys. 8, 484 (1967). 
3 R. B. Griffiths, J. Math. Phys. 10, 1559 (1969). 
4 D. G. Kelly and S. Sherman, J. Math. Phys. 9, 466 (1968). 

This reference will be referred to as KS. 
5 F. J. Dyson, Commun. Math. Phys. 12,91 (1969). 
6 The nonnegativity of correlations for the Heisenberg ferro

magnet also follows by extending some results of J. Ginibre, Com
mun. Math. Phys. 10, 140 (1968). We are grateful to Professor 
Ginibre for telling us of this possibility. 

7 R. B. Potts, Proc. Cambridge Phil. Soc. 48, 106 (1952). 
• R. G. J. Mills, Ph.D. thesis, University of Adelaide, 1966. 
B S. Lefschetz, Introduction to Topology (Princeton U.P., Prince

ton, N.J., 1949). 
10 P. A. M. Dirac, Quantum Mechanics (Oxford U.P., Oxford, 

1947), 3rd ed., Sec. 58. 
11 C. A. Hurst and S. Sherman, Phys. Rev. Letters 22, 1357 (1969). 

VOLUME 11, NUMBER 8 AUGUST 1970 

When Is an Ising Magnet a Ferromagnet? 

S. SHERMAN· 

Department Of Mathematics, Indiana University 
Bloomington, Indiana 47401 

(Received 13 January 1970) 

A subcollection of the correlation inequali.ties recently. obtained by Ginibre for Ising ferromagnets is 
~hown ~o be. enough to guarantee that an ISIng magnet In an external magnetic field with only 2-body 
InteractIons IS a fer~omagnet. T~us, one has ~ necessary and su~cient se~ of correlation inequalities to 
guarantee that an ISIng magnet In a nonnegatIve external magnetIc field With only 2-body interactions is 
a ferromagnet. 

Ever since Griffiths1 obtained inequalities fOf the 
correlation functions oflsing ferro magnets with 2-body 
interactions it has been a natural question2 to obtain 
enough inequalities on the correlation function of an 
Ising magnet with 2-body interactions that guarantee 
that it is the correlation function of an Ising ferro
magnet. Recently, Ginibre3 has given inequalities 
generalizing those of Griffiths,l Kelly and Sherman,2 
and Sherman.4 This paper shows that a subcollection 
of Ginibre's inequalities resolves the aforementioned 
natural question. Ginibre's results and notations will 
be followed so that: 

"We consider a finite set A of N sites. Each site 
carries a spin t, that is a finite set with two elements 
called up and down. A configuration of the system is 
defined by the set of down spins, which is a subset of 
A. Configurations are denoted by capital letters A, B, 
R, S, etc. The set of configurations r is a finite set 
with 2N elements. The product RS of two configura
tions is defined as their symmetric difference RIlS = 
R u S - R (\ S. With this product, r is a com
mutative finite group. The unit element is the empty 
set 0 and every element is of order 2: R2 = 0. With 
spin r is associated a function ar which is 1 for up 

and -1 for down. The spin products 

aR = IT ar 
reR 

are functions on r. In fact, they are the characters of 
the group r. They satisfy 

aRas = aRS ' (1) 

aR(A)aR(B) = aR(AB), (2) 

aRCA) = a.iR) = C _lr(AnR), (3) 

where nCR) denotes the number of sites in R. A 
physical system is defined by a potential J, which is 
a real function on r, and with which are associated, 
respectively, a Hamiltonian, a probability density, a 
partition function, and correlation functions by the 
formulas 

H = - IJ(P)ap , 

Per 

W = Z-1 exp (-H), 

Z = Iexp [-H(P)], 
Per 

(aR) = I aR(A)W(A). 
.Aer 

(4) 

(5) 

(6) 

(7)" 



                                                                                                                                    

WHEN IS AN ISING MAGNET A FERROMAGNET? 2481 

By a ferromagnetic system we mean that J(R) ~ ° 
forallREr. 

Theorem: If, for an Ising magnet in an external 
magnetic field and with only binary interactions, 
pp(B) = (aB)(aBP) is a positive-definite function of B 
for each PEr such that n(P) = 2, then the magnet is 
a ferromagnet. 

Proof: By hypothesis following Ginibre, Eq. (20): 
If n(P) = 2, then 

o ~ pp(T) 

= 2NZ-2 ~ ap(A) exp (~J(Q)[1 + aQ(T)]aQ(A») 

so that, up to a positive normalization factor, pp(T) is 
proportional to (ap)T, the average of a in a new 
ferromagnetic system associated with the potential 
J T defined by 

JT(Q) = 2J(Q), if n (Q n T) is even, 

= 0, if n (Q n T) is odd. 

Suppose neT) = 2. Then JT(T) = 2J(n, but, for 
Q :;6 T and n(Q) E {I, 2}, 

J(Q) = 0, if Q n T:;6 0, 

= 2J(Q), if Q n T= 0. 

In the new system, spins in T do not interact with 
spins outside of T. Moreover, spins in Thave no exter
nal magnetic field acting on them. From this, 

and. 

sgn PT(T) = sgn tanh 2J(T) = sgn J(T). 

Thus, if neT) = 2, then J(T) ~ 0, and the system is 
ferromagnetic. 

Corollary 1: If for an Ising magnet in an external 
magnetic field, with only binary interactions, pp(P) ~ ° for each PEr such that n(P) = 2, then the magnet 
is a ferromagnet. 

Corollary 2: Consider an Ising magnet in a non
negative external magnetic with only binary inter
actions. The magnet is a ferromagnet if and only if 
pp(B) = (aB)(aBP) is a positive-definite function of B 
for each PEr such that n(P) = 2. 

Incidentally, by the use of Sec. 3 in Ref. 4, expression 
(21) of Ref. 3 can be strengthened to read "any mixed 
derivative of any order of Z2WR.S with respect to any 
collection of interactions J(Ql),' .. ,J(Qk) is non
negative. " 

Ginibre's result that for an Ising ferromagnet (aB) x 
(aBP) is a positive-definite function of B E r can be 
extended by methods of Ref. 2 (Proposition I, Sec. 9) 
to show that the function is a nonnegative linear 
combination of indicator functions of subgroups of 
r. Such linear combinations are positive definite, but 
not all positive-definite functions on r are such linear 
combinations. 
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Differential conservation equations are derived for the masso, momentum-, and energy-density 
operators for a I-component simple fluid of Bose or Fermi particles with arbitrary pairwise interactions. 
These equations are used in a statistical mechanical derivation of exact equations of motion for the 
expectations of these operators. The equations of motion are coupled to equations relating these expecta
tions to the local temperature, chemical potential, and fluid velocity. The coupled equations are closed 
in the sense that the expectations and their thermodynamic conjugates listed above are the only un
knowns, although some of the dependence in the eq~tions on the conjugates is expressed only implicitly. 
The equations of motion are memory-retaining nonlocal generalizations of the classical hydrodynamic 
equations and apply to a normal fluid arbitrarily far from equilibrium. The formalism is not carried as far 
as has the corresponding classical formalism because the local equilibrium expectation of the momentum 
density here does not equal the fluid velocity times the expectation of the mass density as is true in classi
cal statistical mechanics. 

1. INTRODUCTION the Wigner density to transform Irving and Kirk-
In this paper generalized hydrodynamic equations wood's7 classical derivation into a quantum derivation. 

valid for fluids far from equilibrium are derived from FrohlichB used an expansion about total equilibrium, 
quantum statistical mechanics. The equations are but did not give expressions for the coefficients in this 
closed since the currents are expressed as functionals expansion. Without attempting to derive hydro
ofthe local thermodynamic conjugate variables, which dynamic equations, Kadanoff and Martin9 used them 
themselves are functionals of the mass, momentum, to determine the space and time dependence of corre
and energy densities. The system considered is a 1- lation functions. Hohenberg and MartiniO discussed 
component simple fluid of Bose or Fermi particles superfluids by making assumptions in order to close 
with arbitrary pairwise interactions. This system is their hydrodynamic equations. None of these authors 
often taken as a model for liquid 4He or 3He. However, used statistical mechanics to derive closed equations 
except for a brief comment on superfluids, this paper valid for fluids far from equilibrium. 
is concerned only with normal fluids and hence not Morill derived hydrodynamic equations by ex-
with 4He below 2.17 K. panding the statistical density operator about local 

Although some of the material in this paper has equilibrium. He obtained expressions for the trans
appeared previously in a general formalism,I.2 a self- port coefficients as time integrals of correlation func
contained derivation applicable to quantum fluids is tions,I2-I4 but only after removing the thermodynamic 
presented here for greater clarity. The generalized forces from the integrals. IS This can be done only when 
hydrodynamic equations to be derived are identical there is a wide separation in time scales. His formalism 
in form to the corresponding equations derived from is closely related to an approximation of the one to be 
classical statistical mechanics. The latter equations presented. 
may be transformed into those outlined without The remainder of this paper in outline is as follows. 
derivation by Richardson3 and derived in detail by The Hamiltonian and the operators corresponding to 
Piccirelli4 for a fluid of interacting classical particles. the observed densities are defined in Sec. 2. Then 
However, the present formalism is not carried as far exact operator equations, in the form of the classical 
as Piccirelli's because the local equilib:·ium expecta- hydrodynamic equations, are written down in Sec. 2, 
tion of the momentum density j<; not as simple in with their derivation given in Appendix A. Local 
quantum theory as in Classical theory. As far as the thermodynamic variables such as temperature and 
present paper goes, it gives an efficient, exact, quan- chemical potential are defined in Sec. 3 using the local 
tum statistical derivation of closed equations, pre- equilibrium statistical density operator. Then exact 
viously widely believed to be impossible to derive closed generalized hydrodynamic equations, which are 
exactly. the expectations of the above-mentioned operator 

There are not many papers devoted to the derivation equations, are written down in Sec. 3, with their 
of hydrodynamic equations from quantum statistical derivation given in Appendix B. Further steps, omitted 
mechanics. Born and Green5 used a density-matrix in this paper, are discussed in Sec. 4, along with a 
hierarchy to obtain equations similar in form to brief comment on extending the formalism to include 
hydrodynamic equations. Irving and ZwanzigG used superfluids. 

2482 
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2. OPERATOR EQUATIONS 

The Hamiltonian of the 1-component simple fluid 
to be considered here is 

Je == f d3rtp+(r) ( - :: V
2 + VI(r) 

+ t f d3r' tp+(r') V2(r - r')tp(r'») tp(r), (2.1) 

where tp+ and tp are Bose or Fermi particle creation 
and annihilation operators. Each particle has the 
external potential energy VI , and each pair of particles 
has the interaction potential energy V2 , which may be 
any given functions. 

The operators usually assumed to describe this 
fluid are the mass-, momentum-, and energy-density 
operators 

Pm(r) == tp+(r)mtp(r), 

p,,(r) == tp+(r)ptp(r), 
and 

Peer) == tp+(rMtp(r), 

respectively. Here 

p == (1i/2i)(V - V), 

(2.2) 

(2.3) 

(2.4) 

(2.5) 

where the arrows over the gradient operators indicate 
in which direction they operate: to the right on tp(r) 
or to the left on tp+(r). Also 

It == p2 + VI(r) + tfd3r'tp+(r')V2(r - r')tp(r'), (2.6) 
2m 

where the p2 again operates to the right and left. This 
definition of Peer) with the operator p2 is used because 
it is Hermitian, because its integral over all space 
equals the Hamiltonian (2.1), and because it simplifies 
some equations later on. 

In classical hydrodynamics, the time derivatives of 
the mass, momentum, and energy densities equal the 
divergences of the corresponding currents plus an 
external force term in the momentum equation. These 
are called differential conservation laws. Now the 
commutator ofiJe/1i with an operator corresponds to a 
time derivative. This commutator with the operators 
(2.2)-(2.4) can be expressed as divergences because 
total mass, momentum, and energy are conserved 
(except for the effect of the external force). 

These commutators are calculated in Appendix A, 
and the resulting operator equations are 

(i/Ii)[Je, Pm(r)] = -V· pir), (2.7) 

(i/Ii)[Je, pir)] = Pm(r)FI(r)/m - A· jp(r), (2.8) 
and 

(i/Ii)[Je, p.(r)] = -V· j.(r), (2.9) 

where the momentum current is given by 

jir) == tp+(r)(pp/m )tp(r) + t f dSr' f d3r" f" dr'" 

x r5(r - r"')F2(r' - r")tp+(r")tp+(r')tp(r')tp(r"), 

(2.10) 
and the energy current is given by 

j.(r) == tp+(r)l[p/m, It]+tp(r) 

+ .!.. fd3r'fd3r"!r,, dr'" oCr - r",)F lr' - r") 
4m r' 

• tp+(r")tp(r')(p' + p")tp(r')tp(r"). (2.11) 
Here, 

(2.12) 

is the external force on a particle, and 

F2(r' - r") == -VV2(r' - r") (2.13) 

is the force on a particle at r' exerted by another 
particle at r". 

The line integral in Eqs. (2.10) and (2.11) may be 
taken along any curve between the points r' and r", 
except as restricted by the following. The expectation 
of the currents must always be zero for all r for which 
the expectation of the mass density Pm(r) is zero. Con
sistent with this restriction, one way of removing the 
above ambiguityI6 is to use the shortest curve between 
r' and r" that remains inside the region where the 
expectation of Pm(r) is nonzero. For most r' and r", 
the curve is.a straight line, and the currents (2.10) and 
(2.11) are then analogous to Richardson's3.17 for 
classical statistical mechanics. 

Infinite-series expressions for the currents jp and j. 
have been given by Irving and Kirkwood7 for classical 
statistical mechanics, and by Grossmann18 for quan
tum statistical mechanics. Higher-order terms in these 
expressions can be dropped only if the interparticle 
force F2 is short range. Richardson's currents, as well 
as the currents (2.10) and (2.11), both agree with these 
series expansions. Kugler's currents,19 however, do not, 
agree with the series expansions even in the short
range limit, and their expectations are not zero where 
the expectation of Pm(r) is zero. 

3. CLOSED EQUATIONS 

The expectations of Eqs. (2.7)-(2.9) are differential 
conservation laws similar in form to the equations of 
classical hydrodynamics. However, the expectations 
of the currents jp and j. on the right are as yet un
knowns, and there are more unknowns than equations. 
In order to obtain the hydrodynamic equations, it is 
necessary to express these currents in terms of the 
temperature and other thermodynamic variables, 
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which themselves must be expressed in terms of the 
expectations of the mass-, momentum-, and energy
density operators (2.2)-(2.4). Then the equations will 
be closed. 

The expectations of the mass-, momentum-, and 
energy-density operators are given by 

(Pm(r»t == Tr [Pm(r)p(t)], (3.1) 

(pp(r»t == Tr [pp(r)p(t)], (3.2) 
and 

(Pe(r»t == Tr [Pe(r)p(t)], (3.3) 

where p(t) is the statistical density operator satisfying 
the Liouville equation. These expectations are the un
knowns whose values are to be found by deriving the 
closed equations of motion they satisfy and then inte
grating these equations of motion. 

In order to derive these equations, we introduce 
new variables (J(r, t), fl(r, t), and vCr, t), which are 
defined to be functionals of the expectations (3.1)-(3.3) 
as follows. Introduce the local equilibrium statistical 
density operator 

aCt) == _1_ exp [-jd3r{J(r, t) 
Z(t) 

X (Pe(r) - fl(: t) Pm(r) - v(r, t) • pp(r») 1 
(3.4) 

where for normalization 

Z(t) == Tr {exp [ - j d3r{J(r, t) 

X (p.(r) - fl(~ t) Pm(r) - vCr, t) • pir») ]}. 

(3.5) 

The (J(r, t), fl(r, t), and v(r, t) are to be chosen to 
satisfy 

Tr [Pm(r)a(t)] = (Pm(r»t, (3.6) 

Tr [pir)a(t)] = (pp(r»t, (3.7) 
and 

Tr [p.(r)a(t)] = (pir»t, (3.8) 

where the functions on the right are already defined in 
Eqs. (3.1)-(3.3). Equations (3.4)-(3.8) are not to be 
considered here as expressions for (Pm), (pp), and (Pe), 
but are coupled nonlinear integral equations for {J, fl, 
and v as unknowns. The functional dependence of {J, 
fl, and v on (Pm), (pp ), and (Pe) just defined is a time
independent one; {J, fl, and v depend upon t only 
because they depend upon (Pm), (pp), and (Pe), which 
themselves depend upon t. The multipliers {Jfl, {Jv, and 
{J are called the thermodynamic conjugates of the 

expectations (Pm), (pp), and (Pe)' Here (J(r, t) is the 
local temperature, fl(r, t) + tmv(r, t)2 is the local 
chemical potential, and vCr, t) is the local fluid 
velocity.2o.21 

Equations (3.4)-(3.9) are just definitions and are to 
be used even for large deviations from equilibrium, 
as in a shock wave, for example. No assumption is 
made here that the fluid remains in any sense close to 
equilibrium. The statistical density operator p(t) is as
sumed to equal the local equilibrium statistical density 
operator aCt) only at the initial time t = O. This 
initial condition is reasonable for a fluid initially 
constrained away from equilibrium. 21 The fluid would 
be initially in equilibrium only if (J and fl were con
stants and v were zero. 

All of the traces to be calculated in the following 
will involve a(t) rather than pet). So, for convenience, 
let angular brackets have the definition 

(A)t == Tr [Aa(t)], (3.9) 

where A may be any quantum-mechanical operator. 
Because of the definition of (J, ft, and v, this definition 
is consistent with Eqs. (3.6)-(3.8). Of course, the local 
equilibrium statistical density operator aCt) does not 
satisfy the Liouville equation. As a result, the expecta
tion of an arbitrary operator A is not given by Eq. 
(3.9), but must be calculated as a trace of A times pet), 
which does satisfy the Liouville equation. 

The expectations of Eqs. (2.7)-(2.9), including the 
currents jp and je, are calculated exactly in Appendix 
B, and the resulting closed equations of motion are 

O(Pmo~»t = -V. (Pr(r»t> (3.10) 

o(pp(r»t = F1(r)(Pm(r»t _ V . (Mr»t 
ot m 

and 

+ V • I'dt' J d3r'[ KIIlr, t, r', t') :V'{J(r', t')v(r', t') 

- Kpe(r, t, r', t'). V'{J(r', t')], (3.11) 

ot 

+ V .fdt'f d3r'[ Kelr, t, r', t'):V'{J(r', t')v(r', t') 

- K .. (r, t, r', t') • V' (J(r', t')], (3.12) 

where the kernels are correlation functions given by 

Kpp(r, t, r', t') == (jp(r)T(t, t')(1 - P)jp(r'»t' , (3.13) 

Kpe(r, t, r', t') == (jp(r)T(t, t')(1 - P)j.(r'»t" (3.14) 

Kep(r, t, r', t') == (i.(r)T(t, t')(1 - P)jlr'»t" (3.15) 
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and 

Ke.(r, t, r', tf) == (je(r)T(t, t')(l - P)je(r'»t'. (3.16) 

Here, the operator P is related to a projection operator 
with respect to the weight (J.22 It automatically subtracts 
out an average of the current j to its right, so that the 
correlation functions can approach zero for large 
t - t'. The operator T gives the unitary23 transforma
tion on the operator to its right, advancing it in time, 
but with the hydrodynamic motion projected out at 
each instant by the operator P. This dependence of 
Ton P, given by Eq. (B5), is essential if the corre
lation functions are to become zero and remain zero 
after a time that is short compared with hydro
dynamic times.24 More generally, the correlation 
functions may decay in about the same time as the 
expectations (3.1 )-(3.3), and P is still essential. 

Equations (3.10)-(3.12) are memory-retaining non
local generalizations of the classical hydrodynamic 
equations. In a near-equilibrium approximation, the 
correlation functions (3.13)-(3.15) satisfy reciprocity 
relations. 25 However, no approximations are made in 
the present paper. The first terms on the right of Eqs. 
(3.10)-(3.12) are called reversible terms since they do 
not directly change the entropy.26 The time integral 
terms are called irreversible terms since they do change 
the entropy. The reversible terms describe only the 
macroscopic flow, while the irreversible terms describe 
the microscopic dissipative effects due to the inter
action V2 • 

Equations (3.4)-(3.16) are the desired closed equa
tions of motion for (Pm(r»t, (p/r»t, (Pe(r»t, ~(r, t), 
p.(r, t), and vCr, t). These are the only unknowns in the 
equations. However, the dependence of the kernels on 
~, p.; and v is stated only implicitly in the definition of 
P and T given in Appendix B. A method for extracting 
this dependence approximately is discussed in Sec. 4. 

4. DISCUSSION 

Equations (3.10)-(3.l2) are memory-retaining non
local generalizations of the classical hydrodynamic 
equations. The advantages of this formalism are: 
(1) The equations of motion are closed since the corre
lation functions (3.13)-(3.16) are functionals of the 
local temperature, local chemical potential, and local 
fluid velocity, which themselves are given in Eqs. 
(3.4)-(3.8) as functionals of the mass, momentum, and 
energy densities. (2) All traces are to be calculated 
using the local equilibrium statistical density operator 
a(t) as in Eq. (3.9). This is physically desirable and is 
easier than calculating traces using pet), which, as a 
solution to the Liouville equation, is linear in the 
initial condition and thus contains the initial condition 

explicitly. In the present formalism, the initial con
dition is contained only implicitly through the initial 
values of the macroscopic unknowns. (3) The equa
tions of motion are exact and apply to systems 
arbitrarily far from equilibrium. They apply even when 
the classical hydrodynamic equations do not, e.g., near 
a critical point where a memory-retaining nonlocal 
theory is necessary. (4) The equations reduce to the 
classical hydrodynamic equations in the appropriate 
limits, and the resulting expressions for the transport 
coefficients are independent of the order of taking these 
limits, as is discussed below. 

Equations (3.4)-(3.16) are identical in form to 
generalized hydrodynamic equations derived from 
classical statistical mechanics, except that expressions 
in them involve traces over operators rather than inte
grals over functions of phase. However, as will be 
discussed, the dependence of these expressions on the 
local velocity vCr, t) is more complicated in quantum 
theory than it is in classical theory. Hence, approxi
mations appear to be necessary here, although they are 
not necessary at this step in the classical derivation. 

In the classical derivation,4 the reversible currents 
(pp), (jp), and (je) become (Pm>v, (Pm>vv + (jp)+, and 
(Pe)v + (jp)+ • v, respectively. Here the plus indicates 
that, in the local equilibrium density (J, the v term is 
dropped and p. is replaced by p. + tmv2• These results 
can be proved4 by translating one of the momentum 
integrals by mv. When this is done on the irreversible 
terms, the thermodynamic forces V' ~v and V' ~ become 
V'v and V'~. Thus the equations take a form closely 
paralleling the classical hydrodynamic equations. 

In the quantum derivation, the reversible currents 
have additional terms,27 which are much too compli
cated to write here, but which vanish in the limit of 
smaI11i2~ or in the limit of small V x v. Also, except in 
one of these limits, the vV ~ term cannot be removed 
from the thermodynamic force V ~v. Thus, it appears 
to be necessary, at this point, to take the approxima
tion in which terms containing 1i2~ and V x v are 
dropped. 

In the short-memory local limit, the correlation 
functions become sharp like t5 functions, so that the 
thermodynamic forces V'v and V' f3 can be removed from 
the integrals, which then become transport coeffi
cients. 28 These correlation functions must still con
tain the operator P both explicitly and through the 
dependence given by Eq. (B5), so that they will be
come zero and remain zero after a time that is short 
compared with hydrodynamic times. 24 This operator 
P does not appear in the Green-Kubo12- 14 expressions 
for transport coefficients. As a result, in their expres
sions the integral over an infinite volume must be 
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performed before the integral over the infinite-time 
interval in order to obtain a nonzero result for the 
transport coefficients.29 However, because in the 
present formalism the operator P projects out the hy
drodynamic motion at each instant in the time 
development of the correlation functions, the order of 
integration here is not important, and the space inte
gral here need not be infinite. 

The final step in deriving the equations of motion is 
to obtain explicit expressions for the kernels in terms of 
quantities that can be calculated. For linear deviations 
from equilibrium, this can be done with a continued 
fraction expansion.30 A simple method of truncating 
this kind of expansion has been used to predict a 
nuclear magnetic resonance line shape in excellent 
agreement with experiments.31 The application of this 
technique to fluids is limited at the present by the 
difficulty of calculating the moments, which involve 
traces over <1. 

For superfluids, additional variables and additional 
equations of motion coupled to Eqs. (3.10)-(3.12) 
appear to be necessary. A derivation of these exact 
closed equations has not yet been accomplished except 
for zero interaction V2 • If V2 is zero, the extra vari
ables are the expectations of ljJ+(r) and ljJ(r), and Eqs. 
(A2) and (A3) are used along with Eqs. (2.7)-(2.9). 
Terms linear in ljJ+(r) and ljJ(r) must be added onto the 
exponent in Eqs. (3.4) and (3.5), where the multipliers 
in these terms are determined by Eqs. (3.6)-(3.8) plus 
two new equations involving the expectations of ljJ+(r) 
and ljJ(r). The result is that extra terms are added to 
Eqs. (3.10)-(3.12) coupling these equations to two 
new equations of motion that are the expectations of 
Eqs. (A2) and (A3). By use of a canonical transforma
tion whose exponent is linear in ljJ+(r) and ljJ(r), the 
particle-nonconserving terms added to the exponent in 
Eqs. (3.4) and (3.5) can be transformed away and the 
reversible terms in Eqs. (3.10)-(3.12) become the usual 
sum of super and normal terms appearing in the 
phenomenological theory.32 This is a beautifully simple 
derivation of 2-fluid generalized hydrodynamic equa
tions for the noninteracting Bose fluid. However, the 
irreversible terms here are not zero and cannot be 
approximated in a short-memory local limit. If Va is 
not zero, the problem with the irreversible terms is 
removed, but expressions containing Va become un
pleasant when the above canonical transformation is 
performed. At the present it is not known how to 
correct this. 
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APPENDIX A 

In this appendix, Eqs. (2.7)-(2.11) are derived using 

[ljJ(r), ljJ(r')]:;:: = 0, [ljJ(r), ljJ+(r')]:;:: = d(r - r'), 

[ljJ+(r), ljJ+(r')]:;:: = 0, (A1) 

where the minus sign denotes commutator for bosons 
and the plus sign denotes anticommutator for fer
mlOns. 

For either bosons or fermions, Eqs. (2.1) and (AI) 
give 

( 
/i2 

[.le, ljJ(r)] = - - - V2 + V1(r) 
2m 

+ J dar' ljJ+(r') V2(r - r')VJ{r'») ljJ(r) (A2) 

+ f d3r' ljJ+(r') V2(r - r')ljJ(r') ), (A3) 

where the upper (lower) equation is most easily derived 
by expanding the commutator on the left into two 
terms and using Eqs. (AI) on the second (first) term 
only. No integration by parts is necessary. 

Equations (A2) and (A3) along with the identities 

[.le, ljJ+AljJ] = [.le, ljJ+]AljJ + ljJ+[.le, A]ljJ 

+ ljJ+A[.le, ljJ], (A4) 

V2 - V2 = - (\7 + V) . C - V), (AS) 
and 

[p, A] = -ili(VA) 

give 

[.le, ljJ+(r)AljJ(r)] 

= iliV· {ljJ+(r)t[p/m, Al+ljJ(r)} 

+ ljJ+(r)(.le + p2 + Vl(r) 
2m 

(A6) 

+ J d3r'ljJ+(r')V2(r - r')VJ{r'), A )ljJ(r), (A7) 

where A may be any linear operator. Notice that the 
V in [p, A]+ does not operate on A. 

Equation (A7) is used as follows. Let A = im/Ii to 
get Eq. (2.7). Let A = ip/Ii and use Eq. (A6) to get 

(i/ Ii)[.le, PII(r)] 

= Pm(r)F1(r)/m - V • [ljJ+(r)(pp/m)VJ{r)] 

-f d3r'F2(r' - r)tp+(r)tp+(r')VJ{r')VJ{r), (A8) 

where FI(r) and F2(r) are defined by Eqs. (2.12) and 
(2.13). Finally, let A = M/Ii and use Eqs. (2.5) and 
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(A6) to get 

(i/Ii)[Je, p.(r)] = -V· {fjJ+(rH[p/m, .4]+fjJ(r)} 

- 1- fd3r'F2(r' - r) 
2m 

• fjJ+(r)fjJ+(r')(p + p')fjJ(r')fjJ(r), 

(A9) 

where the p' term comes from the [Je, .4] term in Eq. 
(A7). 

The last terms in Eqs. (AS) and (A9) are of the form 

where 

f d3r'!(r, r'), (AlO) 

fer', r) = -fer, r'). (All) 

As a result, the integral of these terms over all r is zero, 
and the terms can be written as divergences 

f d3r'f(r, r') 

= V -J d3rJ d3r"f"dr"'tb(r - r''')f(r', r"). (AI2) 

This is easily proved by letting the yo operate on the b 
to become - VIII, thus permitting the rill line integral to 
be performed. 

When Eq. (AI2) is applied to Eqs. (AS) and (A9) , 
Eqs. (2.8) and (2.9) result, where the currents are 
defined by Eqs. (2.10) and (2.11). 

APPENDIX B 

In this appendix, Eqs. (3.10)-(3.16) are derived from 
the Liouville equation. Although this derivation is a 
special case of a previously published general formal
ism,1.2 it is presented here in a self-contained form for 
convenience in the present application. 

The Liouville equation is 

a;~t) = -iLp(t), 

where the Liouville operator is defined by 

LA == [Je, A)/Ii 

(B1) 

(B2) 

for any quantum-mechanical operator A. Here Je is 
~he Hamiltonian (2.1). The initial condition for pet) 
IS assumed to be 

p(O) = 0'(0). (B3) 

where A may be any quantum-mechanical operator. 
Also, it is convenient to introduce another operator 
T(t, t') defined by 

aT(t t') 0;' = T(t, n[1 - P(t')]iL (BS) 

with the initial condition 

T(t, t) = l. (B6) 

The operators pet) and T(t, t'), like L, operate to their 
right on quantum-mechanical operators. Both P and 
Tare functionals of fl, fl, and v. 

Equations (BS), (Bl), and (B4), and the chain rule 
for calculating the total derivative of O'(t') give 

o{T(t, t')[p(t') - O'(t')]}/ot' 

= - T(t, t')[1 - P(t')]iLO'(t'). 

Integrate this over t' from 0 to t and use Eqs. (B6) and 
(B3) to get 

pet) = O'(t) - fdt'T(t, t')[l - P(t')]iLO'(t'). (B7) 

This expresses the nonequilibrium statistical density 
operator satisfying Eqs. (Bl)-(B3) as a functional of 
fl, fl, and v. 

A different expression for the nonequilibrium 
statistical density operator pet) as a function of O'(t) 
has be~n giv~n by Zubarev.33 His expression, although 
exact, IS not In a form that is convenient for obtaining 
exact equations of motion formally similar to hydro
dynamic equations. His resulting approximate ex
pressions for the currents do not involve the operator 
pet) and, hence, do not have the advantages listed 
following Eq. (3.16) above. 

The application of Eq. (B7) is aided by the identity 

LA = J: dxA"'(L log A)A1
-"', (B8) 

which may be proved for' an arbitrary quantum
mechanical A by integrating dA"JeAl-"/dx over x from 
o to l. Equations (B8), (3.4)"and (2.7)-(2.9) give 

iLO' = f d3rt{ V· j. - flV ~pp + V· ~Fl - VV:jpJO', 

(B9) 

In order to express the expectations of the operators where the bar over an operator is defined by 

jp and j. in terms of just the desired unknowns, it is (1 
convenient to introduce an operator pet) defined by A == Jo O'(t)'" AO'(t)-'" dx - (A)t (B10) 

(B4) for any quantum-mechanical operator A. The last 
term in Eq. (B1O) drops out of Eq. (B9) because 
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Tr (aL log a) IS zero for any statistical density oper
ator a and any Hamiltonian Je in Eq. (B2). 

When Eq. (B9) is used in Eq. (B7), the terms in 
Pm and Pp drop out. This is proved as follows. The 
well-known34 rule for differentiating an operator gives 

and 

__ ba-,,(~t)_ = 
b(J(r, t)p(r, t) 

Pm(r)a(t) 

m 

baCt) - t 
.£(J( ) ( ) = pp(r)a( ), 
u r, t v r, t 

(Bll) 

(B12) 

where the bar is defined in Eq. (BIO) and a is given in 
Eq. (3.4). Equations (B4) , (BIt), and (BI2) and the 
chain rule for calculating a total derivative give 

P(t)Pm(r)a(t) = Pm(r)a(t) (B13) 
and 

P(t)pir)a(t) = pp(r)a(t). (B14) 

Because of Eqs. (B13) and (BI4), the Pm and pp terms 
drop out of [1 - P(t)]iLa(t), where iLa is given by 
Eq. (B9). 

When this result is used along with Eq. (B7) to 
calculate the expectations of jp and je in Eqs. (2.7)
(2.9) and when Eqs. (3.1)-(3.3) and (BI) are used on 
the other terms, Eqs. (3.10)-(3.16) follow after an 
integration by parts in the space integral on the right. 
In this integration the surface term vanishes because 
the current operators, by definition, vanish outside the 
volume containing the fluid. 

1 B. Robertson, Phys. Rev. 144, 151 (1966). 
2 B. Robertson, Phys. Rev. 160, 175 (1967); 166,206 (1968), Er-

ratum. 
8 J. M. Richardson, J. Math. Anal. Appl. 1, 12 (1960). 
• R. A. Piccirelli, Phys. Rev. 175, 77 (1968). 
5 M. Born and H. S. Green, Proc. Roy. Soc. (London) A191, 168 

(1947). 
8 J. H. Irving and R. W. Zwanzig, J. Chern. Phys. 19, 1173 (1951). 
7 J. H. Irving and J. G. Kirkwood, J. Chern. Phys.18, 817 (1950). 
8 H. Frohlich, Physica 37, 215 (1967). 
9 L. P. Kadanoff and P. C. Martin, Ann. Phys. (N.Y.) 24, 419 

(1963). . 
10 P. C. Hohenberg and P. C. Martin, Ann. Phys. (N.Y.) 34, 291 

(1965). 
11 H. Mori, J. Phys. Soc. Japan 11,1029 (1956); Phys. Rev. 112, 

1829 (1958); 115, 298 (1959). 
12 M. S. Green, J. Chern. Phys. 20,1281 (1952); 22,398 (1954). 
13 R. Kubo, J. Phys. Soc. Japan 12, 570 (1957); R. Kubo, M. 

Yokota, and S. Nak3jima, J. Phys. Soc. Japan 12, 1203 (1957). 

14 R. W. Zwanzig, Ann. Rev. Phys. Chern. 16, 67 (1965). 
15 G. V. Chester, Rept. Progr. Phys. 26, 452 (l963). 
18 A similar ambiguity results from the possibility of adding to the 

currents the curl of an arbitrary operator that vanishes wherever the 
expectation of the mass density vanishes. These ambiguities suggest 
that only the divergences of the currents (rather than the currents 
themselves) should be used. The currents themselves are used here in 
order to retain the formal similarity with classical hydrodynamics. 
Even so, the currents always have V· operating on them in the 
formalism to follow. 

17 This formal similarity is most apparent with Eqs. (28) and (29) 
of Ref. 4. 

18 S. Grossmann, Z. Physik 191,103 (1966). The results of interest 
above are given in Eqs. (24) and (35), where S is defined in Eq. (4a). 
Most of this paper concerns systems with nonlocal interactions, for 
which the continuity equation (2.7) above is not valid. No examples 
of such a system are given. Also, Grossmann states that any density 
can be made to satisfy a differential conservation law (with the 
source term zero), provided only that a suitable current is used. 
He states that this is always possible even if the total volume integral 
of the density is not conserved. However, for densities for which the 
source term is not naturally zero, this requires a current whose con
tribution to a surface integral exactly equals the volume integral of 
the source. Such a current is not physical. For example, the density 
pp in Eq. (2.8) above has the source F1Pm/m, which is not a natural 
divergence. The author thanks Dr. Grossmann for bringing this 
paper to his attention. 

19 A. Kugler, Z. Physik 198, 236 (1967). 
20 See the discussion following Eq. (17) of Ref. 1. 
21 See the references given in the left column of p. 176 of Ref. 2. 
22 Appendix B of Ref. 2. 
23 Equation (B4) of Ref. 1. 
24 The author thanks Dr. R. A. Piccirelli and Dr. W. C. Mitchell 

for pointing out this important advantage of the present formalism. 
25 Appendix C of Ref. 1. 
28 Footnote 18 of Ref. 2. .7 The explicit form of these terms is, of course, a consequence of 

the Definitions (2.3) and (2.4) assumed for the form of the momen
tum- and energy-density operators. It is not known whether a dif
ferent definition would make the additional terms vanish. However, 
with the present definitions, it is just the additional term in the 
reversible current (p,) that gives a nontrivial result in the quantum 
theory of the equilibrium diamagnetism of a charged fluid, where 
v is replaced by the vector potential A and !A2 is subtracted from {-t. 

28 This is discussed in detail on p. 181 of Ref. 2. Notice that the 
correlation functions are not completely determined because any 
solenoidal current operator that vanishes outside the volume con
taining the fluid can be added to ip or i. without violating the defini
tion of these currents. The equations of motion (3.11) and (3.12) do 
not have this ambiguity because of the V operators, which can be 
made to operate on ip and i. after an integration by parts. In order 
to eliminate the ambiguity from the transport coefficient [e.g., Eq. 
(30) of Ref. 2], the r dependence must be averaged over the volume 
containing the fluid as in Eqs. (38) on p. 405 of Ref. 12. Then, only 
the volume integrals of the currents appear, and these depend 
only on the divergences of the currents and on the currents being zero 
outside, as can be seen by integrating rV • j by parts. 

29 See, e.g., R. W. Zwanzig, J. Chern. Phys. 40, 2527 (1964). 
30 H. Mori, Pro gr. Theoret. Phys. (Kyoto) 34, 399 (1965). 
31 B. Robertson, Bull. Am. Phys. Soc. 12, 1141 (1967). 
32 I. M. Khalatnikov, Introduction to the Theory of SuperJluidity 

(Benjamin, New York, 1965). 
33 D. N. Zubarev, Dokl. Akad. Nauk SSSR 164, 537 (1965) 

[Sov. Phys. DokI. 10, 850 (1966)]. See also T. N. Khazanovich, 
Mol. Phys. 17,281 (1969), Eqs. (3.1)-(3.3). 

84 See, e.g., Appendix A of Ref. 1. 



                                                                                                                                    

JOURNAL OF MATHEMATICAL PHYSICS VOLUME 11, NUMBER 8 AUGUST 1970 

Equal-Time Commutation Relations and Divergence Conditions * 
K. BERGSTROMt 

Nordita Fellow 1968-69 

Institute of Theoretical Physics, Goteborg, Sweden 

(Received 25 November 1969) 

The connection between divergence conditions for currents or generalized currents and equal-time 
commutation relations is investigated in terms of the response of physical systems to external fields. We 
give a simple method of constructing physical amplitudes and of obtaining generalized Ward identities 
and equal-time commutation relations for currents. In order to set up this scheme, we have to make an 
assumption about the response of the physical system to a change of the external parameters and also 
consider the gradient terms. In this way, we try to reproduce the current algebra formalism. It is hoped 
that, when this has been done, we will have made it plausible that a certain representation of the algebra 
exist. However, we do not discuss the formal reconstruction of the field theory of strong interactions in 
terms of electromagnetic, weak, and gravitational scattering data. The discussion in this paper is mostly 
restricted to finite-dimensional algebras, but a generalization of the method to infinite-dimensional 
situations is briefly outlined. 

1. INTRODUCTION 
In this paper, an attempt is made to put together 

various phenomenological concepts and statements 
from current algebra into a unifying framework. It is 
hoped that this may give some insight into the 
dynamical foundations of current algebra. The aim 
is to give a simple and direct way to construct physical 
amplitudes and to obtain the equal-time commutation 
rules for the currents together with the basic identities 
from which low-energy theorems can be deduced. 
This is realized by working in terms of current 
operators (or the matrix elements of the currents) 
and "external fields." A basic assumption concerning 
the response of the physical system to a perturbation 
of the "external" parameters is made. This assump
tion is the simplest possible one, namely, the existence 
of a linear response between the current operator and 
the external parameter. Functional methods are used, 
and we further assume that the "external field" can 
be treated as a c number in the formalism used, such 
that functional differentiation with respect to the 
"external field" is a well-defined mathematical opera
tion. 

In the usual approach to current algebra, the equal
time commutation rules for the currents are postu
lated. There is, however, an alternative way to obtain 
many of the results in current algebra by using 
another method. As Veltman! has shown, by studying 
the modified divergence conditions for vector and 
axial-vector currents when first-order electromagnetic 
and weak interactions are taken into account, many 
of the current algebra results can be derived without 
using directly the postulated equal-time commutation 
rules for the currents. Using standard field-theoretical 
methods and the usual canonical commutation rules, 
together with the field equations for the field operators, 
Nauenberg2 has derived the equal-time commutation 

rules for the currents from the modified divergence 
conditions. 

The application of equal-time commutation rules 
also implies the manipulation of Schwinger (or 
gradient) terms. As is shown by Schwinger,3 these 
terms can be handled in quantum electrodynamics in 
a very natural way by using a variational principle. 
The electromagnetic current is defined through the 
response of the physical system to an external c-number 
electromagnetic field. The method gives, however, a 
general foundation for equal-time commutation rules 
for quantities that satisfy a divergence condition or 
conservation law. It is important, when this method 
is used, that a possible explicit dependence of the 
operator quantities upon the "external fields" also be 
considered. 

In the first part of the paper, some well-known 
formulas from ordinary field theory are listed, and 
we shall see how the basic quantities of the S-matrix 
elements, the vacuum expectation values of chrono
logically ordered products of the field operators, can 
be generated with the help of a variational principle. 
This is done by using external sources and investigat
ing the response of the physical system to a small 
variation of the external source functions. At the end 
of the analysis, we let the sources vanish. Details of 
this formalism will be discussed at length in a later 
publication,4 although we try to make this paper as 
self-contained as possible. 

As will be shown in Ref. 4, the same results can 
also be obtained by working in terms of c-number 
background fields or asymptotic fields, related in a 
definite way to the source functions. This last method 
gives us some ideas of how physical amplitudes can 
be constructed, when ordinary field operators, satis
fying equations of motion, cannot in advance be 
expected to exist, for example, in strong interaction 

2489 
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physics. In this case, however, we assume that we 
may work with electromagnetic and weak-current 
operators, and also an energy-momentum tensor 
operator. The matrix elements of these quantities are 
supposed to be measurable, in principle, by interac
tions with external electromagnetic or gravitational 
fields, or with lepton pairs.s Henceforth, in all these 
cases, the· term "external field" is used to denote the 
c-number parameter that will be used to test the 
response of the system. As mentioned before, it is 
assumed that a simple effective coupling between the 
currents or their matrix elements and the external 
fields exists. It will be seen that the gradient terms 
can be treated consistently, if an explicit dependence of 
the currents upon the external fields is assumed to exist. 

A more detailed investigation of the response I5R 
is done in one of the sections of the paper. We also 
make an explicit asstunption about how the divergence 
condition is modified in the presence of an external 
perturbation. Using this information, we shall see 
how an algebraic structure emerges. As an application 
of this result, we consider a physical system with 
conserved vector currents and derive the commutation 
relations discussed by Nauenberg. The derivation is, 
however, made without the use of a field equation 
for the electromagnetic potential and without the use 
of canonical commutation rules. 

Some of the results from quantum electrodynamics 
are also collected for completeness. These topics are 
discussed in detail in the papers of Schwinger and 
Johnson.6 

Finally, as an interesting example, we study a 
matter field in interaction with an external gravita
tional field. In this case, it is assumed that the response 
I5R is given by 158, where 8 is the action for the system. 
The full dynamical effect of the gravitational field is 
not discussed. This kind of treatment is justified be
cause of the weak coupling this field has to a matter 
field. The gravitational field is described in vierbein 
formalism, and introduced as a compensating field, 
by requiring invariance under the wider group of 
Lorentz transformations, where the parameters depend 
on the coordinates of space-time. In this case, we 
obtain a commutation relation for a quantity of 
current character, and, also, gradient terms appear 
here. The more interesting problem of obtaining the 
equal-time commutation relations for the energy
momentum tensor will be discussed in Ref. 7. 

2. THE'S MATRIX IN THE FRAMEWORK OF 
STANDARD FIELD THEORY 

In this and the following section, a condensed 
notation is used.8 (Let u~ be a complete set of func-

tions which satisfy the equation oS,iJ'U~ = 0, Here, 
the index "i" stands for a discrete index as well as a 
continuous one. A "comma" means functional 
differentiation. Thus, °S,ii' means the differential 
operator 

-~- --~_oS, 
I5ql(x) I5cp'(X/) 

The repeated index "j'" means summation over the 
discrete variable and integration over the continuous 
variable.) The discussion is carried through for 
boson operators only. In order to generate the physical 
amplitudes, external sources are used. We define two 
vacuum states as follows: 

a~ 10, ± (0) = 0, [aA ; a1J = bAB , 

and 
(1) 

where a.J are annihilation operators. In the absence of 
an external perturbation, the two vacuums 10, ± (0) 
become identicaL The asymptotic field operator epi± 
can be written as 

(2) 

where u~ are a complete set of functions satisfying 

o ~ i' 
S,H,UA = O. (3) 

OS,H' is assumed to be a nonsingular differential 
operator, derived from the functional oS, describing 
free particles. The following orthonormality condi
tions hold: 

(4) 

In a local field theory, °S,H' can be written ass 

Os ,- A b(4)(X' x') + B . .Pb(4)(X· x') + CIf!'b(4)(X' x') .i; - ii' ., ~Jt' t, .pv , 

(5) 
and the relation between OS,ii' and Sf-iN is 

Sil - 1(B/l B/l)~(4)(X' x')" ~(4)(X' x") i'i" -"! ii - 11, U , U , 

+ Cmb(4)(x; x')b~!)(x; x") - b~!)(x; X')b(4)(X; x")] 

(6) 
with 

Using Eq. (4) gives the result 

± '1 "*SIl r d"" a.t1 = -I UA .'rep ,{.JIl' 
±a:> 

(7) 
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When the vacuums 10, ±) have been defined, the 
elements of the S matrix (assuming that no stable
bound systems exist) are defined in the following way: 

(A' ... A' . + 00 I A .,. A . - co) 1 n' 1 m' , 
where 

IAl ... An; ± (0) = a:1! ... a:1~ 10±). (8) 

Using the LSZ-reduction method, we can show that8 

(A~'" A~; +00 1 Al '" Am; -(0) 
co 

= ! P(m, n; i)bA1'Al ... bA / Ai 
i=O 

X (A;+l' ... A~, + 00 1 AHl ... Am; - co).. (9) 

This is the decomposition law for the S matrix. P 
indicates that the sum is taken over all distinct 
permutations of the A's and the A"s. The number of 
permutations in each case is given by the formula 

(m, n; i) = m! n!/(m - i)! (n - i)!. (10) 

The elements (A;'" + co 1 Al ... - (0) are given in 
terms of the vacuum expectation values 

as follows: 

(A~'" A~; +00 1 Al '" Am; -(0). 
= (_;)m+nu;l~ . .. u;n~ OS. . .. Os • Al An .HIt .in1n 

X (0+1 T( cph ... cpZnq;kl ..• q;km) 10-) 

X Os ... O-S U i1 • "U im (11) .klil . . kmim Al Am' 

3. CONSTRUCTION OF THE VACUUM 
EXPECTATION VALUES 

(0+1 T(cpi ... cpn) 10-> 

As we have seen, if the expectation values of the 
chronologically ordered products of the field opera
tors are known, it is possible to write down the 
S-matrix elements (A~ ... ; + co 1 Al ... ; - co). These 
vacuum expectation values can be generated with the 
help of a variational principle. We shall use it in the 
form developed by Schwinger. The following equa
tion is the starting point: 

b«(l.1 (3) = i «(I.I bS 1,8). (12) 

It tells us how the amplitude «(I.I (3) changes under an 
infinitesimal change bS of the action S. It is to be 
observed that d(1X I fJ) = 0 when dS lies outside the 
time interval bracketed by (I. and ,8. 

If external sources are introduced to test the linear 
response of the physical system, the change in the 
action operator is 

~S = f tfxcpi~3i == cpi~3i' (13) 

Taking for «(1.1 (3) the vacuum amplitude (0+ 1 0-), 
we conclude from (12) that 

.! ~ (0+ I 0-) = (0+1 cpk 10-). (14) 
i b3k 

Remember that (0+ I 0-) was a functional of the 
classical background. If a second variation is per
formed, the result is 

T(cpicpk) = O(i; k)cpicpk + O(k; i)cpkcpi. (16) 

Thus, from the knowledge of the amplitude (0+ I 0-), 
one can construct the vacuum expectation values 
(0+1 T(cpi ... ) 10-) by repeated functional differentia
tion with respect to the external source 3i' Setting 

(0+ I 0-) = eiW, (17) 

we easily derive the following relations (see Ref. 8): 

(0+1 cpi 10-) bW del i 

(0+ I 0-) = b3i = q; , 

(0+1 T(cpicpk) 10-) i k 'G ik 
(0+ I 0-) = q; q; - I, (18) 

(0+1 T(cpicpicpk) 10-) 

(0+ 10-) 

= q;iq;iq;k _ ipq;iGik + (_ i)2Riik, 

and so on. Here 

(19) 

and P means summation over distinctly permuted 
indices. 

In the relations (18), only the last terms are 
important when the external sources are absent; all 
other terms to the right can be related to background 
effects. 

4. CONSTRUCTION OF A COVARIANT PHYSI
CAL AMPLITUDE WITHOUT THE EXPLICIT 

USE OF FIELD OPERATORS cpi 

In standard field theory the Lagrangian density !: 
is expressed as a simple function of a number of local 
fields cpi, satisfying field equations. However, it is 
doubtful whether such a description is adequate for 
strong interactions. In any case, field operators such 
as the electromagnetic current, the energy-mo
mentum tensor, the weak current of baryons and 
mesons, etc., should be well defined. The matrix ele
ments of the operators mentioned above should also 
be measurable by interactions with external fields or 
leptons. 
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Equation (12), which was used to generate the 
vacuum expectation values of the field operators cpi, 
cannot be used directly now, because we are not 
assuming the existence of an action operator S. 
However, it is assumed that the response of the 
system to an external perturbation in the c-number 
field is given by an expression closely related to (13), 
namely, 

e5(1X I P) = if d4x (IXI j; IP) c5rpi. (12') 

It is clear that the physical amplitudes cannot be 
given only in terms of the chronologically ordered 
products of the currents. When the variation in (12') 
is performed, a possible explicit dependence of the 
currents upon the external fields must also be con
sidered. This has been discussed by Schwinger.3 A 
second variation yields the expression 

c5 <IXI ji IP) 

= fd4X' «IXI c5'i;<x) + iT(ji(X)h(X'» IfJ») c5rpk(x'), 
c5rpk(x') 

(20) 

where c5'ji(x)/c5rpk(x') gives the explicit dependence 
on rpk' Equations (12') and (20) give 

c5( 2lc5(1)(1X I P) 

= (i)2 f d4x f d4x' c5rpi(x)c5rpk(x') 

X (IXI - i :i:~~) + T(ji(X)Mx'» IP»). (21) 

Let (IXI and IP) be out- and in-states respectively; if 
we consider the amplitude (IX I P) as a functional of the 
classical background field, then it follows that 

1 b 1 c5 ( I R (I T(' ( )' ('» . c5'j;(x) I R) i c5rpi i c5rpk' IX 1') = IX Ji X lk x - I c5rpk(x') I' . 

(22) 

Certain integrability conditions must be satisfied. 
From the symmetry condition on the second variation 
of (IX I P), it follows that 

c5'Ux) c5'h(x') 
c5rpk(x') = c5rpi(x) , 

(23) 

where it is assumed that rpi(X) denotes a boson field. 
We define the amplitude Mik as 

If we assume that jk is a 4-vector in space-time, we 
can write (24) more completely: 

M'JV' = !_c5_!_c5_ (IX I R) 
.k i c5rp~(x) i c5rp~(x') I' 

= (IXI T(j~(x)j~(x')) - i c5'j~(x) IP). (24') 
c5rp~(x') 

The divergence of (24') is 

o,.Mft = (IX I T(o,.j~(x)j~(x'» + c5(xo; x~)[j~(x); j~(x')] 

- io b'j~(x) IP). (25) 
,. c5rpe(x') 

Let us assume that the divergence of the current 
j~(x) is known: 

o,.j~(x) = D;(x) 

and that this relation is maintained under variation: 

The first term here is, according to (20), equal to 

o,.c5 (IXI j~ IP) 

= (IXI O,.{ c5'j~ + i f d4X'T(j~(X)j~(X'»c5rp~(x')} 1(3)· 

For the other term, a variation similar to that leading 
to Eq. (20) gives 

c5 (IXI Di IP) 

= (IXI {c5'Di + if d4X'T(DlX)j~(x'))c5rp~(x')} 1(3)· 

Since the equalities hold for arbitrary states IIX) and 
IP), it follows that 

O,.{ c5'j~ + if d4X'T(jHX)j;(X'))c5rpe(X I

)} 

= c5'Di + i f d4x'T(Di(x)j~(x'»c5rpe(x'). 
Using the formula 

o,.Tm(x)j~(x'» 

= T(o,.mx)j~(x'» + b(xo; x~)[j~(x); j~(X')], 

we then have (see Ref. 3) 

-if d4x'c5(xo; x~)[j~(x); j~(x')]c5rp~(x') 

= O,.c5'j~(x) - c5'D;(x). (26) 

From (26), we get the equal-time commutator 

1 c5 1 c5 
M - --- -(IX I (3) ik - i c5rpi i c5rpk . 

.It( ')['O( ) 'V( ')] '0 c5'j~(x) . c5'D;(x) (27) 
(24) u xo; Xo J x ; h x = I ,. c5rp~(x') - I c5rp~(x') . 
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The divergence of the amplitude Mf"v then takes the 
form 

opMrt = «(XI T(Di(X)j~(x'» + ~ !;(~~ IfJ). (28) 

Low-energy theorems can be obtained from Eq. (28). 
It is seen that, in order to derive such theorems, only 
a knowledge of the divergence of the current j~ is 
necessary. 

Now we go a step further and take divergence of 
(28) with respect to x': 

opo.,M:;' = «(XI T(Di(X)Dk(X'» 
+ t5(xo; X~)[j~(X'); D;(x)] 

+ ! ° ' t5'Di(X) IR) 
i v t5cp~( x') f' 

or 

can be obtained from the matrix element «(XI if IfJ) as 
follows: 

M Pv' = «(XI T("~'V') + ! t5'j~ I R) = ! _15_ «(Xl '~ I R). 
tk J.Jk. SU.k f' . SI.l..k J. f' 

l U'f'v' I U'f'v' 

5, DIVERGENCE CONDITIONS AND ASSOCIATED 
LIE ALGEBRAS 

Let us look at a physical system with which we 
associate the currents ~Pi(X). In the absence of an 
external perturbation, they are supposed to have well
defined transformation properties in space-time, as 
well as in an internal space V N of N dimensions, not 
specified in detail for the moment. For simplicity, 
we have assumed that ~Pi(X) transform as 4-vectors 
in space-time. The index i is associated with V N, 

which is also equipped with a symmetrical quantity 
gij which can be used to construct invariants in V N' 

«(XI T(DiDk,) IfJ) = opov,Mrt (i) First let us write, for the divergence of the 
- «(XI [j~,; D i ] IfJ) t5(xo; x~) currents, 

- ~ «(XI av' ~~i IfJ). (29) op3Pi(x) = Di(x), p. = 0, 1,2,3, i = 1,2, ... ,N. 
I U"Pv' 

This equation is the starting point for the calculation 
of scattering lengths, for example (see Ref. 9). 

Let us consider Eq. (28): 

:l pv ( ()'v( ') 1 t5'D;(x) I R) (30) upMik, = «(XI T Di x Jk X ) + -:- --;;;-- f' . 
I t5'f'.(x') 

If the following form, 

t5 'D{x) -.-' - = 1' .. )'pk(X)t5(4)(x' x') 
t5cp~(x') h'k " 

of the change of Di is assumed (see Sec. 5), it follows 
that 

opM::: = «(XI T(opjf(x)j~(x'» IfJ) 

+ ~ t5(4)(x; X')hk! «(XI JIV(X) IfJ). (31) 
I 

See Ref. 9, p. 220. 
Feynman has conjectured that, for low-energy 

theorems, one gets the correct answer if one con
sistently neglects "seagulls" and Schwinger terms and 
Eq. (31) is then simply postulated. In our approach, 
it is seen that the form of Eq. (31) depends on the 
fact that the term 

SI( ')[!O( ) 'V( ')1 '0 (t5
ljf(X») 

u Xo; Xo Ji x ;Jk x - I P t5cp~(X') 

in (25) can be eliminated, and only a knowledge of 
the divergence Di is necessary to obtain (31). 

The following is to be noted in connection with Eq. 
(29). From (20), it is seen that the amplitude Ml'/ 

(ii) Then we assume that, in the presence of an 
external field, A~, Di is modified as follows: 

(32) 

where f!k is supposed to be constant. 

As in the discussion leading to (26), we have 

Op( t5'~f.lk(X) + i f d4X'T(~f.lk(X)t5R(XI») 
= (j'Dk(x) + if d4x'T(Dk(x)t5R(x'», 

from which it follows that 

- i f d4X'[~Ok(X); t5R(x')]t5(xo; x~) 

= oot5'~Ok(X) + O(j)t5'~(i)k - f~IMi,..(X)~f.lI(X), 

(i) = 1, 2, 3, (33) 

where t5R is a measure of the response of the physical 
system to a change of the c-number field A~. Thus, 
t5R must be an invariant in space-time and in V N • 

The simple choice is then 

(34) 

Accordingly, 

_igij[~Ok(X); ~Pi(X')1t5(xo; x~) 

= ° (t5'~~\X») _fkt5~t5P~!P(x)t5(4)(x' x'). (33') 
p (lA'/x') n • p , 
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Now let A~ vanish, and consider a class of physical 
systems for which 

b(3)30k(x) = 0 

where 
bAip(x') , 

b',3°k(X) = b(x . x') b(a)30
k
(x) . 

bA'p(x') 0' ° bAip(x') 

Thus, in the absence of an external field, we have 

We assume that it is possible to define the charges 
Q!(xo} as 

Q!(xo) = f dax3°!(x). 

Equation (35) then gives the equal-time commutator 

i[Qk(XO); Qi(XO)] = fi~Q!(XO)' (36) 

From the Jacobi identity for Q! follows 

Ie· k· k· Q! 
Uidl'm + f mdt! + f,d'mi) = 0 

or 

f~dim + f':nd/, + f~d~i = O. (36') 

From Eqs. (36), it follows that f;k can be interpreted 
as structure constants of a Lie algebra, and we can 
take 

(37) 

If the symmetric matrix gii is nonsingular, the 
generated Lie algebra is semisimple. For a compact 
simple Lie algebra, gii = bu. Mathematically, the 
constant is of no importance. However, we shall see 
in the Appendix that it can be convenient to give it a 
physical meaning. Equation (32) can be written 

b'D
i = (bA" x 5")\ 

where x means the cross product for the Lie algebra. 
Thus, in V N' a scalar product and a cross product are 
defined. 

A system for which the currents are conserved 
can be treated in the following way, and the same 
conclusions can be drawn. We discard the renormal
ization effects due to the presence of the A field; that 
is, we suppose that these effects are of second order. 

(i) The currents 3r;) are conserved: 

o",3/li(X) = 0, I' = 0, 1, 2, 3, i = 1,2, ... , N. 

(ii) In the presence of an external field Ail" the 
divergence of 3"i is modified as follows: 

op3ip = j~kAj,,3pk. 

Equation (33') now has the form 

-ig;j[30k(x); ,3Pi(x')]b(xo; x~) 

= 0 (b'.3~k(X») - f~ b~bP3!"(x)b(4)(x' x') 
I' bA'p(x') ,I • I' , 

b',3"'(x) 
- jk Ai (x) (38) 

i! '" bA'p(x') . 

If the external field Ai", vanishes, the last term goes to 
zero and, in this case, we also get a similar expression 
for the equal-time commutator of the currents. 

6. COMMUTATION RULES DERIVED FROM 
DIVERGENCE CONDITIONS 

As an example of how equal-time commutation 
rules can be derived from divergence conditions, 
consider the charged components of the vector current 
of hadrons. In the presence of an electromagnetic 
interaction, one no longer has the conservation rule9 

Instead, 
o",j"<+)(x) = O. 

V".j"'<+)(x) = 0, V", == a" + ieA",. (39) 

Here, it is assumed that A" is a given c-number field. 
The electromagnetic current vector of the system is 
defined through the response to an infinitesimal 
variation of the external potential A",. Thus, 

-if d'x'b(xo; x.;)[t<+)(x); ej~·)bA"'(x')] 

= o"b'j"'<+)(x) - b'D<+)(x), 
or 

D(+)(x) = -ieA",j"'(+)(x), i = 1,2,3. 

We introduce 3-dimensional functional derivatives 
defined as 

b' d( ') b(s) 
bA".(x) = Xo; Xo bA".(x)· (40) 

If a term proportional to A",(x) is neglected, we get 

[j~)(x'); t<+)(x)]"",=,"o' = j~+)(X)b(3)(X'; x) 

! ° (! d(S)jk<+)(X») 
+ e k i bA".(x'} • 

k = 1,2,3. (41) 
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This equation holds for a class of physical systems for If we compute the divergence of M~· and use the 
which the following is true: current conservation law, we get 

1 b' j'O(+)(x) 
_ (3) = O. 
i M~(x') 

Let us compare this with the ordinary field-theoretical 
situation. Using ordinary canonical commutation 
relations and a field operator A~ satisfying the field 
equation 

oAix) = j~')(x), 

we can show that,2 to first-order electromagnetic 
effects, 

It is then clear that the condition 

1 b' j'O(+)(x) 
_ (3) = 0 
i bAix') 

corresponds to the following equal-time commutation 
relation in the ordinary field theoretical approach: 

[OA~ ( ') .0(+)( )] 0 - X;j x =. 
oXo 0:0=0:0' 

In the same way, we have for the j~H component of 
the vector current 

(O~ - ieA~)j~(-)(x) = 0, 

~ .~(-) - . A .~(-) - nH 
U~j - Ie ~j = , 

from which follows the commutation rule 

£i~)(x'); tH(x)]",o=",o' = -j:'-)(X)d(3)(X; x') 

+ ~ ° (! b(3)jk(-)(X») 
e k i bA~(x') I' 

k = 1,2,3. (42) 

7. QUANTUM ELECTRODYNAMICS 

As another illustration of a physical system with 
an associated conserved current, let us consider 
quantum electrodynamics. The current operator is 
j,lx) and the external potential A,lx). We define the 
physical amplitude M~' as 

1 b 1 b 
M~' = i bAix) i M.(x') (a. I fJ) 

o"M'" = (a. 1 [t(x); j'(x')] IP) b(xo; x~) 

1 b'j~(x) 
+ i o~ (a.1 M.(x') IP)· (44) 

As before, we restrict ourselves to those physical 
systems for which the time component jO(x) does not 
depend explicitly upon the external potential and 
those which satisfy the relation 

b'jP(x) bT(x') --=--
bA.(x') bAix) 

(23') 

If 3-dimensional functional derivatives are introduced, 
Eq. (44) can be written as 

o~M/l' = b(xo; x~) (a./ rt(x); rex')] /P) 

+ ! 0 «a./ b(x . x') b(3)jll(X) IfJ»). 
i /l 0' 0 bA.(x') 

Because M"'V is supposed to represent a physical 
amplitude, the divergence of Mil' must be equal to 
zero and, thus, 

«(XI [t(x); f(x'»)",o=",o' IP) = - ~ OJ «()(/ ~~~;~~~ IfJ), 

i=I,2,3. (45) 

Let the external potential vanish, and let (a./ and IfJ) 
represent the vacuum state. Then 

(01 rt(x); f(x')]",o=",o' /0) = io. (0/ ~~~~~~~ 10), 

i = 1,2,3. (46) 

The equal-time commutator of the electromagnetic 
current cannot be equal to zero, because that would 
lead to contradictions (see Ref. 3). Now when the 
external potential is set equal to zero, we can use 
Lorentz invariance and the vacuum expectation value 
of the equal-time commutator of the current can be 
written in a spectral representation as follows (see 
Ref. 6): 

(0/ [jo(x); h(x')]",o=Xo' 10) 

= iok (L"dmm2p(m)b(3)(X; x'»), 

or 

(01 [jo(x); h(x')]",o="'o' 10) 

= (a./ T(r(x)f(x'» + ! d'j"(x) /fJ). 
i bA.(x') 

(43) = iokb(S)(x; x') L"dmm2p(m), k = 1,2,3. (47) 
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8. A SET OF FIELDS tYA IN INTERACTION WITH 
A WEAK EXTERNAL GRAVITATIONAL 

FIELD 

Let S be the action operator for a set of free fields 
tYA,lO 

S = f d4yL(tYA, OktYA), 

A = 1, ... ,n, k = 1,2,3,4, (48) 

where it is assumed that S is a scalar under Lorentz 
transformations. C is the Lagrangian density. The 
fields tYA are defined with respect to some Lorentz 
frame, the y system. Besides this y system, a system 
of curvilinear coordinates xP , p, = 0, 1, 2, 3, is also 
introduced. The following quantities can then be 
defined: 

hi (x) = ol h!'(x) = oxp

• 
p oxP " oy' (49) 

At every point x, there is thus a local Lorentz frame. 
The action integral can now be written in curvilinear 
coordinates: 

where 

S = f d4xhL(tYA(x), ht(x)tY~(x», 

J - g = h ;; det (hip), 

(50) 

The action S is now invariant under Lorentz trans-
formations 

(i) yk' = yk + b~\l, 
~, ~ ti h! uhjt = uro! 1" 

c5tYA = t(Gk!)ABtYBc5~k!, c5e! = _c5~Zk, 
(51) 

xl' const, 

and transformations of the curvilinear coordinates x", 

(ii) (52) 

The fields tYA are defined to transform as scalars 
under (52). GkZ are n X n matrices and are repre
sentations of the generators of the Lorentz group. 
They satisfy the commutation relations 

[Gk!; Gmnl = iCiik!mnGij' Gk ! = -G1k . (53) 

eii k!mn are the structure constants of the Lorentz group. 
The gravitational field is introduced by requiring 

S to be invariant under the wider group of Lorentz 
transformations, where b~k! now are arbitrary func
tions of x. That is, 

bhip = b~\(x)h!jt, 

btYA(X) = HGk!)AB~Bc5~k!(X). (54) 

In this way, a new field is introduced-the compen
sating field Ak!" (see Ref. 10)-and the new action is 

given by 

where 

S = f d4xhL(~A, htVjt~A), (55) 

V,,~ = (01' - !Ak!jtGk!)~' (56) 

It is now assumed that the Ak!jt describes an external 
gravitational field and, thus, that the full dynamical 
effect is not taken into consideration. 

If a small numerical variation in Ak!jt is performed, 
we can define the quantities Jk!jt as 

= .lfd4X'" jtc5Ak! 2 "'k! 1" 

where JkZjt = h3k/. 

(57) 

Let the vierbein field undergo the following trans
formation: 

with 

(58) 

The change bhi
" induces a change bAk!jt in the com

pensating field 
A'iijt = Aiijt + c5Ail~. (59) 

It is easy to see that the change bAi/jt is given by the 
expression 

c5Aiijt = _c5~i~jt + b~ikAki" + b~/Aikjt' 
An alternative form is 

From (57) and (61), it follows that 

(60) 

(61) 

bS = ! f d4x(ojtfi,;" + !fik!jtCk!iimnA mn,,)b~ii. (62) 

The requirement of invariance of S under trans
formation (58) gives the "conservation" law 

Ojtfii/ + !fiktck!iimnAmn" = O. (63) 

For later use, this formula is written in the following 
way: 

~ NO _ ~ "'(a) ~ ... jtCkl Amn 
uO~ii - -U(a)"'ij - ~"'kl iimn I' 

;; Bij' (a) = 1, 2, 3. (64) 

Consider now the response c5C of the system to a 
change in Aiijt: 

bC - 1 ~jt c5AkZ - ~~" c5A (gikgi! _ gi!gik-, - ]!""k! I' - 4"'kl iiI' " 

where .3~1 = -.3fk and c5Ak!jt = -c5Au,w gik is the flat 
space-time metric. It is not difficult to show that 
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Thus, in this case, also, we have a coupling of the 
form (37). 

In order to use Schwinger's method in this case, 
an equation of the form 

ooA(x) = B(x) 

is needed. In our case, infinitesimal variations in the 
numerical external field Aklll were used to define the 

quantities ~~l' and Eq. (64) is an expression that must 
hold for all values of the parameters. According to 
Ref. 3, the following equation must hold: 

-if d3x'[A(x); (JC(x')]",o=",o, = oo(JIA(x) - (JIB(x), 

(65) 

where (J' refers as usual to a possible explicit depend
ence of the operators A and B upon the numerical 
parameters. 

In the present case, the formula can be applied 
if the following identifications are made: 

(66) 

Thus, 

i fd3 '[",,0 ( ) ""V ( ')] ~Akl( ') - "2 X -"ii X ; -"kl X "'o="'o'U v x 

O ~Ii;o + 0 ~I,",(a) + 1 ~1~1l Ckl A mn = OU "'ii (a.)U -"ii 4 U "'kl iimn II 

(a) = 1,2,3. (67) 

From (67), we get 

i [,",0 ( ). ,,"v ( ')] - - -"ii X , -"kl X "'0="'0' 2 _ 
(J' .3(i)( ) 

= 1 ,",v Crs.. (J(3)(X. x') + O. (3) ii X 
4-",s okl , (tl (JAkl.(X ') 

+ ! (J(3) 5~s(x) Crs.. A mn (68) 
4 (JAk1v(X') omn II· 

As before, we only consider physical systems for 
which 

(J(3)~~;(X) = o. 
(JAkZv(x ') 

Then, in the limit of flat space-time, 

-i[.3?;(x); .3;z(x')]",o="'o' _ 

= l.3V crs .. (J(3)(X· x') + 20 . (J(3).3~~)(X») 
~ r. ukl, (,) (JAk1v(X' ) , 

(i) = 1,2,3. (69) 

The same result can be obtained in the following 
way, where now the infinite dimensional character of 

the vierbein group is emphasized8 : 

Dii = Oll~fi· 
From Eq. (63), it follows that 

and 
D - li;1l CkZ A mn 

ii - -4"'kZ iimn II (70) 

(JID;lx) _ -.l..fd4x"C(kW .. ,,311 (x") (71) 
(JAmnll(x' ) - 4 (o)(mn) kl . 

C(kll"(i;)(mn)' are the "structure constants" of the 
vierbein group and are defined as follows: 

C(kW .. = CkZ .. (Jw(x' X')(JW(X· x") (72) (.,)(mn)' "mn' ,. 

Thus, using (32) and (33), generalized to infinite
dimensional groups, we get (69). 

We also see here the presence of a gradient term. 
Putting v = 0 in (69) and integrating over 3-dimen
sional x space, we obtain the commutation relations 
for the homogeneous Lorentz group. This was, of 
course, an expected result because we were studying 
vierbein rotations. In order to obtain an equal-time 
commutation relation for the energy-momentum 
tensor, from which the Poincare algebra follows, we 
must study the general coordinate transformations 
given by (52). Schwinger has solved this problem for 
the energy density Too(x) for a special class of physical 
systems. However, it is possible to give a closed 
expression for the equal-time commutator [TOIl(x' ); 
TpO(x")]",o="'o from general arguments and holding for 
arbitrary physical systems. This problem will be dis
cussed in a separate paper.7 
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APPENDIX 

In order to evaluate (29), the equal-time commuta
tor [.3~(x); Di(X')]",o="'o' must be known. In this 
appendix, some of the properties of this commutator 
are studied. Let us integrate the commutator (35) over 
3-dimensional x space. Then 

i[Qk(XO); ~f(X')]"'o="'o' = f~Z~lp(X'). 

Let us assume that we have a compact simple Lie 
algebra, such that gik is diagonal and positive definite. 
The change of [.3~(x); Dlx')]",o="'o' is 

(J1{i[.3~(x); D;(x')]"'o="'o'} = i[.3~(x); (JID;(x ')]"'0= ",0' , 

if we restrict ourselves to physical systems which 
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satisfy 

But 

Therefore, 

O(3)~~(X) = o. 
oA'p(x') 

i[,3~(x); o'D;(x')]",o=a:o' 

= ih!mOA~(x')[,3~(x); ,3l1m(X')]a:o=",o" 

i[Qixo); o'D;(x')]",o=a:o' 

= if;zmoA~(x')[Qk(X); ,3l1m(X')]",o="'o" 
or 

i[Qk(XO); o'D;(x')]",o="''' = hzmoA~(x')fk mn,3l1n(x'). 

Next, we compute 

igik[Qixo); o'Dlx')]",o="'o' = Pzmfk m nOA~,3l1n(x') 

1 
=-oR(x'). 

const 
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Thus, 

giki[Q;(xo); o'Dk(x')]",o=",o' = _1_ oR(x'). 
const 
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1. INTRODUCTION 

In this paper, an equal-time commutation relation 
for the energy-momentum tensor associated with an 
arbitrary Lorentz-invariant physical system is derived. 
The energy-momentum tensor is defined through the 
response of the physical system to a change of an 
external gravitational field. This definition is used by 
Schwinger in Ref. 1, where an equal-time commutation 
relation for the energy density Too(x) is obtained. For 
a restricted class of physical systems, when the gravi
tational field vanishes, the commutator takes the 
form 

- i[Too{x'); Too(x")]",o'="'o" 
= o~l)(x'; x")[T~{x') + TJ(x")]. (1) 

The derivation in Ref. I was done with a special 
gravitational field, namely, 

gkZ = Ok!' gOk = 0, goo ¥: 1, k, I = 1,2,3. 

In this paper, an attempt is made to derive an equal
time commutation relation of the form [Toix'); 
Tpy(x")]",o'=", .. , under somewhat more general condi
tions. Thus, no restrictions on the gravitational field, 
except that it be a c-number field, will be made. 

In the presence of an external gravitational field, the 
energy-momentum tensor Tllv is not conserved. Let 
us introduce the density quantity Tllv defined as 

- ! Tllv = ( - g) Tllv ' (2) 

Then we can write 
(3) 

In Ref. 2, a method to derive equal-time commuta
tion relations from divergence conditions for currents 
associated with finite-dimensional Lie groups was 
outlined, and in the last section we also generalized 
the method to an infinite-dimensional continuous 
group,3 the "vierbein group." "Infinite dimensional" 
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form 
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energy-momentum tensor Tllv is not conserved. Let 
us introduce the density quantity Tllv defined as 

- ! Tllv = ( - g) Tllv ' (2) 

Then we can write 
(3) 

In Ref. 2, a method to derive equal-time commuta
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associated with finite-dimensional Lie groups was 
outlined, and in the last section we also generalized 
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group,3 the "vierbein group." "Infinite dimensional" 
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implies in this case that the coordinate manifold of the 
group is infinite dimensional and that the coordinates 
are functions over a finite-dimensional manifold, in 
this case space-time. In the presence of the gravita
tional field, space-time is curved, and we have to 
consider general coordinate transformations in a 4-
dimensional Riemannian space. 

The energy-momentum tensor TJl.v can be regarded 
as a generalized current, and the relevant group now 
is the general coordinate transformation group. Some 
properties of this infinite-dimensional group will be 
listed in Sec. 2. In Sec. 3 the equal-time commutator 
for the energy-momentum tensor is derived and a 
consistency check of the compatibility of the com
mutator [To..cx'); Tpo(x")]",o'="'o" with the Poincare al
gebra, is performed in Sec. 4. 

2. THE GENERAL COORDINATE TRANSFOR
MATION GROUP 

Here, we shall collect some well-known properties 
of the general coordinate transformation group (see 
Ref. 3). We consider infinitesimal coordinate trans
formations in a 4-dimensional Riemannian space
time 

x'JI. = xJl. + b~JI.(x), fl = 0, 1,2,3, (4) 

where b~JI.(x) are functions of space-time. The 
Jacobian is required to exist and to be different from 
zero. 

Let QJI.(x) be the infinitesimal generators of the 
group. They satisfy the identity 

[QJI.(x'); Qix")] = f d4x C~'v"Qp(x), (5) 

where C~'Jl.N is given by 

C:'JI." = b~bjx; x')b(x; x") - b:b,v(x; x")b(x; x'). (6) 

Here, the comma means partial differentiation with 
respect to x. Since we have an infinite-dimensional 
group, we have a 4-dimensional integration to the 
right, as well as a summation over the discrete indices. 
C:'Jl.N is a 3-point function whose transformation 
properties are determined from the transformation 
properties of the 4-dimensional b function b(4)(X; x'). 
(The 4-dimensional b function transforms like a den
sity of zero weight at the first argument and like a 
density of unit weight at the second.) Thus, C:JI." 
transforms like a contravariant vector of zero weight 
at x, and like a covariant vector of unit weight at x' 
and x". Note that (5) is a completely covariant ex
pression. The infinitesimal generators Qp.(x) are co
variant vectors of unit weight. 

Let us assume that g; transforms as a scalar, vector, 
tensor, etc., under the coordinate transformation (4). 

The change of g; under the transformation is given by 

bcp == cp'(x) - cp(x) 

= - cp'Jl.b~JI. + G~cp . b~;v' (7) 

Here, the G: are the generators of the linear group. 
They satisfy the commutation relation 

[G;; Gp] = b;Gp - opG;. (8) 

3. THE ENERGY-MOMENTUM TENSOR 

Let us consider a physical system which interacts 
with an external gravitational field gVJl.(x). We define 
the energy -momentum tensor as 

bR(x) = (- g)!TJl.vbgJl.V = 1'Jl.vbgJl.V, 

bS = f d4x bR(x), (9) 

where S is the action for the system. (Compare Ref. 
2.) Then TJI.'(x) is, by definition, a symmetric quantity, 
and Eq. (3) holds in the presence of a nonvanishing 
gravitational field. Following Schwinger,! we must 
have, for arbitrary variations of gJl.V, the relation 

-if d4x"[1'oi x'); bR(x")]b(x~; x~) 
= ap'o'TpJl.(x') - b'Dix'), (10) 

where b' gives the explicit dependence of the operators 

ToJl. and DJI. upon the external gravitational field. In 
Ref. 2, we made an assumption about the explicit 
dependence of the divergence of a current upon the 
external field, for finite-dimensional algebraic struc
tures [Eq. (32) of Ref. 2] and also generalized to an 
infinite-dimensional situation [Eq. (71) of Ref. 2]. The 
following expression for the functional derivative 
b'Dv(x')/bgllro(x") is thus suggested, in analogy with 
Eq. (71) of Ref. 2:. 

b'Dv(x') fd 4 CP - ( ) ----'-'----'" = X v,,,,,Tpro x , 
bgJl.W(x") r 

(11) 

where q, Jl.N is given by (6). Finally, we get the follow
ing equal-time commutation relation for the energy
momentum tensor: 

-i[1'oix'); 1'vro(x")]b(x~; x~) 

= ap' b'1'pp.{x') -fd4X CP, ,,1' (x). (12) 
bgvro(x") JI. v pro 

This relation holds in the absence of an external per
turbation, and because (-g)! = 1 in flat space-time, 
we can write 

-i[Toix'); Tvw(x")]b(xo; x~) 
':lP' b'1'p,lx') fd 4 CP T ( ) = u - X JI.'V" pro X • 

bgvro(x") 
(13) 

Note that for v, ill = 1, 2, 3 the right-hand side of 
Eq. (13) should be symmetrized. 
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4. THE POINCARE ALGEBRA 

In order to see that the Poincare algebra follows 
from the equal-time commutation relation for the 
energy-momentum tensor derived in Sec. 3, we define 
in flat space-time the operators 

Pixo) = f d
3
x Toi x) 

and 

Milixo) = f d
3
x (Tl'o(x)xv - Tvo(x)xl')' (14) 

We compute next the equal-time commutator between 
PI' and Mpv: 

i[Pix~); Mp.(x~)l"o'="'o" 

= if d3x"[P ix~); Tpo(x")]x~ 

- i f d3X"[Pix~); Tvo(x")lx~ 

= f d
3
x" f d

4
x' f d

4
x C:'pnT"o(x)x~ 

-f d3
x" f d4

x'J d
4
x C:'vnT"o(x)x;. (15) 

Let us first study the case where fl = i, P = k, v = I, 
and i, k, 1= 1,2,3. Then, 

-i[Plx~); MkZ(xm",o'="'o" 

= f d3
x"J d\'J d

4
x C;!"T"o(x)xZ 

- f d
3
x"f d

4
X'J d

4
x ct;k"T"o(x)x~ 

= f d3x'Tzo(x'; X~)gik 

- f d3x' TkO(x'; X~)giz (16) 

or 

-i[Pi(X~); MkzCx~)]",o'="'o" = PI(X~)g'k - Pix~)gi!' 
for i, k, I = 1,2,3. (17) 

In order to establish that the operators M kZ are con
served, we consider the equal-time commutator be
tween Po and M kZ : 

In the limit of flat space-time, T"v is conserved. Thus, 

-i[Po(x~); MkZ(x~H~o'="'o" = f d
3
x(Tzk - TkZ) = O. 

In the same manner, we have 
(19) 

-i[Po(x~); MOI(x~)]",o'="'o" = -Pz(x~), 

and 
for I = 1, 2, 3, (20) 

-i[Pk(X~); Mo1(xm",o'="'o" = gkIPO(X~), 
for I, k = 1,2,3. (21) 

Next, we consider the commutator 

-i[Milxo); MkzCXm",o=",o' 

= -if d
3
x f dV{[T;o(x); TkO(x')]",o=",o,xjx; 

- [TiO(x); ~o(x')j"'O="'o'XjX~ 

- [Tjo(x); TkO(x')]",o=",o,xix; 

+ [TjO(x); TlO(X')]"'O="'O'XiX~}. (22) 

Let us look at the first and last terms of this equation. 
From (12), we get 

-i[T,;o(x); TkO(x')]",o=xo' 

=;;m b(3)T mi(X) -JdX fd 4x" Ct(:T (x") 
c5gko(x') 0 ,k pO , 

m = 1,2,3, (23) 
where 

(24) 

and 

-i[Tjo(x); Tzo(x')]",o="'o' 

= am c5(3)T mix) -fdx fd4X" CP':T (X"). (25) 
bg!O(x') 0 11 pO 

If (23) and (25) are substituted into (22) and integrated 
over 3-dimensional x space and x' space, after a partial 
integration over x, we get the following term, which 
is symmetrical in k and I: 

J
d3xfd3X' (b(3' T;;(x) x; + b(s) Ti;(X) x~). (26) 

bgkO(x') bgZO(x') 

The second and third terms in (22) give rise to exactly 
the same expression with opposite sign. Thus, there 
is no contribution from the gradient terms in Eq. (22). 

We also study the term 

J d4x J d4x"J d3x' Cr,;:Tpo(x")xjx; 

= f d4x f d3X'[b~:)(x'; x)TiO(x')xjx; 

- b(4)(x' x')T, (x)x x'] .i' kO j! 

= -gilf d3x TkO(x)xj + gkif d3x TiO(x)xZ' (27) 
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Thus, 

i[Milxo); MktCx~n"o="'o' 

= gaf d3x TkO(X)Xj - gkj f d3
x ~O(X)XI 

- gik f d3x Tzo(x)xj + glj f d3x ~O(X)Xk 

- gnf d3x TkO(x)Xi + gkJ d3x TjO(X)XI 

+ gjk f d3x TzO(X)Xi - gUf d3x TjO(X)Xk 

= gaMklxo) - gkjMil(XO) 

- gikMllxo) + gljMiixo)' (28) 

In the same way, the commutator -i[Moi(XO); 
Mkl(X~)]",o=",o' can be investigated. Then, we can 
conclude that the algebra of the inhomogeneous 
Lorentz group follows from the equal-time commuta
tion relation for the energy-momentum tensor Tllv ' 

Finally, we consider the equal-time commutation 
relation for the energy density Too(x): 

- i[Too(x'); Too(x")]t5(x~; x~) 

= all t5'Toix') + t5(4)(x" x")T. (x') 
t5goo(x") .0 , 00 

- t5~~)(x"; x')Too(x"). (29) 

JOURNAL OF MATHEMATICAL PHYSICS 

But in flat space-time, Tllv is conserved, and we can 
write 

- i[Too(x'); Too(x")]t5(x~; x~) 

= all t5'Toi x') + t5(x" x") . t5(~)(x" x") 
t5g00(x") 0, 0 .t , 

x [T~(x~) + T~(x")]. (30) 
Here 

all t5'Toll (X') = 0 
t5g00(x") 

(31) 

for a restricted class of physical systems. This has been 
verified by Schwinger.1 For systems with higher spin, 
(31) is usually different from zero.4.5 
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Error bounds on the asymptotic approximation for large argument of the zeros of the Hankel function 
of the first kind as a function of its order are found. These zeros occur as residue poles in the problem 
of scalar diffraction of high-frequency plane waves by a totally reflecting sphere. 

1. INTRODUCTION 

Here, H!({J) is the Hankel function of the first 
kind and 'l'n({J) is the nth complex zero in the first 
quadrant (ordered by increasing modulus) of H!({J) 
as a function of its order '1'. The asymptotic approxi
mation of 'l'n({J) for large real (J is 

'l'n({J) = (J + (~)! ane-f1l
; + G)! a;:~t.ri + (Xn({J), 

(1) 

where an is the nth negative zero of the Airy function 
Ai (u) and (Xn({J) = o ({J-l). 

We give a general theorem showing how error 
bounds for the asymptotic approximation of complex 
zeros depend on error bounds for the asymptotic 
approximation of the functions. After finding error 
bounds on the asymptotic approximation of H!({J) 
in terms of the Airy function Ai (u), we use this 
general theorem to find a strict bound on (Xn({J) in (1) 
in terms of several constants. In addition, these 
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i[Milxo); MktCx~n"o="'o' 

= gaf d3x TkO(X)Xj - gkj f d3
x ~O(X)XI 

- gik f d3x Tzo(x)xj + glj f d3x ~O(X)Xk 

- gnf d3x TkO(x)Xi + gkJ d3x TjO(X)XI 

+ gjk f d3x TzO(X)Xi - gUf d3x TjO(X)Xk 

= gaMklxo) - gkjMil(XO) 

- gikMllxo) + gljMiixo)' (28) 

In the same way, the commutator -i[Moi(XO); 
Mkl(X~)]",o=",o' can be investigated. Then, we can 
conclude that the algebra of the inhomogeneous 
Lorentz group follows from the equal-time commuta
tion relation for the energy-momentum tensor Tllv ' 

Finally, we consider the equal-time commutation 
relation for the energy density Too(x): 

- i[Too(x'); Too(x")]t5(x~; x~) 

= all t5'Toix') + t5(4)(x" x")T. (x') 
t5goo(x") .0 , 00 

- t5~~)(x"; x')Too(x"). (29) 

JOURNAL OF MATHEMATICAL PHYSICS 

But in flat space-time, Tllv is conserved, and we can 
write 

- i[Too(x'); Too(x")]t5(x~; x~) 

= all t5'Toi x') + t5(x" x") . t5(~)(x" x") 
t5g00(x") 0, 0 .t , 

x [T~(x~) + T~(x")]. (30) 
Here 

all t5'Toll (X') = 0 
t5g00(x") 

(31) 

for a restricted class of physical systems. This has been 
verified by Schwinger.1 For systems with higher spin, 
(31) is usually different from zero.4.5 
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Error bounds on the asymptotic approximation for large argument of the zeros of the Hankel function 
of the first kind as a function of its order are found. These zeros occur as residue poles in the problem 
of scalar diffraction of high-frequency plane waves by a totally reflecting sphere. 

1. INTRODUCTION 

Here, H!({J) is the Hankel function of the first 
kind and 'l'n({J) is the nth complex zero in the first 
quadrant (ordered by increasing modulus) of H!({J) 
as a function of its order '1'. The asymptotic approxi
mation of 'l'n({J) for large real (J is 

'l'n({J) = (J + (~)! ane-f1l
; + G)! a;:~t.ri + (Xn({J), 

(1) 

where an is the nth negative zero of the Airy function 
Ai (u) and (Xn({J) = o ({J-l). 

We give a general theorem showing how error 
bounds for the asymptotic approximation of complex 
zeros depend on error bounds for the asymptotic 
approximation of the functions. After finding error 
bounds on the asymptotic approximation of H!({J) 
in terms of the Airy function Ai (u), we use this 
general theorem to find a strict bound on (Xn({J) in (1) 
in terms of several constants. In addition, these 
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constants have been evaluated numerically to obtain 
results such as I OC1(,8) I ~ 1.71/,8* for ,8 ~ 20. 

Interest in the zeros of the Hankel function as a 
function of its order arises from their importance in 
the problem of scalar diffraction of high-frequency 
plane waves by a totally reflecting sphere. We give a 
brief discussion of this problem here and refer the 
reader to the paper of Nussenzveig1 for more infor
mation. If a is the radius of the sphere, K is the wave
number which is 27T divided by the wavelength A, and 
,8 = Ka; then that the waves are of high frequency 
relative to the size of the sphere is expressed by the 
conditions ,8 » 1 and ,8i » 1. 

For high frequencies, a large number of terms of 
the partial-wave-series solution is needed to obtain a 
good approximation to the total field. In order to 
avoid this difficulty, Watson2 transformed the partial
wave series into an integral and after modifying the 
contour, he changed the integral into a residue series 
whose residue poles are the zeros vn(,8). The zeros 
v n(,8) are symmetrically distributed with respect to 
the origin and lie in the first and fourth quadrants. 
In the first quadrant, there are an infinite number of 
zeros and they all lie close to the curve 

Re [(v2 + ,82)t - V arc cosh (vi ,8)] = O. 

The residue poles inside the contour are the zeros 
vn(,8) in the upper half-plane.1 We study the first 
zeros which are near the origin, since the first terms 
are the dominant terms of the residue series. These 
same poles have been used by Regge3 and others in 
recent quantum mechanical studies. 

Because of the importance of these poles in the 
residue series, numerous studies have been made 
concerning them. Perhaps the first asymptotic 
approximation of the zeros vn (,8) was found by van 
der Pol and Bremmer4 using the Debye expansion for 
the Bessel function. Franz6 used the saddle-point 
method on the Sommerfeld integral representation 
for the Hankel function and obtained essentially the 
first two terms of (1). Next, Magnus and Kotin6 did 
an extensive theoretical study of these zeros obtaining 
results such as the simplicity of the zeros, the existence 
of infinitely many zeros, and the asymptotic behavior 
of the zeros for large Ivl. Later, Keller, Rubinow, 
and Goldstein7 obtained asymptotic expansions of 
vn (,8) for large and small values of,8 and also for large 
values of n. Their expansion for large ,8 is equivalent 
to (1). In addition, they computed approximate values 
for certain zeros for specific values of ,8; however, 
neither they nor anyone else has obtained strict a 
priori error bounds for these approximations to the 
zeros. Recently, Cochran8 gave a systematic theoreti-

cal treatment of these zeros, including a new derivation 
of (1). 

It is desirable to determine a priori error bounds 
for the asymptotic expansion (1) in order to obtain 
error bounds on Watson's approximation to the total 
field in the scattering problem. In particular, vn(,8) is 
approximated six times by various truncations of (1) 
in obtaining a shadow-region expansion for the total 
field. 1 Obtaining a priori bounds on these approxi
mations would be an important first step in deter
mining the accuracy of the shadow region approxi
mation. 

Many other physical problems require the investi
gation of zeros of specific transcendental functions. 
The method applied here to find precise error bounds 
on the asymptotic approximation (1) could be applied 
to study the zeros of other transcendental functions. 
For example, one could analyze the zeros as a func
tion of the order v of dH!(,8)ld,8 and dH!(,8)ld,8 + 
icH!(,8) , which occur in diffraction problems with 
cylindrical and spherical symmetry. 

2. AN APPROXIMATION THEOREM FOR 
COMPLEX ZEROS 

From the definition of an asymptotic expansion, 
we know that the difference between a function and 
its truncated asymptotic expansion is of the order of 
magnitude of the first omitted term. Since the first 
omitted term is usually available as an error estimate, 
the problem of finding strict error bounds seems to 
have been somewhat neglected. However, strict error 
bounds are useful both theoretically and numerically. 
Here, we give an approximation theorem which is a 
rigorous statement of the intuitive idea that if two 
functions are close together, then their zeros are close 
together. 

Theorem 1,' Suppose fez) = g(z) + E(Z), where fez) 
and g(z) are holomorphic in. the disk Iz - bl ~ p ami 
g(z) has exactly one zero b in the disk. Let 

m = min Ig(b + pet~l, E = max IE(b + pet8)1, 

and 
6 6 

M = max Ig'(b + pei6)1. 
8 

If m > E, thenf(z) has exactly one zero c in the disk 
and Ie - bl ~ Ep2M/m(m - E). 

The proof of this theorem and an application to the 
complex zeros j •. n of the Bessel function J.(z) were 
given in an earlier paper.9 
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3. APPROXIMATION OF THE HANKEL 
FUNCTION 

If one applies Olver's asymptotic approximation 
theorem for complex variables10 to his uniform 
asymptotic approximation of Bessel functions of 
large order,n one obtains12 an asymptotic approxi
mation with error bound for H!({J) for real positive 
(J and complex 'I' such that 0 ~ arg 'I' ~ l1T in terms 
of the Airy function Ai (u). 

If 

and 

/arg (-u)/ < 11T, 
then 

'JIt e!"i(1 _ Z2)! 2i -, - H!({J) = Ai (u) + E(U, (J), (2) 

where 
/E(U, (J)/ ~ ('JI2/'JI1)(e2vlF(u.P) - 1)n-1(u)M2(u), (3) 

F(u, (J) = 13 r+oo 

/s-t/(se-hi)/Ids/, (4) 
(J J, exp (hi) 

5 Z2(Z2 + 4) 
1(') = 16,2 + g (Z2 _ 1)3 ' 

E(u) = /exp (lui)l, 

M~(u) = E2(U) /Ai2 (u)/ + n-2(U) IAi2(ue-hi)/ 

for -11T ~ arg u ~ 1T, 

and 

M(u) = M(ii) for /arg (-u)/ ~ l1T, 
1'1 = max {1T /zll M~(z)}, 

'arg _, :":;1,, 

'1'2 = max {1TE(z)M(z) Izt Ai (z)/}. 
-!,,:::; arg .:::;" 

4. APPROXIMATION OF THE vn({J) 
In our application of Theorem 1, we take feu, (J) 

as the left-hand side of (2) and g(u) = Ai (u). It is 
clear that the continuous dependence of f and E on 
the parameter {J does not affect the application of the 
theorem. If p < t(3)1Ianl, where an is the nth negative 
zero of the Airy function Ai (u), then the entire disk 
lu - ani ~ p is contained in the sector larg (-u)1 < 
!1T. It has been shown12 thatf(u, (J) is a holomorphic 
function of u for lu - ani ~ p < 31 Ianl/2. 

Here, m = min /Ai (u)/, E(fJ) = max /e(u, fJ)/, and 
M = max IAi' (u)l, where lu - ani = p. Since E({J) is 
a decreasing function of (J from (3) and (4), we can 
choose (J large enough so that m > E({J). Conse
quently, there exists a simple zero e off(u, (J) such that 
Ie - ani ~ p and Ie - ani ~ E({J)p2M/m[m - E({J)]. 
Since the coefficient of H!({J) on the left-hand side of 

(2) is never zero for larg (-u)1 < 11T, e must be the 
desired zero of H!({J) as a function of u. If we let 
e = 'JIi ei "ib, then b is a zero of H!({J) as a function of 
, and 

b = (an + 6)e-i "izi/{Ji, (5) 

where 161 ~ p and 

161 ~ E({J)/M/m[m - E({J)]. (6) 
We now obtain an expression for the zero of H!({J) 
as a function of the order'll by using 'JIn({J) = (J/z(b). 

If we make use of the knownll Maclaurin's series 
for zW in 'lin = (J/z(b), then' 

'JIn({J) = (J + 2-t{Jb + 1
702-i{Jb2 

+ ~gg{Jb3 + (Jb4Rib), (7) 
where 

R (b) = _1_ r dw (8) 
4 21Ti Jc z(w)w'(w - b)' 

e being a circle with center at the origin and radius 
R < (!1T)i. The result of replacing one b in the second 
through fourth terms of (7) by (5) is 

'JIn({J) = {J + (2rf{Jf(an + 6)e-hizi 

+ 170 (2-i){Jf(an + 6)e-hizi b 

+ H-Si(an + 6)e-hizi b2 + (Jb'Rib). (9) 

Now we employ Maclaurin's series for zi(b) in (9) and 
combine similar terms to obtain 

(Jf(a n + 6)e-hi 2f{Jt(a n + 6)e-i "ib 
'JIn({J) = {J + 2f + 60 

+ 61{Jf(a n + 6)e-
hi

b
2 

{Jb 4R (b) 
6300 + 4 

+ (Jt(an + 6)e-hiba(Sa + 7S2 + 139S1) , 
2* 10 x 2i 700 

where 

Sm(b) = _1 r zi(w) dw . (10) 
21Ti Jc wm(w - b) 

Replacing one b in the third and fourth term of the 
expression above by (5) and utilizing Maclaurin's 
series for zi(b) again, we have 

(Jt( + 6) -hi 
'JIn({J) = {J + an t e 

2 

+ 2t(an + 6)2e-hi (an + 6)2e-hib 

60fJf 700{Jf 
(a + 6)2e-hib2(2tS 61S ) + n __ 2+ __ 1 

{Jf 60 6300 

+ (Jf(a n + 6)e-hiba(Sa + 7S2 + 139S1) 

2f 10 X 2i 700 

+ (Jb4Rib). (11) 
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The bound on IE(u, ,8)1 in (3) is simplified if we use 
the resuItI° that '1'2/'1'1 ~ 1 and let E-l and M2 be the 
maximums of E-l(U) and M2(U) for Iu - ani ~ p, 
Pr and Qr be the maximum and minimum of Iz(')1 
for I" = r, and Ir be the maximum of the integral in 
F(u,,8) for I" ~ r. Now, lu - ani ~ p implies 
I,/zil ~ (Ianl + p)/,8i. If we assume that IQzil ~ 
(Ianl + p)/,8! implies I" ~ r, then ,8 ~ ,80 implies 

E(,8) ~ (e2V1PrIr//J - 1)E-IM2. (12) 

Using (6) and the inequality eO) - 1 ~ x/(l - x) 
applied to the right-hand side of (12), we conclude 
that 

£51 ~ 2VIPrlrE-IM2p2M/,8m(1 - 2vlPrl r/,80) 

X {m - [exp (2vlPrl r/,80) - 1]E-I Mz}, 

which we express as 

1£51 ~ D(,8o, p)/,8. (13) 

From (11) and (13) we obtain the theorem below. 

Theorem 2: Suppose 0 ~ arg v ~ t7T, P < 3t lanl/2, 
and ,8 ~,80 where ,,/zil ~ (Ianl + p)/,8! implies "I ~ rand 

(e2v1PrIr//J _ l)E-IM
2 
< m. 

Then there exists a simple zero vn (,8) of H!(,8) with an 
asymptotic approximation given by (1) such that 

IIX (,8)1 < ~ + 2t(2 lanl + p)D + (Ianl + p)3P! 
n - 2i,8i 60Bt 700,8 

(lanl +. P)4.P!(2! IS21 + 61IS.11) 
+ ,83 60 6300 

(lanl + p)4p; IR I + (Ianl -+: p)4p; 
+ ,8t 4. ,83 

x (ISal + 71S21 + 139 IS11). 
2! 10 x 2i 700 

(14) 

5. ERROR BOUNDS FOR THE APPROXIMATION 
TO THE FIRST ZERO 

In this section, we use computed values of the 
constants occurring on the right-hand side of (14) to 

find an error bound for IIXI(,8)I. The values of m, M, 
E-l, M 2 , Pr, Qr' and Ir have been calculated and 
tabulated12 for various values of p and r. It has been 
proved that VI ~ 1.25, and it has been calculated that 
VI ~ 1.288.12 All numbers given in this paper have 
been rounded to obtain the weakest inequalities. 

The first negative zero of Ai (u) is al = -2.33810. 
If we choose p = 0.1, then p < 3t lall/2, m = 0.070, 
M = 0.710, and E- I M 2 = 0.292. If ,80 = 20, then 
I Qzil ~ 2.438/(20)i implies "I ~ 0.4. Using Pu = 
1.35 and 10.4. = 0.1302, we find E(,8) ~ 0.006, from 
(12), and D = 0.214, from (13). From (8) and (10), 
it follows that I R4.(b) I ~ [QRR2(R - r)]-1 and 

I Sm(b) I ~ p![Rm-l(R - r)]-1, 

where r < R < (!7T)i. Using the above inequalities 
with R = 2.6 and r = 0.4, it has been shown12 that 
IS31 :::; 0.087, IS21 ~ 0.074, ISll ~ 0.56, and IR41 ~ 
0.206. Incorporating the above values into (14) yields 
I IXI (,8) I ~ 1.71/,8i for ,8 ~ 20. It follows immediately 
that 

1'1'1(,8) - (,8 + 1.856,8!e!1fi)1 ~ 1.78/,8t 

and 1'1'1(,8) - ,81 :::; 2.1O,8! for ,8 ~ 20. 
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The existence of a globally extended branch of pointwise positive solutions of a class of nonlinear 
eigenvalue problems is established. The branch bifurcates from the lowest eigenvalue of the associated 
linearized problem. The general theorem is then applied to the Hartree equation of the helium atom, 
giving a rigorous proof for the existence of a solution of this equation. 

I. INTRODUCTION 

The purpose of this article is to give a rigorous proof 
for the existence of a pointwise positive solution for the 
nonlinear Hartree equation of the helium atom, which 
is of the form 

-t~u(x) - - u(x) + u(x) dy = AU(x), 2 J u2
(y) 

rex) rex - y) 

with the auxiliary condition 

IIul1 2 
= J u\y) dy = 1. 

A solution of this equation is called a self-consistent 
field. For the connection of this equation with the 
Schrodinger equation of the helium atom, see, for 
example, Hartree's book.! Numerical iterative calcu
lations indicate convergence of the procedure, and the 
A calculated is in good agreement with variationally 
calculated values for the Schrodinger equation, whose 
lowest eigenvalue is connected with the lowest eigen
value of the above nonlinear equation; but no rigorous 
proof has been given for the existence of such a solu
tion. The proof is constructed along the lines exposed 
in Refs. 2-5. In these places, the nonlinear eigenvalue 
proble~ is supposed to be of the form 

Bu + C(u) = AU, 

where B is a linear self-adjoint operator and C is a 
nonlinear operator, homogeneous of degree greater 
than one and satisfying a special estimate 

IIC(u) - C(v)11 ~ K(llull m
- 1 + Ilvll m

-
l
) Ilu - vii, 

where m is the degree of C: 

C(tu) = tmC(u). 

From this, it follows immediately that C is a bounded 
operator, which is certainly not true for the nonlinear 
term of the Hartree equation which is not defined 
everywhere. But on the domain Dt.. of the Laplacian, 
which is the natural domain for the solutions of this 

equation, the nonlinear term is bounded with respect 
to the graph norm of the Laplacian; or, precisely 
stated, 

where 

IIC(u)11 
sup--< 00, 
UEDt.. Ilullt.. 

Ilull! = IIul1 2 + II~u112 for u EDt... 

So, before entering the discussion proper, we should 
adapt standard bifurcation analysis, as presented in 
the papers mentioned above, to this more general 
situation. 

II. THE GENERAL THEOREM 

Let G be a bounded or unbounded region of IR n. 

Furthermore, we define the graph norm Ilulis for any 
self-adjoint operator S by 

\lulls = at IISul1 + {J Ilull, 

VUE Ds , at > 0, (J ~ 1. 
Consider an equation of the form 

Bu + C(u) = AU 

in the real Hilbert space £2(G), where Band C have 
the following properties: 

(1) B is self-adjoint and bounded below, the lower 
bound f-to being an isolated eigenvalue. The resolvent 
(B - f-t)-I is strictly positive for f-t < f-to; that is, non
negative functions are transformed into strictly posi
tive functions by (B - f-t)-I. 

(2) The nonlinear operator C is generated by an 
m-linear form C(ul , U2, ... , um) defined on DB; that 
is, C(u) = C(u, U, ••• ,u) and this m-linear form is 
such that C(u, u, ... , u, h) = q",h, where q", is a 
bounded measurable function. 

(3) There is a self-adjoint operator S which has the 
same domain as B, such that 

(a) II C(ul , u2 ,' •• ,um)11 
~ Ko \lu111sllu21ls' .. lIum lls, for Ui E DB' 

2505 
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and suppose that IIC(u)11 ~ Kl Ilull m
-

1 lIulls, where oc 
can be chosen as small as one wishes, independently of 
K1 • The first inequality implies that 

IIC(u) - C(v)11 ~ K 2(llulls-1 + Ilvlls-l) Ilu - viis 
and that C is continuously differentiable in the sense 
of Frechet as a mapping from DB into V(G): 

and 
C(u + h) - C(u) = duCh + R(u, h) 

lim IIR(u, h)11 = 0, V u, hE DB' 
111'11 8 -+ 0 Ilhlls 

(b) C is relatively compact with respect to S; that is, 
from lIutlls < const follows the existence of a subse
quence ui' such that C(Ui') converges strongly. 

(c) duC is symmetric and relatively compact with 
respect to Sand (duC' h, h) > (quh, h) > 0, V u, h E DB 
and h ':F 0, u > O. 

(4) B + qu, with u E DB, where qu is regarded as a 
multiplicative operator, has no eigenvalues in the 
interior of the essential spectrum of B, whose infimum 
shall be denoted by ft., which is not supposed to be 
an isolated point of the essential spectrum. Under these 
assumptions, the following result holds true. 

Theorem: There exists an interval (fto, ftc), ftc ~ ft. 
such that: 

(a) On the interval (fto, ftc), there is a unique branch 
of solutions U;" everywhere positive, where Ilu,dls and 
Ilu;,11 are continuous functions of A. 

(b) Ilu;,11 is monotonically increasing with A, and 
II u;,ll s and II U;, II tend to infinity if ftc < ft.· If ftc = ft., 
then Ilu;.11 and lIu;.lls may either both stay bounded or 
both diverge. 

(c) There are no other positive solutions for fto < 
A < ftc' 

Proof: 
(a) Bifurcation analysis: Let ft be a simple isolated 

eigenvalue of B with eigenvector v normalized to one. 
Then the equation 

Bu + C(u) = AU 

can be split up in two equations, namely, 

w = (B - ft)-IP(lJw - C(w + EV» = F(w, 15, E), 

{jE = (C(W + EV), v), (1) 

where U = W + EV, A = ft + lJ, and P is the projection 
onto [v]1-. F is a mapping from Ds into D s , which can 
be estimated in the graph norm. One has to use hy
pothesis (3a) of the theorem and the fact that 

IIwll ~ Ilwlls, II(B - ft)-IPII = M 1, 

IIS(B - ft)-IPII = M 2 • 

The last equality stems from the fact that S(B - ft)-1 
is a bounded operator by the closed graph theorem. 
Thus one is led to the following estimates for F: 

IIF(w, lJ, E)lls 
~ (ocM2 + (JMl)(b IIwlls + K2 11w + Evils) 

IIF(w, 15, E) - F(w', b, E)lls 
~ (ocM2 + (JM1)[{j + K2(llw + Evlls-1 

+ Ilw' + EvilS-I)] Ilw - w'lls. (2) 

From these estimates, it follows that there are con
stants 150 , EO, and"o such that, for 1151 < 150 , lEI < EO, 
and Ilwlls < "0' F is a contraction mapping, so that 
there is a unique solution web, E) with Ilw(b, E)lls ~ 
KEm. The second equation of (1) can be treated as in 
Ref. 4. Thus, the results which are derived there for a 
bounded nonlinear term C(u) remain valid in this case. 

(b) By hypothesis (1) of our theorem, the lower 
bound of B + f, where f is a bounded measurable 
function, is simple if it is an isolated eigenvalue and 
the corresponding eigenfunction can be chosen 
positive. To prove this, we remark that B + f is 
bounded below, because Band f are. Then we choose 
ft and ft' such that ft' + f > 0 and ft + ft' is smaller 
than the lower bound of B + f and B and such that 
II (B - ft)-I{ft' - f)11 < 1. Then we write 

[B - ft - {ft' - f)]-1 

= (B - ft)-I[1 + (ft' - f)(B - ft)-1 + .. ']. 

Because (B - ft)-1 is strictly positive, the above equal
ity proves that (B + f - ft - 1-")-1 is strictly positive 
and so, by [10], if the lower bound of B + f is an 
isolated eigenvalue, then it is simple and the corre
sponding eigenfunction can be chosen positive. 

(c) From hypothesis (2) of the theorem, we con
clude that every solution of Bu + C(u) = AU is at the 
same time an eigenvector <;>f the linear operator 
B + qu because C(u) = q .. . u. In (a), we have proven 
that the results of standard bifurcation theory as in 
Refs. 2-4 are applicable. So, by repeating the respec
tive arguments in Ref. 5, we get the existence of a 
branch of positive solutions U;, in some interval 
<1-'0' fto + y). 

(d) Next, we show that the branch we have con
structed in (c) can be extended to some maximal 
interval <1-'0' ftc) with ftc ~ ft.· To see this, we con
sider the two equations 

Bu;. + C(u;) = AU;., 

B(u;. + h) + C(u;. + h) = (A + lJ)(u;. + h), (3) 
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where u). is a positive solution of the first equation. 
From (b), we know that, if B + qu has a lowest iso
lated eigenvalue, its eigenfunction is positive, so that 
the higher eigenvalues cannot have positive eigen
functions because such a function would not be orthog
onal to the first one. Therefore, our u). is necessarily 
the first eigenvalue of B + qu).' Further, duC is rela
tively compact with respect to S. This is equivalent to 
saying that it is relatively compact with respect to B 
since IluliB and Ilulis are equivalent because of the 
closed graph theorem. But a relatively compact, 
symmetric perturbation does not change the essential 
spectrum of B. So, below ftc, B + du).C has only 
eigenvalues of finite multiplicity, and the first one is 
strictly bigger than that of B + qu). because of 
(duFh, h) > (qui, h). From that, we conclude that A 
is in the resolvent set of (B + du).C - A). So, we take 
the difference of the two equations in (3) and invert, 
arriving at 

h = (B + du).C - A)-l[!5(U). + h) - R(u)., h)]. (4) 

As is easily checked, the right-hand side is a contrac
tion mapping in the graph norm for !5 and Ilhlls 
sufficiently small. Therefore, it has a solution h6' with 
IIh611s being a continuous function of!5 and IIh611s ~ 0 
for !5 ~ O. This means that u). is continuous in the 
graph norm. From that, it follows that B + qu). con

verges relatively uniformlYS to B + qu if A ~ ft. From 
Jl 

this, we conclude that, because A was the first eigen-
value of B + qu). which is simple, it has to stay the 
first one, so that the functions are always positive. 
This shows that the branch we had constructed in (c) 
can be extended to a maximal interval (fto, ftc), where 
ftc ~ ft .. because we know from hypothesis (4) that 
B + qu). has only eigenvalues A ~ ft •. 

(e) Let us now assume ftc < ft •. Thus, ftc is below 
the essential spectrum of B and can therefore be, at 
most, an eigenvalue of finite multiplicity if it is an 
eigenvalue at all. Let Q be the projection on its eigen
space (Q = 0 if ftc is not eigenvalue) and letP = 1 - Q. 
Our equation Bu). + C(u).) = AU). can be rewritten as 

Pu). = (B - ftc)-lp«A - ftc)u). + C(u).», 

o = Q«A - ftc)u). + C(u).». 

Now let ftc < ft •. Since C is relatively compact with 
respect to S, we can choose a sequence Ai such that 
C(u;.) converges strongly. Ai - ftc ~ 0; thus, PU).j 
converges strongly. From this sequence, we can once 
again select a subsequence Ai' such that QUA! con
verges strongly, because it is restricted to a' finite
dimensional subspace. So u)./ converges strongly. 

Rewriting our equation now as 

U). = (B - ft)-l[(A - ft)u). - C(u).)], (5) 

where ft is from the resolvent set of B, we conclude, by 
applying S to this equation, that u). converges even in 
the graph norm. Therefore, it is a solution of our 
equation and, by the same continuity argument as 
before, it belongs to the first eigenvalue of the asso
ciated linear comparison operator. Therefore, it is 
positive and, by (d), we can continue to the right, 
contradicting the definition of ftc' So Ilu).lls ~ 00 for 
A ~ ftc if ftc < ft.· If ftc = "t-t., the extension argument 
fails, because (B + du).C - A) need not be invertible 

for A = ft. since the limit point of the essential spec
trum is not shifted by the strictly positive operator 
du).C. 

(f) Multiplying Eq. (5) by S and taking the norm, 
we get the estimate 

Using hypothesis (3a), we can rewrite it, bringing all 
II Su II to the left side, as 

IISu).11 (1 - (XMK 1 Ilu).lIm-1
) 

~ Ilu,\11 (KM + Kdl IluJm-l). (6) 

Now, let us assume that Ilu,\11 remains bounded while 
IISu,\11 goes to infinity; then we immediately get a 
contradiction if we choose (X small enough in equality 
(6) to make' the left side positive. Thus, both expres
sions remain finite or both diverge. 

(g) To prove that IluJ increases monotonically, let 
us calculate its derivative: 

d Ilu,\lll! = lim 2(U'\, ~). 
dA 6-+0 !5 

Introducing (4) into this expression, we get 

which is positive because the lowest eigenvalue of 
B + du). C is larger than A. 

(h) The proof that, for fto ~ A ~ ftc, there are no 
other positive solutions reads exactly as in Ref. 5, and 
is not repeated here. 

Remark: If m is odd, there is a second branch 
starting at fto and going to the right, consisting simply 
of -u).. If m is even, then a second branch starting at 
fto goes to the left, but secondary bifurcation may 
occur on this branch. 
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III. THE HARTREE EQUATION 

To apply the general theorem to the Hartree equa
tion, the assumptions (1)-(4) have to be verified. But 
in order to do this, one has to transform this equation 
into a I-dimensional form. For that purpose, we 
observe that the linear part is reduced by the subspace 
of spherically symmetric functions and that the non
linear term transforms this subspace into itself. To 
verify the last statement, we introduce the series ex
pansion 

1 00 rl< 
--=--- = 2 11 P1(cos e), <J: (x, y) = e, 
rex - y) 1=0 r; 

r> = max (r(x), r(y», r < = min (r(x), r(y», 

in the integral S u2(y) dy(r(x - y). This results in 

J U2(y) dy = (00 r2 dr ("sin e de (21T dcp u2(r) 
rex - y) Jo Jo Jo 

00 rl 
X 2 1;1 PI ( cos e) 

1=0 r> 

f
oo 1 

= 47T r2u2(r) - dr 
o r> 

= 47T(1 J. u2(s)s"2 ds +J. u2(s)s dS) 
r s<r S>T 

= qu(r). (7) 

By restricting the Hartree equation to the subspace 
of spherically symmetric functions, this equation 
becomes 

- - - r - - + qir) u(r) = Au(r). 
( 

1 d
2 

2 ) 
2r dr2 r 

Substituting, as is usually done, x(r) = ru(r), we see 
that this equation becomes an equation in L2(0, 00): 

-G :r2 -; + q.,(r»)x(r) = Ax(r); 

q",(r) = 47T(! f. x2 ds +f. x
2 

ds), 
r 8<r 8>r S 

with the boundary condition x(O) = O. In the domain 
D~ of the second derivative d2(dr2, with the above 
boundary condition, the graph norm I\xl\~ is intro
duced: 

IIxll~ = oc(Loo(X
lf

)
2dst+ fl(LX'x2dSr 

We note that 

IIull2 = J dyu 2(y) = 47T J r2
u

2
(r) dr 

= 47T J x2 ds = 47T Ilx11 2
, 

IluliA = 47T Ilx11A2. 
The Laplacian in three dimensions has a very special 

property. The functions in its domain are bounded in 
terms of the graph norm (see, for example, Ref. 7): 

lu(x)1 ~ C(y-! II~ull + yi Ilull), y > 0, 

or lu(x)1 ~ C1 IlulIA' V oc > O. 

Furthermore, r-1 is relatively bounded with respect 
to~: 

Ilr-l ull ~ oc II~ull + flilull, 
where oc can be made arbitrarily small or 

IIy-l ull ~ C2 11u11A, V IX > O. 

These two inequalities carryover to V(O, 00): 

Ix(r)/rl ~ C{ IIxll~; Ilx/rll::;;; C~ IIxll~, Voc > o. 
(8) 

After these preliminaries, assumptions (1)-(4) of 
the general theorem are verified. 

(1) B = -td2(dr2 - 2(r, which is self-adjoint and 
bounded below by - 2, which is an isolated eigenvalue. 
The essential spectrum is absolutely continuous and 
starts at zero, extending to infinity. (-td2(dr2-
2(r - #)-1 is strictly positive for # < -2. -

(2) The nonlinear term is generated by the 3-linear 
form 

C(x1, x2, x3) = x3 (47TJ. X1X2 ds + 47TJ. X1
X

2 dS) 
r s<r s>r S 

and 

C(x, x, h) = q.,h, 
where 

q., = 47T(! J. x2 
ds +J. x

2 

dS) 
r 8<r 8>r S 

and q., is bounded 

o ~ q., = 47T(! f. x 2 ds +f. x
2 

dS) ::;;; 47T roo x
2 

ds r 8<r 8>r S Jo s 

~ 47T Ilxllll ~ II ~ 47Tq IlxllllxllA' (9) 

Here, r-1 has been taken under the integral sign in the 
first integral and (2) has been used. By taking S-1 in 
front of the second integral another inequality results: 

o ::;;; q.,(r) ::;;; 47T roo x2 ds = lIu 112 . (10) 
r Jo r 
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(3) We take operator Sto be -d2(dr2, which has the 
same domain as -td2/dr2 - 2/r. The required bound
edness property for the 3-linear form then holds true: 

IIX3e: f.<rXIX2 ds + 41T f.>rX~X2 ds)11 

~ 41T[11 :3111IXI" IIX211 + "X31111 :2111IXlll] 

~ 81TC~ IIXIII~ I\x211~ Ilx311~ 

and 

IIxq",1I ~ 81TC~ IIx1l 211x1IA' (11) 

This is proven for the first integral in the following 
way: 

and 

sup 11 XIX2 dsl ~ sup (I x~ dS)!( f x~ dS)! 
r s<r r s<r Js<r 

s IIXIII IIX211. 
The second integral is handled in the same manner. 
C(x) is relatively compact with respect to -d2/dr2• 

To prove this, we observe that q", is differentiable with 
respect to r: 

d 41Ti 2 d 41T 2 X2 - q.,(r) = - 2" x S + - x - 41T-
dr r s<r r r 

= - 4:i X2 ds, 
r s<r 

Therefore, q", is a bounded continuous function by (3) 
and its tail at infinity is square integrable by (4). This 
implies that q,. E £2(0, 00) and that q,. is majorized by 
some fixed function from £2(0, 00) which depends only 
upon IIxlla' Furthermore, its derivative is bounded 
by IIxIlA' Let us then assume that the sequence Xi is 
bounded in the graph norm, II Xi II.? < const; then 
q"i is bounded by some fixed £2 function, its derivatives 
are uniformly bounded by a constant, and, therefore, 
the q"i are equicontinuous and uniformly bounded. By 
the Ascoli-Arzela theorem, there is a subsequence 
which converges pointwise and uniform on each com
pact set. By the dominated convergence theorem, this 
convergence is strong even in L2(0, 00). The Xi' as 
well, are uniformly bounded an,d equicontinuous, so 
that the same reasoning applies; thus, there is a sub
sequence which converges pointwise. It is therefore 
possible to choose a subsequence such that xi,q,.( 

converges strongly. Thus, C(x) is relatively compact 
with respect to -d2/dr2• 

The Frechet derivative of C(x) is easily computed: 

d,.C· h = q,.h + X(41Ti xh ds + 41Ti xh dS). 
r s<r s>rS 

It is a symmetric operator, and the integral operator 
on the right-hand side is strictly positive. This is most 
easily recognized by remembering that C(x) is the 
restriction of 

C(u) = uJ u
2

(y) dy 
rex - y) 

to spherically symmetric functions, with the substitu
tion X = ru. The Frechet derivative of this operator is 
given by 

duC' h = h(X)f u
2

(y) dy + 2U(X)f u(y)h(y) dy, 
rex - y) rex - y) 

which is manifestly symmetric, and the integral oper
ator is strictly positive, because its kernel is u(x)u(y) 
times the Green's function of the Laplacian. From 
this, it follows that 

(d,.C· h, h) > (q,.h, h) ~ 0 

for x, h E D' and h ¥= O. 

To check that d,.e is relatively compact with respect to 
second differentiation, we note that q(J!hi has a strongly 
convergent subsequence if IIhi lla is bounded. That 
implies that there is a uniformly bounded pointwise 
convergent subsequence hi" Multiplied by the func
tion q,., which belongs to L2(0, co), this gives strong 
convergence. The second term in the Frechet deriva
tive converges because IIh;lla bounded implies the 
existence of a weakly convergent subsequence hi" 
This in turn implies convergence of 

i i xh·, 
xhi • ds and -' ds 

s<r S>1 S 

for all r. From this, we conclude, by the same reason
ing as above, that 

41TXi i Xhi' - Xhi' ds + 41TX - ds 
r s<r s>r S 

converges strongly. 
(4) If we look at 

2 
-l~ - - + q,. with x E D~ 

r 

but arbitrary otherwise, we can apply the theorem in 
Ref. 8 assuring that there are no eigenvalues bigger 
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than zero. The required hypotheses on the potential 
function V(r) are: 

(a) V is a sum of a L OO (R3) and a L2(R3) function; 
(b) V is continuous; 
(c) lim VCr) = 0, as r- 00; 
(d) lim sup r dV(r)ldr = 0, r - 00. 

All four conditions are easily checked for our 

VCr) = -2/r + q.,(r). 
Now, if 

-t~ - 2/r + q<1J(r) 

has no positive eigenvalues, then 

has none. 

1 d 2 2 - - - - - + q.,(r) 
2 dr2 r 

Thus, conditions (1)-(4) of the general theorem are 
fulfilled and the theorem applies. There is a branch 
coming out of - 2 and its norm is monotonically in
creasing. The branch consists of pointwise positive 
functions, and these are the only positive solutions for 
-2 < A < O. 

To establish the existence of a solution of the Hartree 
equation with the auxiliary condition Ilull = 1, one 
must make sure that the norm of the branch reaches 
one; but this is not yet proven. The general theorem 
gives an alternative: Either II ull goes to infinity or, if 
the branch extends up to zero, the norm Ilull may stay 
bounded. To decide this question, one has to make a 
rather detailed study of the equation. 

Let us write the equation in the form 

x~ = Q,h, Q .. = 2[ -2fr + q.,(r) - A]. (13) 

It follows immediately that the solutions of this equa
tion are infinitely differentiable for r '¥= 0 because the 
equation implies the existence of the nth derivative if 
the derivatives up to order n - 2 exist. Furthermore, 
we already know that the branch we are looking at 
consists of strictly positive functions which vanish at 
the origin. This implies that the zeros of x~ are those of 
Q;., because the x). have no zero for r '¥= O. Let us 
study the behavior of Q;.: 

Q;' = + ~(2 - 47Ti x~ as), 
r s<r 

where we have used (12). Assume that Ilu;.1i ~ K < 2, 
so that Q;. is monotonically increasing from - OC! to 
-2,1., and 

-21r + q;.(r) ~ -(2 - K)lr. (14) 

If \luA\I = 2, QA is still monotonically increasing from 
- 00 to -2A, but there is no majorizing potential as in 

X" A 

r 
-C).,L-_-~ I 

I Q)., 

-~ ----,------

FIG. 1. 

2 -X-
. ......-----

r 

(14). If lIu .. 11 > 2, then Q~ changes sign somewhere. 
Thus, it is monotonically increasing from - 00 to 
some finite maximum and then monotonically de
creasing to - 2,1.. 

From this we conclude that, for any A < 0, Q" has 
exactly one zero. This, in turn, implies that x~ has only 
one zero, because x .. is zero at r = 0 and at r = 00 and 
positive elsewhere: Therefore, x~ has an uneven num
ber of zeros and, if it had more than one, x~ would 
have more than one. Now we note that 

c" == x/CO) = lim xir) - xiO) = lim xir) 
r-+O r r-+O r 

= -limQAxA = -xlCO). 
r-+O 

What has been said of the X A allows us to draw a 
qualitative picture of these functions as is done in Fig. 
1. From the fact that x;(O) = C .. and x~(O) = -CA, 
a trivial estimate follows: 

(15) 

Now, let rl be the zero of x;, '2 that of x~, and r3 that 
of Q~ if it has one. Then it is true that 

(16) 
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Remembering that qz is a positive function, we have On the other hand, we have by (23) 

Q;.(r) ~ 4( - r-1 
- lA), (17) 

which implies 

r2 ~ -2/).. (18) 

Let , ~ r20 Then integration of (7) gives 

J:xA ds = x~(r) - C" = J:Q"x" ds ~ J: (- ;)x" 

~ C" J:( -4) ds = -4C"r. (19) 

For r = '1' this results in 

r1 ~ 1· (20) 

We now derive an estimate similar to that in Chap. 
VIII of Ref. 9. Multiplying (7) by x~ and integrating 
over r ~ -2/)., where Q" is positive, we get 

-x~2(r) = ia) Q;'(x~)' ds ~ -4( _r-1 - l).)x~(r), 
for r ~-2/)'. 

This gives 

-xl(r)/x;.(r) ~ 2( _r-1 
- lA)l ~ (_r-1 

- lA), 

for r ~ -2/)', 

and, after one further integration from r to R, we end 
up with 

-In x;.(R) + In xir) ~ iRC-S-1 - !).) ds 

= In ~ - l).(R - r) 
r 

or 

x;.(R) ~ x;,(r)CR/r)elCR-rI", for R > r ~ -2/).. 

Remembering (15), we can eliminate the x;Jr) and, 
by taking r = - 2/). and replacing R by r, we get 

x;.(r) ~ C;.erelr\ r ~ -2/)', 

~ C;.r, r S -2/).. (21) 

This gives the important result 

Ilx,,11 2 S C~ . F().). (22) 

On the other hand, by integrating (19) once again 
from zero to r < '1' we get 

We know that, in our case, /-le = O. Let us assume that 
/-lc < O. We know from the general theorem that, in 
this case, /lx;./I -->- 00 for)' -->- /-lc' Equation (22) shows 
us that, here, C;. -->- <Xl for A. -->- /-lc because FCI-l.) < 00. 

where the right-hand side tends to infinity for)' -+- /-lc 
because of C;.. But then the zero of 

would move below 1, wJlich is impossible because of 
(20) and (16). Thus, I'c = O. 

Now assume that, for A-+- 0, we have Ilu;.11 ~ 1. 
Then we know, from (14), that there is a majorizing 
potential for the linear comparison operator. More
over, the X;. are strictly positive functions, so that (12) 
becomes a strict inequality such that 

1 d 2 2 1 d 2 1 - - - - - + qz (r) < - - - - - . 
2 dr2 r;' 2 dr2 r 

From that, we conclude that the lowest eigenvalue of 
our equation is bounded above by -! in contra
diction to our assumption that). -+- 0 or, stated differ
ently, that there is a U;. on the branch with lIu,,11 = 1 
and A < -to On the other hand, we can now show 
that these U;. (and -U;., of course) are the only solu
tions for)' < -i. Let x" be a solution of our equation 
which changes sign; then it is necessarily a higher 
eigenfunction of the linear comparison operator 

But the higher' eigenvalues of this operator are 
bounded below by the second eigenvalue of 

which is -i. So we have shown that solutions x" 
which change sign have). ~ -t. 

Remark: Our analysis leaves open the question of 
whether lim Ilu;.ll, as A. -->- 0, is finite or infinite. Also, 
it does not extend in its present form to analogous 
equations in fR" for n > 3, because the estimates for 
lu(x)1 in Sec. III are specific for fR3. 
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Generalized Racah tensors are defined after the manner of Elliott and Feneuille. The linear combina
tions ±w(Kk)(I, l') used by them are redefined to permit the correct embedding of the group R. in the higher 
groups that may be used to classify the states of mixed configurations. A number of points regarding the 
transformation properties of states and operators are clarified and related to the problem of the sym
metrization of the Coulomb repulsion in mixed configuations. 

1. INTRODUCTION 

The theory of continuous groups has been applied 
extensively to the calculation of the properties of 
single configurations of electrons or nucleons.! In 
many practical cases the single configuration approxi
mation is physically inappropriate and it is necessary 
to consider a multiconfiguration model that allows 
for configuration mixing. Notable examples are the 
case of the (2s + 2p)N configurations in a Coulomb 
field or of (s + d)N nucleon configurations in a har
monic oscillator potential. In these cases, it is desirable 
to consider sets of configurations collectively. 

The application of continuous groups to the cal
culation of the properties of particular mixed con
figurations has been considered by a number of 
authors.2- 4 In the present paper, we wish to give a 
systematic account of a number of problems that arise 
in the extension of the application of continuous 
groups in going from the single-configuration to 
multiconfiguration approximation. In particular, we 
shall examine the general transformation properties 
of the tensor operators and states appropriate to the 
description of multiconfigurations together with the 
obtaining of expressions for the Casimir operators in 
terms of the group generators. An examination of 
problems associated with the embedding of the R4 
group in the higher Lie groups leads to a more careful 
treatment of the phase definitions of the tensor 
operators that form the group generators. Finally, 

application to the symmetry description of the Cou
lomb interaction is considered. 

2. GENERALIZED TENSOR OPERATORS 

Following Elliott2 and Feneuille,3 let us define the 
tensor operators v(k)(A, B) and W(Kk)(A, B) in terms of 
their reduced matrix elements between single-particle 
wa vefunctions: 

(CI! v(k)(A, B) liD) = b(A, C)<5(B, D)[k]i, (Ia) 

(sCI! W(Kk)(A, B) IlsD) = <5(A, d)<5(B, D)[K, k]i, (Ib) 

with the usual notation 

[x,y,"', z] == (2x + 1)(2y + 1)··· (2z + 1). 

We use capital Latin letters to indicate arbitrary values 
of the single-particle angular momentum. 

A component w~~k)(A, B) operating on a single 
electron wavefunction gives 

w~~k)(A, B) Isim.m,) 

:1 b(A, l')<5(B, 1)( _I)"+s-m\ -m~ 
l',ml,m, 

x Isl'm;m;), (2) 

from which we may deduce the general commutator 
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metrization of the Coulomb repulsion in mixed configuations. 

1. INTRODUCTION 

The theory of continuous groups has been applied 
extensively to the calculation of the properties of 
single configurations of electrons or nucleons.! In 
many practical cases the single configuration approxi
mation is physically inappropriate and it is necessary 
to consider a multiconfiguration model that allows 
for configuration mixing. Notable examples are the 
case of the (2s + 2p)N configurations in a Coulomb 
field or of (s + d)N nucleon configurations in a har
monic oscillator potential. In these cases, it is desirable 
to consider sets of configurations collectively. 

The application of continuous groups to the cal
culation of the properties of particular mixed con
figurations has been considered by a number of 
authors.2- 4 In the present paper, we wish to give a 
systematic account of a number of problems that arise 
in the extension of the application of continuous 
groups in going from the single-configuration to 
multiconfiguration approximation. In particular, we 
shall examine the general transformation properties 
of the tensor operators and states appropriate to the 
description of multiconfigurations together with the 
obtaining of expressions for the Casimir operators in 
terms of the group generators. An examination of 
problems associated with the embedding of the R4 
group in the higher Lie groups leads to a more careful 
treatment of the phase definitions of the tensor 
operators that form the group generators. Finally, 

application to the symmetry description of the Cou
lomb interaction is considered. 

2. GENERALIZED TENSOR OPERATORS 

Following Elliott2 and Feneuille,3 let us define the 
tensor operators v(k)(A, B) and W(Kk)(A, B) in terms of 
their reduced matrix elements between single-particle 
wa vefunctions: 

(CI! v(k)(A, B) liD) = b(A, C)<5(B, D)[k]i, (Ia) 

(sCI! W(Kk)(A, B) IlsD) = <5(A, d)<5(B, D)[K, k]i, (Ib) 

with the usual notation 

[x,y,"', z] == (2x + 1)(2y + 1)··· (2z + 1). 

We use capital Latin letters to indicate arbitrary values 
of the single-particle angular momentum. 

A component w~~k)(A, B) operating on a single 
electron wavefunction gives 

w~~k)(A, B) Isim.m,) 

:1 b(A, l')<5(B, 1)( _I)"+s-m\ -m~ 
l',ml,m, 

x Isl'm;m;), (2) 

from which we may deduce the general commutator 
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expression 

[W(JClkl)(A B) Wh<ok2)(C D)] 
11'1Ql ' 'lTsq2, , 

_ ~ ( 1)2s+K3+ka-1Ta-qs[1( I( I( k k k]t 
- £., - 1> 2, a, l' 2' a 

x (:: :: _I(:J (~: ~: ~;J{7 :2 :a) 
X [b(B, C)( _1)A+D+Kl+K2+ktH 

X {k1 k2 ka}W(KSkS)(A D) 
DAB "3q8 ' 

- b(A, D)(-1)B+O+K3+k3{d ~ ~}W~~~~3)(C,B)J 
(3) 

If we define the linear combinations 

±W(Kk)(A, B) = W(1<kl(A, B) ± (_It+k+A-Bw(Kk)(B, A), 

(4) 

then we obtain the following commutators: 

[+W(Klk1)(A B) ±W(K2ko)(C D)] 
171«1 ' , 112«1 ' 

- "" (_1)K-.. +k-Q+A+D+2S[1( I( I( k k k]t - .£., 1 , 2, ., 1, 2, 

X G: :: ~q)(:: :: ~J{:1 :2 :} 
X [b(B, C)(_1)klH2+Kl+KZ{~ ~ ~} 'fw~~k)(A, D) 

± b(A D){k1 k2 k} 'fWh<k)(B C) 
, C B A "q , 

± b(B D)(_1)K1H~(k1 k2 k} 'fwh<k)(A C) , lc A B 1(q , 

+ b(A, C){~ ~ ~} 'fw~~k)(B, D)] (Sa) 

and 

[-W(Klk1)(A B) ±Wh<2k2)(C D)] 
1TlfJ1 ' , 'JT2(J2 ' 

= 2 (_It-''H-Q+A+D+2S[1(1' 1(2' 1(, kl' k2' k]t 
Kk"Q 

X (:: :: ~q)(:: :: ~J{:1 :2 :} 
X [b(B C)(_1)kt+k2+Kl+K2{kl k2 k} ±W(Kk)(A D) , DAB rr(l , 

1= b(A D){kl k2 k} ±W(Kk)(B C) 
, C B A "q , 

± b(B, D)( _1)J(lHl{~1 ~ ~} ±w~~k)(A, C) 

- b(A, C)( -l)"'+ko{~ ~ ~}±W~~k)(B, D)} 

(5b) 

We note that the set -W(Kk) (A , B) is closed under 
commutation, but that the set +W(Kk)(A, B) is, in 
general, not closed, in the sense that its commutators 
can produce terms of the form -W(Kk)(A, B), etc. We 
could, of course, choose different sets; e.g., for two 
configurations the set +W(Kk)(A, B) (A =;C B) and 
w(J(k)(A, A), W(Kk)(B, B) (I( + k odd) will be closed, 
but we hope to demonstrate shortly that the set of all 
-w(J(k)(A, B) is the correct choice for all mixed con
figurations. 

The choices 

-W(Kk)(A, B) = W(Kk)(A, B) - (-ltHw(Kk\B, A), (6a) 

-W(Kk)(A, B) = W(Kk)(A, B) - (_l)A+B+KHw(Kk)(B, A), 

(6b) 

+w(J(k)(A, B) = W(Kk)(A, B) + W(Kk)(B, A) (6c) 

have been taken by Feneuille,a Morrison ,4 and Elliott,2 
respectively. Alper and Sinanoglu5 have also used (6c) 
in their recent work on R4 • The above choices all have 
their disadvantages. It is shown in the next section 
that Eq. (6a) does not contain the generators of the 
group R4 , but is equivalent to that of Eq. (4) where 
orbitals of the same parity are involved. The choice of 
Eq. (6b) is equivalent to that of Eq. (4) for integral A 
and B, but does not reduce to Judd's operators l for 
half-integral values of A and B. The linear combina
tion given in Eq. (6c) must be rejected, as it fails to 
close under commutation. 

The linear combinations defined by Eq. (4) satisfy 
the closure requirements in all cases, yield the ap
propriate generators for R4 as a subgroup and will 
correctly reduce to the special cases studied by Judd,1 
Feneuille,a and Morrison.4 

Later, we shall have occasion to use both the 
operators w~"k)(A, B) and 

W(Kk)(A, B) = 2 W~Kk)(A, B), 
i 

where W~Kk)(A, B) is the operator that acts only between 
states of the ith electron and W(J(k) (A, B) acts between 
states of all electrons. Both sets of operators satisfy 
the commutation relations Eqs. (3) and (5). It is 
easily shown that w(Ok)(A, B) = 2-t V(k) (A , B) and all 
the commutation relations given in terms of W(Ok) (A , B) 
may be reduced to those for v(k)(A, B) by omitting the 
quantum numbers dependent on spin. 

3. INFINITESIMAL OPERATORS FOR R4 

We now wish to use the properties of the v(k)(A, B) 
tensor operators to construct a set of infinitesimal 
operators for the 4-dimensional rotation group R4 



                                                                                                                                    

2514 P. H. BUTLER AND B. G. WYBOURNE 

which leave invariant the quadratic form x~ + x~ + 
x: + x!. The Lie algebra for R4 may be defined in 
terms of six infinitesimal operators6 

J).p.=i(Xp.a~-x).~), A,/-l=1,2,3,4. (7) 
x). axp' 

Putting 

Jo = J23 , J±l = (±.j2)(J~1 ± iJ12), 

No = J41 , N±1 = (±.j2)(J42 ± iJ43) 

leads to the set of commutation relations 

[Ji,J;] = -Em.Jk = [Ni , N;], 

[Ji , N;] = - Ei;kNk' (8) 

Now, we obtain two sets of operators which satisfy 
these commutation relations and at the same time fix 
the phases of our -v(k)(A, B) operators. 

It is well known that not only L = (ljn)r X p, but 
also the Runge-Lenz vector7 

( 

z2e4m )l( 1 r) A = --2- --2- (L X P - P x L) + - (9) 
-2h E 2Ze mh r 

commute with the hydrogenic Hamiltonian. The matrIX 
elements of A between single-electron states may be 
calculated following Biedenharn8 or from first prin
ciples to give 

(nlml Az Inl'm') 

= (nl'm'/ Az Inlm) 

= (n - 1- 1)(n + I + 1)(1 + m + 1)(1- m + 1»)1. 

(21 + 1)(21 + 3) 
(10) 

Using this result, we may readily show that 

n-2 

A = ~ [en - I - 1)(n + 1 + 1)(/ + 1)/3]1 
1=0 

X [v(l)(1, I + 1) - V(I)(1 + 1, I)]. (11) 

This, taken with the known result2 

"-1 

L = ~ [1(1 + 1)(21 + 1)/3]lV(l)(l, 1), (12) 
!=o 

gives us a set of six operators that satisfy the com
mutation relations of Eq. (8). The phase choice for A 
means that A is a simple linear combination of the 
-V(1)(l, l') operators defined in Eq. (4). Other choices 
of phases make it impossible to form an operator A 
out of the operators of the large rotation group 
formed by the set of all -V(k)(l, 1') operators. We must 
now take up the study of these larger groups. 

4. CONSTRUCTION OF ROOT FIGURES USING 
V(1')(A, B) AND W(lck)(A, B) OPERATORS 

In this section we largely follow the arguments of 
Chaps. 5 and 6 of Judd's text1 and construct root 
figures using general sets of the operators V(k)(A, B) 
and W(Kk)(A, B). These operators for A, B, ... ,F = 
11, 12 , ••• , In form the infinitesimal operators of the 
groups U x and U2X , respectively, where 

n 

X = ~ (2/. + 1) 
!=1 

and I is integral or half-integral. 
First, let us consider the case of the V(k)(A, B) type 

operators. Using the methods of Jucys et al.,9 we may 
show that the linear combinations 

: !) V~k)(A, B) 

satisfy the commutation relations 

[rab(A, B), roaCc, D)] 

= r5(B, C)r5(b, c)raaCA, D) 

(13) 

- r5(A, D)r5(a, d)rob(C, B). (14) 

The self-commuting Weyl operators10 HI,i = rii(I, I) 
have eigenvalues 0, ± I to give us the roots 

±eAa ±eBb 

with rab(A, B), these roots being appropriate to U x' 
The subgroups of U x formed by the set of tensors 

-v(k)(A, B) are a somewhat more complicated problem. 
We define the linear combination 

8 ab(A, B) = ~ [k]l( _1)A-a( A k Bb)-V(k)(A, B), 
k,q -a q 

(15) 
giving 

8 (A B) = (_I)A+B+a+b+18 (B A) ab , -b-a , , 

which are, therefore, not aU linearly independent for 
A == B. Forming the commutator gives 

[8ab(A, B), 8oaCC, D)] 

= ~(B, C)~(b, c)0aaCA, D) - ~(A, D)~(a, d)0cb(C, B) 

+ (_I)A+B+a+b+1{r5(A, C)r5( -a, c)8_bd(B, D) 

- r5(B, D)r5( -b, d)8o-a(C, A)}. (16) 

It can easily be shown that the operators HI i = 
8 ii(I, I) with i > 0 acting on the remaining oper
ators 8 ab(A, B), with a =;l= 0 =;l= b, yield all the roots 

±eAa ±eBb' 

For the case where the angular momentum set A, 
B, ... is half-integral, the set of roots includes the 
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roots ±2eAa coming from 

0 a-a(A, A) = (-1)2A+10_aa(A, A) 

for a oF O. The complete set of roots then gives the 
customary root figures for the symplectic group Sp x 
where X is an even integer. 

In the case of the rotation group R x' the roots 
±2e Aa do not occur, since (_1)2.04+1 = -1. However, 
there remain operators of the form 0 ao(A, B) with 
a oF 0 and 0 00(A, B) = -000(BA) (hence, A oF B). 
We must complement the above Weyl operators HI; 

with a set HIJ = (-I)!<A+B+1)0 oo(A, B), . 

(-I)!W+D+1)000(C, D), 

etc., which satisfy HlJ = HJl. [It will be noted that 
we must have this phase choice which often leads to 
imaginary operators but real roots. The simplest case 
for which this occurs is for (s + d)n when the char
acters of Re are complex.] The operators 

0 iO(C, A) ± (-I)!<A+BH)0 iO(C, B) 

with C ¢ 0 give the roots ±eAB ±euc ' For every set 
of four angular momenta A, B, C, D, etc., considered, 
we must also have the combinations 

0 0o(C, A) ± (-1)!<A+B+I)00o(C, B) 

+ (-1)!w+D+l)[0
00

(D, A) 

± (-I)!<A+B+I)0
00

(D, B)] 
and 

0
oo

(C, A) ± (_1)!(A+BH)0
00

(C, B) 

- (-1)!w+D+I)[0
00

(D, A) 

± (-I)!(A+BH)0
00

(D; B)] 

which gives the roots ±eAB ±eCD' This completes 
the root figure for the even-dimensional rotation 
groups. In the case of an odd number of angular 
momenta, we have finally the operators 0 ao(A, L) 
and 0 00(L, A) ± (-I )1<A+BH)0oo(L, B), giving the 
roots ±eAa and ±eAB required for the root figure of 
the odd-dimensional rotation group. 

Now, let us consider the W(Kk)(A, B) operators. In 
a similar fashion to the above, we define the operators 

0«pab(AB) = ~ (_I),-m.+A-a[K, k]l 
K,k,l1,fJ 

(
s K S)(A k B) 

x -ex 7r fJ -a q b 

x -W~~k)(A, B). (17) 

These lead to the establishment of the root figure for 
Sp2X' Several choices exist for the phases of the Weyl 
H operators. We shall choose 

HAa = 0 1laa(A, A), -A ~ a ~ A. 

This choice is made so that 

~HAa = 2* I [A]*W~~O)(A, A) = 2S., 
A.a A 

thus ensuring that the function of highest weight be
longing to a representation of Sp2X will have the 
highest possible spin. 

S. CASIMIR'S OPERATORS AND 
EIGENVALUES 

The structure constants c:p of a group are defined 
by the commutation prpperties of the infinitesimal 
operators Xa , viz., 

[Xa,Xp] = ~C:PXT' 
r 

The metric tensor ga). is obtained in terms of the 
structure constants as1 

ga). = c~pc~).' 

For semisimple groups the metric tensor has its in
verse gP)' = (ga).)-1 and the Casimir operatorll G is 
defined as 

G = gP).XpX).. 

From its construction, it is evident that G commutes 
with all the operators of the group. Racah12 has shown 
that the eigenvalues of the Casimir operator may be 
expressed in the form K2 - R2 where R = ! ~ «+ and 
K; = R; + Wi' with «+ being a positive root and Wi 

the ith component of the highest weight of the repre
sentation.· 

The eigenvalues Aw of the Casimir operator G(Rn), 
n = 2v or 2v + 1, or of G(Spn) , n = 2v, may be found 
by acting the Casimir operator on the eigenket 
I W) == IWI ... w) ,which forms a basis for the repre
sentation [WI'" Wv] of Rn or (WI' •• w) of Sp .. to 
yield for R .. , 

1 v 

Aw = ~ w;(w; + n - 2i), (18) 
2(n - 2);=1 

and for SP .. , 
1 v 

Aw = I wiw; + n - 2i + 2). (19) 
2(n - 2) i=1 

The Casimir operator may be conveniently expressed 
in terms of the operators defined in Eq. (15) (for Rx or 
Spx) as 

2(X - 2)G = l I I 0 ab(A, B)0 biB, A) (20) 
A.Ba,b 

= 2 I I (V(k)(A, A»2 
A kodd 

+ (_l)k+l I I (-V(kJ(A, B»2, (21) 
A<Bk 
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and for Sp2X we use the operators of Eq. (17) to 
obtain 

4(X - I)G(Sp2x) 

= ! 2 2 2 0 apab(A, B)0pabiB, A) 
..4.Ba.b a.p 

= 2 I L (W(Kk)(A, A»2 
..4 ".k 

+ (_I),,+k+1 2 2 CW("k)(A, B»2, (22) 
..4<B ".k 

where K + k is odd in the first summation. 
The above results are useful for constructing eigen

functions symmetrized with respect to the relevant 
representations of the transformation group used to 
classify the multiconfiguration states. 

6. TRANSFORMATION PROPERTIES OF STATES 
AND OPERATORS 

In this section, we derive a correspondence between 
the transformation properties of the ±W;~k)(A, B) 
operators and the symmetric and anti symmetric com
binations of two particle states. 

Following Fano and Racah,13 we denote the vector 
coupled states of particle 1 in orbital A and particle 
2 in orbital B, coupled to spin and orbital ranks K 

and k with z projections Tr and q, respectively, by 
(121 ABKkTrq). We then define the symmetric (+) 
and antisymmetric (-) combinations as 

/ABKkTrq)± = (121 ABKkTrq) ± (21 I ABKkTrq). (23) 

Acting -W;~~~') on a ket /Cl)K2kzTr2qZ)± gives a result 
equivalent to the commutator 

[-W(K1k1)(A B) 'fW(,,·7c·)(C D)] 
1Tlql ' , 1T2Q2 ' 

and thus proves that the operators ±W~~7c)(A, B) have 
the same symmetry transformation properties under 
the operations of Spzx and its subgroups as the 2-
particle states /ABKkTrq)'f, i.e., the operators +W;~k)(A, 
B) transform like fermions and the - W!~7c)(A, B) like 
bosons. 

As the operators +W(Kk) (A , B) transform the sets 
+W(Kk)(A, B) and -W("k)(A, B) into each other, it is 
apparent that they must, together, span a single repre
sentation {A} of the unitary group U2X . The operators 
connect states of the same number of particles, and so 
we have 

{A}{In} :::l {In} for all n. 
Thus, 

{In}{In}* == {In}{I2X-n} :::l {A}. 

We find that the complete set of tensors W(Kk)(A, B) 
transform as the {2PX-20} representation of Uzx with 
the exception of the scalar operator 

L [A]tW~~O)(A, A) 
A 

which transforms as {O}. 

We have the branching rules for U2X ---+ Sp2X: 

{212X-20} ---+ (2) + (11), 

{OJ ---+ (0). (24) 

Similar comments will apply to the set of tensors 
V(7c)(A, B) under the operators of U x. The branching 
rule 

(25) 

is then required. 
The transformation properties of the 2-particle 

states and single-particle operators have been found 
to be very similar. When states or operators are 
coupled, care must be taken to ensure correct nor
malization. We therefore adopt the combinations 

2-! /ABKkTrq)± and (2-t) ±W~~k)(A, B), A ~ B, 

(26) 

and 

and 
t ±W~~k)(A, A) == W~~k)(AA). (27) 

An example of the use of coupling the normalized 
operators for the Coulomb interaction in the R4 
scheme will be given in a later paper. 

7. GENERAL CLASSIFICATION SCHEMES 

The algebra of the generalized Racah tensors gives 
a powerful tool for studying the properties of mixed 
configurations. The nucleon configurations (s + d)N 
have been studied by Elliott2 using the scheme 

U24 ---+ SU4 X (SU6 ---+ SUa ---+ Ra), 

while Feneuille3 has studied the equivalent problem 
for electron configurations, but using the alternative 
scheme 

U12 ---+ Sp12 ---+ SU2 X (R6 ---+ Rs ---+ R3)' 

This latter scheme is of dubious physical significance 
in atoms since it fails to mix the eigenfunctions of the 
1 D states of the d2 and ds configurations which are 
known to couple strongly. 

The chain of groups 

U2n• ---+ SPzn2 ---+ SU2 X (R n • ---+ R~ ---+ Ra) (28) 

is useful in studying electrons moving in a Coulomb 
field, where in the case of the nonrelativistic hydrogen 
atom the orbitals associated with the principal quan
tum number n are all degenerate. In this scheme, the 
single particle eigenfunctions transform as 

/{l}(l)S[lO' .. O][n - 1, O]LMsML ), 
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TABLE I. Decompositions of irreducible representations for 
SP18 ->- SUo X R9 • 

f().) Spa SUB X R. 

1 0 1[00001 
18 1 2[1000] 

152 2 3[1100]1[2000] 
798 3 4[1110]2[2100] 

2907 4 5[1111 ]3[211011[2200] 
7752 5 6[1111 ]4[2111 ]2[2210] 

15504 6 7[1110]5[2111 ]3[221111[2220] 
23256 7 8[1100]6(211O]4[2211J2[2221] 
25194 8 "(10001' [2100)5[2210]3[222111[2222] 
16796 9 10[0000]8[2000]6[220014[2220]2[2222J 

where L = 0, I, ... , n and the group labels are writ
ten in the order indicated by Eq. (28), using the bracket 
notation of Littlewood.14 

In the particular case of n = 3, which arises in the 
classification of the states of the (3s + 3p + 3d)'" 
configurations, we need to use the group scheme 

U1S -+ SPIS -+ SU2 X (R9 -+ R4 -+ R3)' (29) 

The branching rules for SP18 -+ SU2 X R9 and R9 -+ 0 4 

are giveri in Tables I and II, respectively. The latter 
branching rules were easily evaluated in terms of the 
plethysm14 

[20] ® [A] == ({2} - {O}) ® [A]. 

A full description of this method has been given else
where. I5 To complete the classification, we note that 
under 0 4 -+ R4 

[pq]' -+ [pq] + [p - q], q > 0, 

[pO]' -+ [pO], 

while under R4 -+ Ra, 

[pq] -+ p,p - 1, ... ,Iql. 

We note that the problem of duplicated R4 repre
sentations in the R9 -+ R4 branching rules becomes 
appreciable for all but the simplest R9 representations. 
The situation will obviously worsen as configurations 
involving higher values of the principal quantum 
number n are considered. 

8. THE COULOMB INTERACTION 

After the states of a mixed configuration have been 
classified by their transformation properties under 
a chain of groups, it is desirable to partition the 
Hamiltonian into parts which have well-defined trans
formation properties under the same group chain. 
Now, we consider in general terms the Coulomb 
repulsion. 

The Coulomb interaction between electrons may be 
written in the· form 

where 

C!kl = ]) _l)A(~ ~ ~) [A, BJ![kr!v!kl(A, B) 

=!A~(-l)A(~ ~ ~)[A,BJ![krt 
X (V!kl(A, B) + (_l)A-Bv!kl(B, A). (31) 

Because A + k + B is even, we have a sum of oper
ators of the form pv~k)(A, B), where p is the parity of 
k, which is the same as that of A-B. 

Using 

(V(kl(A, B). V(k)(C, D» 

= 2 (v!k)(A, B) • V~kl(C, D» 
i*i 

+ (I(A, D)(I(B, C)( -l)A-B[k][Ar!V~Ol(A, A), (32) 

we obtain 

He = t 2 2 R(k)(AB; CD)(-l)A+B 
k A,B,C,D 

X [A, B, C, D]![krl(~ ~ ~)(~ ~ ~) 
X [(pV(kl(A, C) • PV<k)(B, D) 

- 2(1(A, D)6(B, C)V~O\A, A)l, (33) 

TABLE II. Decompositions of irreducible representations for 
R. ->- R4 

fill R. O. 

1 [0000] [00] 
9 [1000] [20] 

36 [1100] [31][111 
84 [1110] [40][33][31 ][20][11] 

126 [1111] [42][401[31 ][22][20]2[00] 
44 [2000] [40][22][20] 

231 [2100] [51 ][421(40][31 )2[22][20]2[11] 
594 [2110] [60][53][51 ]"[42]2[40]3[33](31]4[22][20J4[11]2 
924 [2111] [62l[ 60][53 ][51]3[44 ][42]3f40]5[33 ][31 ]5[22]3 

[20]5[11]2[00] 
495 [2200] [62][60](51](44 ][42)2[40J3[31 )2[22]2[20]3[00]2 

1650 [2210] [71 ][64][62]2[60]3[53]2[51 ]4[44][42]·[40)8 
[33)2{31 ]6[22]3[20]7(11 ]2[00]2 

2772 [2211] [73 ](71 ]"[64][62]3[6014 [55][53]4[5 1]8[441 [42] 7 

[4011O[33]4[31]11[2213(2018[11}' 
1980 [2220] [80][73][71]( 661[ 64][ 62]3[ 60]4[53]2[51 ]4[44]2 

[42]·[40]"[33]2[31 ]5[22]3[20]6{111[00]3 
4158 [2221 J [82][80][75][73]"[71]3[ 64]2[ 62]5[60]' [55] 

[53 ]6[51 ]10[44 ]2[42J9[40]12[33]4[31 ]12[22]4 
[20]9[11 ]4[00] 

2772 [2222] [84][82][80][73][71 ]2[64 ]2[62]4[ 60]4[55][53]3 
[51 ]6[44]2[42]6[40]8[33][31 )5[22]4[20J6[11] 
[OOJ 
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where the R(k)(AB; CD) are the usual Condon and 
Shortley radial integrals.I6 

For a set of configurations involving orbitals of the 
same parity, all of the operators appearing in Eq. (33) 
are of the form +V(k) (A , B), which transform like the 
antisymmetric 2-particle states constructed from the 
same set of orbitals. This result is entirely analogous 
to that known for a single configuration! However, 
for configurations involving orbitals of differing pari
ties, we have also the set of tensors -V(k)(A, B), A -:;C 

B, to consider. These tensors, unlike those of 
+V(k)(A, B), are generators of the group Rx and as 
such preserve the representation label of R x as a 
"good" quantum number. 

9. CONCLUSIONS 

Our chief object has been to remove some of the 
confusion that exists in the literature concerning the 
application of continuous groups in atomic spectros
copy and to recast some known results in a more 
general form. The phase choice for the linear com
binations of the W(Kk)(A, B) tensors has been defined 
to allow the construction of the root figures of the 
groups Rx and Spx for all cases. The Casimir 

operators of the relevant groups have been derived in 
terms of the tensorial forms of the group generators 
and the transformation properties of states and oper
ators derived. 

• Research sponsored in part by the Air Force Office of Scientific 
Research, Office of Aerospace Research, U.S. Air Force, under 
AFOSR Grant No. 1275-67. 
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The 4-dimensional rotation group R, is used to analyze the structure of the (2s + 2p)N shell and to 
determine the relevance, if any, of the R. group as an approximate symmetry group for many-electron 
theory. It is found that while the R. symmetrized states of the (2s + 2p)1~ complex approximately 
diagonalize the Coulomb energy matrix for interactions within the complex, the inclusion of the inner 
Is' shell effects leads to a large symmetry violating term, which invalidates the R. group as an approxi-
mate symmetry for many-electron theory. . 

I. INTRODUCTION 

It is well known that the energy levels of a hydrogen 
atom, in the nonrelativistic approximation, may be 
grouped in the series 

Is; 2s, 2p; 3s, 3p, 3d; 48, 4p, 4d, 4f; ... (1) 

with orbitals having the same principal quantum 
number n, having a total orbital degeneracy of n2• 

Fock1 and Bargmann2 have shown that for the bound 
states of a single electron moving in a pure Coulomb 
potential, the group appropriate to the symmetry 
description of the Hamiltonian is the rotation group 
in four dimensions R4 • Indeed, the orbital eigenfunc· 
tions associated with the principal quantum number 
n span the n2-dimensional representation [n - 1, 0] 
of R4 • Perelomov and Popov3 have shown that the 
symmetry of both the discrete and continuous 
spectra of the hydrogen atom may be described in 
terms of the noncompact homogeneous Lorentz 
group 0(3, 1). Here, we shall restrict our attention 
to the bound states only and thus only R4 will be 
considered. 

It is of some interest to examine the role of the R4 
group, if any, in the many-electron theory of atoms. 
In Layzer's4-6 development of the theory of complex 
spectra the "complex of configurations" involving a 
definite set of principal quantum numbers, nand 
parity played a central role. His definition of a 
complex derives ultimately from the degeneracies 
associated with the hydrogen atom. Moshinsky, 7 

following upon the work of Biedenharn,8 has suggested 

many-electron theory of atomic structure glVmg 
particular attention to the Coulomb interaction in the 
(2s + 2p)N and (3s + 3p + 3d)N configurations. They 
have concluded that the group R4 does indeed have 
relevance as an approximate symmetry in many 
electron systems and that it clearly exposes the Z 
and N dependence of the nondynamical electron 
correlation. 

In the present paper, we wish to examine the 
significance of the R4 group as an approximate 
symmetry group for the Coulomb interaction of a 
many·electron system. We shall first give a systematic 
treatment of the group-theoretical properties of the 
Coulomb interaction in the (2s + 2p)N complex 
correcting a number of significant errors of substance 
in the original work of Alper and Sinanoglu and then 
consider the question, "Is the group R4 an approxi
mate symmetry for many electron theory 1" 

II. INFINITESIMAL OPERATORS OF R, 

The transformations of the group R4 leave invariant 
the quadratic form x~ + x~ + x: + x~. The Lie 
algebra for the group R4 may be defined in terms of 
the six infinitesimal operators13 

(2) 

We may write these six operators as components of 
two spherical tensors J(l) and N(I) by putting 

that the group R4 could be used as a starting point for and 
treating the electron correlation problem. Wulfman9 

J~l) = J23 , J!;i = ±2-i
(J31 ± iJ12) 

has suggested that the doubly excited helium metasta-
ble states, studied by Lipsky and Russek,lO may be to yield the commutation algebra 
usefully labeled according to the representations of 
the group R4 . 

More recently Alper and Sinanoglu11.12 have made and 
a detailed study of the role of the group R, in the 

2519 

[J(l) J(I)] - J<I) - [NU) N(l)] 
q' q' - -Eqq,o." fl." - q' a' 

[J (I) N(l)] N(I) 
q' q' = -Etlt.l'fJ." a"· (3) 
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Let us now introduce single particle tensor opera
tors WCKk)(l1') and WCKk)(ll') defined in Ref. 14. Then, 
if we let 

n-l 

JCll = ! a1vUl(Il) (4a) 
1=1 

and 
n-2 

N Cl ) =! bl[vCl)(l, 1 + 1) - v(1)(l + 1, I)], (4b) 
1=0 

where / ranges over all the orbital quantum numbers 
associated with the designated principal quantum 
number n, and demand that the commutation rules 
of Eq. (3) be satisfied. We readily find that the com
ponents of the tensor operators 

n-l 

J(l) = ! [l(l + 1)(21 + l)]!v(l)(Il), (5) 
1=1 
n-2 

NCll = ! [i(n - I - 1)(n + 1 + 1)(1 + l)]! 
1=0 

X [v(1)(I, 1 + 1) - v(1)(1 + 1, I)] (6) 

will form the infinitesimal operators of R,. [Note that 
Alper and Sinanoglu give the linear combination of 
tensor operators in Eq. (6) with the opposite sign and 
thus do not obtain the correct generators for the R4 
group.14] 

The WeyP5 self-commuting operators HI and H2 
are )rill and Nci l ). The operators 

E+ - )(1) + N(l) E- - )(1) NUl 
±l - ±l ±l , ±l - ±l - ±l (7) 

are simultaneous eigenfunctions of HI and H2 and 
may be used to construct the root figure. The eigen
values p and q of the operators HI and H2 are used to 
label the irreducible representations of R, after the 
manner of Racah.16 p and q are both integers or half
integers with p ~ Iql. While p is necessarily positive, 
q may be positive or negative. In this scheme of 
labeling, we find upon making the restriction R, ---+ Rs 
that 

[pq]---+ [p] + [p - 1] + ... + [Iql]. (8) 

III. GROUP CLASSIFICATION OF STATES 

It follows from the above equation that the irre
ducible representation [n - 1, 0] of R4 decomposes 
under restriction to Ra according to the rule 

[n - 1, 0] ---+ S + p + d + ... + (n - 1), (9) 

where we give the Ra terms in the usual spectroscopic 
notation. Thus, the orbital states associated with the 
principal quantum number n transform together as, 
the [n - 1, 0] representation of R4 . 

Taking into account the spin of the electron, we 
would expect the eigenfunctions associated with the 
distribution of N electrons among the n electron 

shells associated with the principal quantum number 
n to transform according to the antisymmetric repre
sentation {IN} of U2n2. Butler and Wybourne14 have 
shown that the states associated with the principal 
quantum number n may be classified using the group 
chain 

U2n2 ---+ SP2n2 ---+ SU2 x [Rn2 ---+ R4 ---+ Ra], (10) 

and have given tables for the classification of states 
associated with n = 2 and 3. 

The classification is complete for the (2s + 2p)N 
complexes but duplications occur as many as eleven 
times in the (3s + 3p + 3d)N complexes. Here we 
shall be primarily concerned with the structure of the 
(2s + 2p)N complexes. 

IV. CONSTRUCTION OF R, SYMMETRIZED 
STATES 

The states of the (2s + 2p)N complexes may be 
uniquely labeled by the scheme of quantum numbers 

1(2s + 2p)N[pq]SLMsML)' 

or suppressing the quantum numbers MsML' the 
terms are specified by 

1(2s + 2p)N[pq]SL). (11) 

We first note that the matrix elements of a scalar 
2-particle operator G = !~j gij between states of 
any N electron complex XN, where X Ell + 12 + 
... + lk' may be expressed as a linear combination 

of 2-electron matrix elements in X2 weighted by the 
appropriate 2-particle coefficients of fractional parent
age to give 

(X:[pq]SLI G IX~[pq]'SL) 

= tN(N - I)! ! 
[P'l]SL[pq)". [p'l]-S"L" 

x (X:[pq]SL {I X N- 2[pq]SL; X2[pq]"S"£') 

X (X2[pq]"S"L"1 g121X2[pq]"'S"L") 

X (XN- 2[pq]SL; X 2[pq]"'S"E' I} X~ [pq]'SL). (12) 

Inspection of the above equation indicates that R, 
symmetry can only be conserved in XN if the scalar 
interaction g12 is diagonalized in the 2-electron basis 
IX2[pq]SL). Thus the question, "is the group ~ an 
approximate symmetry in many-electrQn theory?," 
can be answered by investigating the structure of the 
X2 configuration alone. 

The states symmetrized according to the scheme 
of Eq. (11) may be expanded as a linear combination 
of the usual single configuration states. The relevant 
linear combination may be readily determined 
either by use of Biedenharn's formula for the R, 
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TABLE I. R, symmetrized eigenfunctions of 
(Zs + 2p)1 and (Zs + 2p)2. 

\ [10PP) = \Zs2S) 
\(10)2S) = -\2p 'P) 
\ [ll]8P) = 2-1(i2p23P) + \Zs2p SP» 

\[1 - I)3P) = 2-'(\2p"P) - \Zs2p SP» 
\ [20] ID) = \2p21D) 

\ [20PP) = -\2s2p IP) 

\(20] IS) = !(31) \Zs2 IS) - ! \2p2 IS) 

\(00] IS) = ! \2s2 IS) + WI) \2p2 IS) 

Wigner coefficientsS or by use of his result for the 
reduced matrix elements of the operator NU) defined 
by Eq. (6). Either method readily yields the results of 
Table I for the (2s + 2p) and (2s + 2p)2 complexes. 
The phases defined in Biedenharn's paper are identical 
to those of Condon and Shortley. It is important to 
notice that with this convention, the phases of the 
I-electron states in the R4 scheme are not simply those 
of conventional orbitals. Our results differ from those 
of Wulfman9 and of Alper and Sinanoglu11.12 owing, 
in the first case, to a numerical error and, in the second, 
to an incorrect choice of group generators and in the 
transcription of Biedenharn's results. The difference 
in phase for the linear combinations of the I [20] IS) 
and I [00] IS) states is of critical importance in assessing 
the relevance of R4 symmetry in many-electron 
theory, since these are the only states belonging to 
different R4 representations that can interact in 
(2s + 2p)2 and thus give rise to a configuration 
mixing. 

We note that the states I [llJ3P) and 1[1 - IJ3P) 
involve a linear combination of odd and even parity 
states. However, we may always form states of well 
defined parity by forming the linear combinations 

I [pq],SL)± = 2-!(I[pq]SL) ± I[p - q]SL», q > O. 

(13) 

There is no difficulty in obtaining the appropriate 
linear combinations for more complex 2-electron 
configurations. At this point, it should be noted that 
the linear combinations given by Alper and Sinanoglull 

for (3s + 3p + 3d)2 while forming an orthonormal 
set do not have consistently defined phases. 

V. R4 SYMMETRIZATION OF THE COULOMB 
INTERACTION 

In a previous paper, 14 we derived the transformation 
properties of the double-tensor operators W(Kk).(A, B) 
under the groups of interest here. In Table II we give 
the transformation properties of the operators using 

TABLE II. Symmetrization of I-particle tensor operators 
for (8 + p)N. 

Us Sp. suo x R. SUI X Rs Symmetrized operator 

{21 S} (P) s[11] 'P 2-i [w(1l'(Pp) + ';(ll'(Sp)] 

3[1 - 1] 3p 2-I [w(11'(pp) - ;(ll'(Sp)] 
1[20] ID W(02'(pp) 

Ip + _W(OI'(Sp) 
IS H31)w(OO,(ss) - !w(OO'(pp) 

(2) 1[11] Ip 2-t[W(OI'(pp) + W(OI'(Sp)] 

1[1 - 1] Ip 2-*[W(OI'(Pp) - W(OI'(Sp)] 
3[20] 3D W(12'(pp) 

.p -W(ll'(Sp) 
3S H3t)W(10'(SS) _ !W(10'(pp) 

3[OOJ 3S !W(10,(SS) + H3t)W(10'(Pp) 
to} (0) l[ooJ IS !w(OO,(SS) + H3f )w(OO,(pp) 

the abbreviation 

~(ICk)(I, 1') = 2-![w(ICk)(I, 1') ± ( _1)IC+k+I-I'w(!Ck)(l', 1)]. 

Now the Coulomb interaction may be written 

He = ! Fo(2s, 2s)[v!O)(ss). v~O)(ss)] 
i> j 

+ 3Fo(2p, 2p)[v!O)(pp) • v~O)(pp)] 

+ 3!Fo(2s, 2p){[v!O)(ss). v~O)(pp)] 
+ [v:O)(pp) • v~O)(ss)]} 

+ 6Fl2p, 2p)[v?)(pp). V~2)(pp)] 

+ 2G1(2s, 2p)[v?)(sp) • V~1)(Sp)]. (14) 

The Coulomb interaction as written has well
known spin and orbital symmetry-namely scalar
but we wish to split the interaction up into parts of 
precise R4 symmetries. This may be done readily, as 
we know the symmetry of the single operators and the 
R4-Wigner coefficients.s When coupling, the sum is 
over all subgroup representations and thus, we must 
introduce v(1)(sp) and V(I)(pp). 

The operators €k and ek symmetrized with respect 
to Ra and R4 are given in Tables III and IV. The 

TABLE III. R. symmetrized operators. 

EO = ~ <VjO,(ss)· v:o,(ss» 
i>j 

El = ~ (v1°'(ss)· vjO'(pp» 
ii'j 

... = ~ (vIo,(Pp). vJo,(Pp» 
I>; 

+ + 
E3 = ~ (v(1'(sp). V(I,(Sp» 

i>j 

E, = ~ (v;·'(pp)· v;"(pp» 
I>; 

EO = ~ (V;I'(Sp). ;;1' (sp» 
I>; 

E. = ~ (v!ll(pp). v~ll(pp» 
i>; 
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TABI,E IV. R4 symmetrized operators. 

Spa R4 2S + IL normalization 

(0) [00] 's l 
(22) + (0) [00] 'S i-
(22) + (0) [00] 'S rt 

(II) [20] 'S 2(3-t ) 
(22) + (11) [20] 's 2(3-l) 

,(22) + (11) [20] 'S 2(3-t ) 
(22) [40] 's 6(5-t ) 

possible symplectic group symmetries for these 
operators are also given. They may be derived using 
the appropriate plethysms. 

Writing 

(15) 

and comparing this with Eq. (14) we may solve for 
the coefficients Ek in terms of the Slater integrals 
(Table V). Contrary to Alper and Sinanoglu,l1 we 
note that the exploitation of the R( symmetry does 
not lead to any reduction in the number of param
eters required to characterize the Coulomb field. 
This invalidates the results of their Tables III and V. 

TABLE V. Radial coefficients for R4 symmetry. 

Eo = ;. [Fo(18, 2s) + 6Fo(2s,2p) + 9Fo(2p, 2p)] 
E, = .. 's [Fo(2s, 2s) - 2Fo(18, 2p) + Fo(2p, 2p) + 40F.(2p, 2p)] 
E. = lG,(18,2p) 
E3 = 1[Fo(18, 2s) + 2Fo(18, 2p) - 3Fo(2p,2p)] 
E4 = ;.[Fo(2s, 18) - 2Fo(18, 2p) + Fo(2p, 2p) - 20F.(2p, 2p)] 
E6 = -lG,(2p, 2p) 
E. = .. '. [Fo(2s, 2s) - 2F0(18, 2p) + Fo(2p, 2p) + 4F.(2p, 2p)] 
E7 = W(18) + 31(2p) + 2Fo(1s, 2s) + 6Fo(1s, 2p) - Go(1s, 2s) 

- 3G,(ls, 2p)] 
E. = W(18) - 1(2p) + 2Fo(1s, 18) - 2Fo(1s, 2p) - G,(1s, 18) 

+ G,(1s, 2p)] 

This process of symmetrizing with respect to 
higher groups can be carried out whenever we know 
the coupling coefficients. The operators must have a 
common normalization for this procedure and for 
this reason the factor required for the normalization 
of the operators is included in Table IV. 

eo = £0 + 3!£1 + 3£. 
e, = 3£0 - ~!£1 + £. - 4£3 + 4£4 
e. = 2£. + 2£5 
e. = 3£0 + 3t£1 - 3£. 
e4 = 3£0 - 3'£, + £. - 2£3 - 2£4 
e5 = 2£. - 2£5 
e. = 15£0 - 5(3t)£1 + 5£. + 10£3 + 2£4 

VI. MATRIX ELEMENTS FOR (2s + 2p)2 

The matrix elements for the ek may be readily 
calculated using standard methodsl6 to give the results 
of Table VI. We note that we may factorize the 
matrix element of ei asI6 

(Y2W2L2M21 efLM IYlfflLIMI) 

= (LM, LIMI I L2M2)(WL, WILl I W2L2) 

X (Y2W211 eiw IIyIWI), (16) 

thus reducing the number of calculations required. 
We have now separated the Hamiltonian into R( 
symmetry preserving (e~o + Elel + E2e2) and sym
metry breaking (Eaea + E(e( + esEs + e6E6) terms. 
The R( model will only be valid if the last part is 
small. In order to obtain some feeling for the size of 
the radial integrals, we present in Table VII the 
values of the Ei obtained using either hydrogen-like 
orbitals or the Hartree-Fock radial integrals found 
for neutral beryllium by Condon and Odabasi.17 

The IS energy levels are of particular interest since 
the R( model gives a prediction of the mixing of 
the 12s2 IS) and 12p2 IS) states. Using the hydrogenic 
radial integrals, the relevant energy matrices in the 
two schemes are 

1 [20] IS) 1 rOO] IS) 

108 -16')3 III -15')3 

-16.)3 80 -15')3 77 

where the matrix elements have units of Ze2j512ao. In 

TABLE VI. Matrix elements of (s + p)'. 

eo e, e. ea e4 e6 e8 e7 e. 

([ll]aPI e.1 [11] ap) -3 -1 2 
([1 - 1]8PI e.i[1 - 1]3P) -3 -1 2 
([11)8PI el/[1 - 1)8P) -1 2 -1 -2 
([20]'DI e.i[20] 'D) 1 1 1 -1 1 2 2 -2 
([20] 'PI e. 1[20] 'P) 1 1 1 1 -1 -10 2 2 
([20] 'SI e. 1[20] 'S) 1 1 1 2 -2 -20 2 4 
([20] 'SI e.1 [00] 'S) 31 2(31) 3+ 2(31) 
([00] 'SI e. 1[00] 'S) 9 -3 2 
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TABLE VII. Radial integrals. 

Hydrogenic 
Ze2/512ao a.u. 

Hartree-Focka 

a.u. 

1.11 
1H 

:: 
'." 

_3
8
3 

-Al-
-1..l 

~.!. 
840 

• Derived from Condon and Odabasi,l7 

0.3152 
0.0047 
0.0511 
0.0094 

-0.0061 
-0.0511 
-0.00067 
-0.5444 
-0.0344 

this case, the R4 scheme is less diagonal than the 
configuration scheme. 

Using the H-F orbitals we obtain 

1 [20] 2S) 1 [00] IS) 

0.5054 -0.0933 0.3607 -0.1773 

-0.0933 0.2046 -0.1773 0.3493 

in atomic units. Diagonalization of the matrices gives 
the groundstate eigenfunction for beryllium as 

IIS)o = 0.953 1 [00] IS) + 0.275 1 [20] IS) 

== 0.71512s2 IS) + 0.700 J2p2 IS), (17) 

suggesting that for these Hartree-Fock orbitals the 
R4 scheme is very much better than the configura
tional scheme. 

Multiconfiguration calculationsl8- 2o for the beryl
lium atom yield for the groundstate21 

11S)0 = 0.9531 2S2 IS) + 0.299 12p2 IS) 

== 0.7361 [00] IS) + 0.6761 [20] IS), (18) 

indicating in this case that the configurational scheme 
is superior. Comparison of Eqs. (17) and (18) suggests 
that there is a contradiction between the R4 and the 
multiconfiguration schemes. To resolve this discrep
ancy, we shall re-examine some of the approximations 
involved in the R4 scheme. 

VII. INCLUSION OF CLOSED-SHELL EFFECTS 

Equation (14) gives a complete description of the 
Coulomb interaction within the (2s + 2pt' complex 
but fails to include contributions to the Hamiltonian 
from the Is2 shell. To take into account these effects 
for the configuration Is22sx2~-x, we must add to 

Eq. (14) the terms22 

H~ = 2/(ls) + Fo(1s, Is} + X/(2s} + 2XFo(1s, 2s} 

- XGo(1s, 2s) + (N - X)/(2p) 

+ 2(N - X)Fo(1s, 2p} - (N - X}G1(ls, 2p). 

(19) 

We now express Eq. (19) as a linear combination of 
operators having well-defined R4 symmetry by first 
noting that the numbers X and N - X may be 
replaced by their operator equivalents 

X = V~O)(2s2s) and N - X = 3tV~0)(2p2p). 

Inspection of Table II shows that we may construct 
two operators 

e7 = V~0\2s2s) + 3tV~O)(2p2p) (20a) 
and 

(20b) 

having [00] and [20] R4 symmetry, respectively, to 
give 

where 

E7 = ![I(2s) + 2Fo(Is, 2s) - Go(ls, 2s) + 3I(2p} 

+ 6Fo(1s, 2p) - 3G1(ls, 2p)], 

Es = HI(2s) - /(2p) + 2Fo(1s, 2s} - 2Fo(Is, 2p) 

- Go(ls, 2s) + G1(ls, 2p)]. 

The first two terms in Eq. (21) are constant for the 
terms of a given (2s + 2p)N complex and thus cannot 
affect the result of Eq. (17). Similarly, since e7 is just 
the number operator with eigenvalues N for all terms 
of the complex, its effect also leaves Eq. (17) invariant 
and thus can only alter the absolute energy of the 
complex. 

The term esEs has [20] symmetry under R4 and will 
thus have an off-diagonal matrix between the 1 [00] IS) 
and 1[20] IS) states of (2s + 2p)2, as follows from an 
inspection of Table VI. The integrals of Condon and 
Odabasj17 lead to the values 

E7 = -0.5444 and Es = -0.0344 a.u. 

Explicit calculation using these values gives the 
groundstate eigenfunction of the beryllium atom as 

11S)~ = 0.8191[00] IS) + 0.5741[20] IS) 

== 0.90712s2 IS) + 0.413 12p2 IS). (22) 

This result is more in accord with that of the multi
configuration calculation given in Eq. (18) and shows 
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that when the Is2-shell effects are included the R4 
scheme ceases to be physical, and the configurational 
scheme becomes superior. 

The term e8E8 clearly plays a major role in breaking 
the otherwise good R4 symmetry. This result might 
well have been anticipated by noting that in the 
(2s + 2p)1 complex the separation of the 2S and 2p 
terms will be, from Eq. (21), just -4E8' Pure R4 
symmetry would require this splitting to be zero, 
while experimentally we find for the isoelectronic 
series23 

Li I Be II BIll CIV 

-E8 = 3725 7958 12095 16150 cm-1 

0.0170 0.0364 0.0551 0.0736 a.u. 

which is by no means negligible. 

VIII. CONCLUSION 

Our principal conclusion is, contrary to previous 
assertions,9.11.12 that the R4 group does not yield an 
adequate approximate symmetry scheme for many
electron theory. In reaching this result, we have 
eliminated a number of errors in previous work and 
shown that the R4 symmetry scheme approximately 
diagonalizes the energy matrix only when the effects 
of the inner shells are omitted. These latter effects 
lead to a large symmetry mixing term that renders the 
R4 approximation of little pJ:1ysical significance for 
many-electron theory. 
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This is a further development of a network model for electrons in solids. It is postulated that the elec
trons are restricted to move along I-dimensional lines between atoms. The network for a given solid 
corresponds to that which one would use in a wire and ball model to exhibit the crystal structure. A 
potential of the form V = - Vo sech' yx is associated with each "atomic" node point. The atom can have 
1,2,3, or more electronic bound states, depending on Vo and y. The wavefunctions have the usual Bloch 
form and involve hypergeometric functions. The density of states is plotted. Localized defect energy 
levels are also given for various types of atomic defects. An especially interesting feature of the model is 
that all the above-mentioned calculations are made exactly, without resorting to perturbation theory. 

I. INTRODUCTION 

One of the authors1 has discussed a network model 
of electrons in molecules and crystals which has the 
nice feature that wavefunctions and energy levels can 
be calculated exactly. (This paper is referred to as I.) It 
is a generalization of the free-electron network model 
developed by Pauling,S Kuhn ,3 Platt,4 Ruedenberg and 
Scherr,S Griffith,S Coulson,? and others. In the free
electron model, the electrons are restricted to move 
along I-dimensional paths between network node 
points, the network being constructed to be topologi
cally equivalent to the molecule or crystal of interest. 
The wavefunctions must be chosen to be continuous 
at the node points and to be such that Kirchoff's law is 
satisfied at the node points. In our generalization, a 
I-dimensional potential is introduced along each 
internode bond. It is chosen in such a manner that 
bound states might exist at the node points and such 
that the wavefunctions can still be expressed in terms 
of classical special functions. 

The I-dimensional SchrMinger equation with the 
potential 

V(x) = - Vo sech2 yx (1) 

can be solved in terms of hypergeometric functions. 
The special case Vo = y2Ji2/m was emphasized in I 
because the associated wavefunctions can be expressed 
in terms of elementary (circular and hyperbolic) 

and to the variation of distance between bands. The 
relationship of the density of states to the parameters 
of the potential is discussed also. 

In Sec. IV, we consider a simple monatomic lattice 
with a defect which is characterized by a deviation in 
the parameters of the potential well from the values 
they have in the host atoms of the lattice. The values 
of the impurity energy levels are calculated as well as 
the localized wavefunctions in the neighborhood of 
the impurity. These localized electrons, of course, 
correspond to those found in semiconductors. 

II. SOME GENERAL ASPECTS OF NETWORKS 
WITH BOND POTENTIALS V = - Vo sech2 yx 

We have plotted the potential (1) in Fig. 1 for vari
ous values of Vo and y to give some idea of the rela
tionship between the parameters and the shape of 
potential. The area between the potential and the axis 
V(O) = 0 is 2Vo/y, while the half-width of the po
tential is y-l tanh-1 (t). As y -+ 00 for fixed Vo• we 
have a deep narrow well, while as y -+ 0 we have free 
particles. 

The I-dimensional SchrMinger equation for the 
potential (1) is 

functions. If the node points are not too close to each If we let 

k2 = 2mEjli2 and s = l[-l + (1 + SmVo/n2y2)!], 

(3) 

other, one band of bound states exists in this special 
case. While further remarks are made concerning this 
case here, we also allow Vo to have other values so that 
situations with more than one band of bound states the Schrodinger equation becomes 
can be investigated. General aspects of the two param
eter potential are discussed in Sec. II. 

Section III is devoted to the application of (1) to 
square lattices and cubic lattices. We investigate the which with s = 1 is the case investigated in some 
relation of the parameters to the spreading of bands detail in 1. It is well known8 •9 that the solution of this 

2525 
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FIG. 1. Sketch of model "atomic" potential which we use in this paper. s = 1 corresponds to one bound state per 

atom, s = 2 two bound states, etc. 

equation can be expressed in terms of hypergeometric 
functions. We write 

E = (liy)-l( -2mE)l = ik/y. (5) 

Then the solution of (2) is 

1p(x) = A [P(E, s, x) + DT(E, s, x)]. 

Here, A and D are arbitrary constants, while 

peE, s, x) = (cosh' yx)-lF1 , 

(6a) 

(6b) 

T(E, s, x) = (sinh yx)(coshB yx)-lF2 , (6c) 

where, with F(a, b, c; z) being the hypergeometric 
function, 

ab z 
F(a b c· z) = 1 + --, , , c 1! 

+ a(a + l)b(b + 1) Z2 + . ", (7) 
c(c+1) 2! 

Fl == F( -is + iE, -is - iE, t, -sinhl yx), (6d) 

Fa == F(-is + iE + !. -is - iE + t, I, 
-sinhl yx). (6e) 

The derivative of the wavefunction (6a) can be ex
pressed in terms of four hypergeometric functions10 

F1 , Fa , Fa, and F4 with 

dF1 = !y(E2 
_ s2)Fa sinh 2yx, 

dx 

dF2 1 2 2· - = srfE - (s - 1) 1F, smh 2yx, (Sa) 
dx 

Fa == F( -is + iE + I, -is - iE + 1, t, 
-sinhl yx), (8b) 

F4 == F( -is + iE + t, -is - iE + t, t, 
-sinhl yx). (Sc) 

Then some algebra yields 

lp'(x) = yA[R(E, s, x) + DQ(E, s, x)], (9a) 

with 

R(E, s, x) = [(E2 - s2)Fa sinh yx cosh yx 

- SFl tanh yx]/cosh8 yx, (9b) 

Q(E, s, x) = {(cosh yx - s tanh yx sinh yx)F2 

+ !ri:2 - (s - 1)2]F4 cosh yx sinh I yx}/ 

cosh' yx. (9c) 

Both the wavefunction and its derivative can be 
evaluated at the origin by using F(a, b, c, 0) = 1. This 
gives 

so that 

11'(0) = A, 

11"(0) = yAD, 

11"(0)/11'(0) = yD. 

(lOa) 

(lOb) 

(IOc) 

The hypergeometric functions are even functions of x, 
so that P and Q are even, while T and R are odd. 

Now we introduce the network aspects of the prob
lem, using the methods discussed in I to impose the 
boundary conditions on the wavefunction and its 
derivative. Consider the point halfway between nodes 
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separated by I. The value of the wavefunction is 

1p(t/) = 1p(O)(P« + DT«), with Cl = tyl, (10d) 

where we have omitted the parameters " and sand 
have set P« == P(cl), etc. From the requirement of 
continuity of the wavefunction at the midpoint be
tween nodes, we have (letting 1p[i] be the wavefunction 
at the node i) 

1p[i](P« + DiiT«) = 1p[j](P« + DiiT«), (11) 

where Dii is the constant associated with the wave
function at node point [i] along the bond connecting 
[i] and [j]. Next, consider the value of the derivative 
of the wavefunction at the midpoint. The value of the 
derivative is 

Our convention is that the distance x is measured 
away from the node point so that continuity of the 
derivative at the midpoint implies that the derivatives 
with respect to each portion are of the same magnitude 
but opposite in sign: 

(R« + DiiQ«)1p[i] = -(R« + DiiQ«)1p[j]. (13) 

By eliminating Dii from (11) and (13), we obtain 

Dii = {(P«Q« - T«R«)1p[j] 

- (P«Q« + T«R«)1p[i]}/2T«Q«1p[i]. (14) 

We are now in a position to discuss the boundary 
conditions at the ith node point. First, the wavc-

function must be continuous as one goes from one 
segment connected to the ith node point to another. 
If {ik } is the set of nodes connected to the ith, the 
conservation of particles (or Kirchoff's law) leads t05 

I (d logh ik) = 0, all i, (15) 
1r dXiik 0 

where hi is the wavefunction along the segment which 
connects nodes i and j and Xii is the distance on the 
segments from node i in the direction of node j. The 
subscript 0 indicates that the derivative is to be 
evaluated at the node point i. If we refer to (lOc), we 
see that (15) is equivalent to 

(16) 

so that 

nJ(", s, O()1p[i] = I1p[ik ], (17) 
Ie 

where f(", s, O(), which we call a "form factor," is 
given by 

f(", s, O() = (P«Q« + T«R«)!(P«Q« - T«R«). (18) 

Here ni is the number of connections to the ith node 
and the sum is over the neighboring nodes connected 
to the ith node. 

If we substitute the definitions of P, T, R, and Q 
into (15), the form factor is given in terms of the 
hypergeometric functions Fi == Fi(O() [as defined by 
(6) and (8)], yx = tyl == 0(: 

For integral values of s we can use the contiguity rela- f(", 1,0() = (,,2 - 1)-1[(,,2 - 1 + 2 tanh2 cl) 
tions and formulas10 x cosh 2,,0( - c 1(2,,2 - sech2 O() 

F(a, -a, t, sin2 z) = cos 2az, (20a) x tanh 0( sinh 20("]. (22b) 

F(a,1 - a, t, sin2 z) = cos [(2a - l)z]jcos z, (20b) For s = 2, we have 

F(a,1 - a, t, sin2 z) = sin [(2a - l)zJ! 1p(x) = A([1 + 3(,,2 - 1)-1 tanh2 yx] cosh "yx 
[(2a - 1) sin z], (20c) - 3,,(,,2 - 1)-1 sinh "yx 

F(a, 2 - a, t, sin2 z) = sin [(2a - 2)z]! + D{[1 + 3(,,2 - 1)-1 tanh2 yx] sinh "?IX 
[(a - 1) sin 2z] (20d) - 3,,(,,2 - 1)-1 cosh "Yx}), (23 a) 

to express the wavefunction and the form factor in f(", 2,0() = [(,,2 - 1)(,,2 - 4)]-1 
terms of elementary functions. For the free particle x {[,,4 + ,,2(13 - 18 sech2 cl) 

case s = 0, we have + (4 _ 36 sech2 0( + 36 sech4 O()] cosh 2" 
1p(x) = A(cosh "Yx + D sinh "yx), (21a) 

f(", 0, cl) = cosh 2"Cl. (21b) 

For s = 1, we have 

1p(x) = A [(cosh "yx - ,,-1 tanh yx sinh "yx) 
+ D(sinh "YX - ,,-1 tanh yx cosh "yx)], (22a) 

- 3,,-1 tanh 0([2,,4 + ,,2(4 - 11 sech2 (X) 

- (4 sech2 (X - 6 sech4 O()] sinh 2,,(X}. 

(23 b) 

So far, we have considered only bound states which 
correspond to negative values of the energy E. The 
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wavefunction and the form factor for the free
electron states, corresponding to positive energy, can 
be easily found by replacing E by ik/y in the above 
formulas. We notice that the form factor depends 
on the energy E,...., - E2 rather than on E itself. If 
we let K = k/y, then cos KyX replaces cosh eyx and 
K-1 sin KyX replaces E-1 sinh EyX, while - K2 replaces 
E2. As an example, the wavefunction and form factor 
for s = 2 are 

tp(x) = A{(K2 + 1 - 3 tanh2 yx) cos kyx 

- 3K sin KyX + D[(K2 + 1 

- 3 tanh2 yx) sin KyX - 3K cos KyX]}, (24a) 

j(K, 2, ex) = {[K4 - K2(13 - 18 sech2 ex) 

+ (4 - 36 sech2 ex + 36 sech4 ex)] cos 2Kex 

- 3K-1 tanh ex[2K4 - K2(4 - 11 sech2 ex) 

- (4 sech2 ex - 6 sech4 ex)] sin 2Kex}/ 

(K2 + 1)(K2 + 4). (24b) 

The form factor is plotted in Figs. 2 and 3 as a 
function of the energy for several values of the param
eters s and ex. 
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FIG. 2. Variation offorms factor with energy in network with one 

bound state per node point (i.e., per "atom"). The allowable values 
of the energy correspond to -1 <! < 1. Hence, energy bands for a 
given ex exist for those energies for which! satisfies this inequality. 
Here ex = yl12, while I is the lattice spacing and 2y2 the depth of the 
potential. Small ex represents free electrons and large ex represents 
the tight-binding limit. 
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FIG. 3. Form factor when there are two bound states per atom. 
Again, the allowed energy levels are restricted to -I <! < 1. 

III. BAND STRUCTURE AND DENSITX OF 
STATES 

Consider first a simple cubic lattice with a typical 
lattice point (jl, h ' h). Then (17) has the form 

6/tp[jl,h,ja] = tp[jl - l,h,ja] + tp[jl + l,h,h] 

+ tp[jl,h - l,h] 

+ tp[h,j2 + l,h] + tp[h ,j2,h - 1] 

+ tp[jl,h ,ja + 1]. (25) 

Using periodic boundary conditions in a network with 
N3 node points, we find that (where A is a normaliza
tion constant) 

tp[jl,h ,h] = A exp [21Ti(sdl + s2h + sajs)/N], 
SI' S2 , S3 = 1, 2, ... ~ N, (26) 

so that solutions of (25) have this form if/has one of 
the values 

f= lIcos _IX • 
3 (21TS ) 

<%=1 N 
(27) 

As N ---+ 00, the quantity 21TS/N can be replaced by the 
continuous variable r/> with the range 0 < r/> < 21T. 
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Or, as an alternative, if we introduce the lattice spacing 
I, we have 27TS/N == 27Tsl/IN = 27Tsl/L == qt, where L 
is the length of an edge of our sample and q = 27TS/L. 
Then 

s s 
f = 1 I cos rP" == 1 I cos lq". (28) 

11=1 1 

This is the basic equation from which the band struc
ture and constant energy surfaces of a simple cubic 
lattice can be deduced. 

Once the energy of interest [or E, since E is related to 
the energy by (5)] is chosen, the structure function/is 
obtained from (19). Since, for a given vector rP = 
(rPl' rP2' rPs) or q = (ql' q2, qs), the right-hand side of 
(28) is determined, the energy associated with that rP 
or q is that which gives the appropriate value off This 
can be read off graphs such as those given in Fig. 3. 
Since the right-hand side of (24) is restricted to values 
between -1 and + 1, the allowed energies are those 
for which the form factor lies in this interval. By 
inspection of Fig. 3, we can see which values of the 
energy are allowed. Figures 4 and 5 show the location 
of the band edges as a function of ex for s = 1, 2. 

We see that, as we increase the depth of the well by 
increasing s for fixed ex, we increase the number of 
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FIG. 4. Variation of location of band edges, with yl, where 2y' is 
the well depth of the potential well and I the distance between nearest
neighbor lattice points. This data corresponds to the case of one 
bound state per "atom." Notice that, as y -+ IXl or 1-+ 1Xl, one 
obtains a tight-binding situation with a very na,rrow band associated 
with bound states. As y -+ 0 or 1-+ 0, one has a free-electron situa
tion in which the gap between bands of bound states and free
electron states vanishes. A rapid change from one regime to another 
occurs when yl = 2.5. 
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FIG. 5. Variation of location of band edges with yl when there are 
two bound states per "atom." 

bound states for each well. As we bring potential 
wells together (by decreasing I, i.e., ex), we obtain a 
broadening of the bands. 

The surfaces of constant energy (which in turn yield 
the Fermi surface of a material) can be determined 
immediately from (28) and (19). If an energy is speci
fied and substituted into (19), the appropriate value of 
lis determined. With this constant/, a constant energy 
surface is defined in (28) which corresponds to the 
energy originally chosen. A typical constant-energy 
surface is plotted in Fig. 6. 

It is well known from other solid-state problems, 
whose basic equations have the structure of (17) but 
in which the physical significance of/ and "p are some
what different (for example, tight-binding approxi
mation for electrons and random walks on lattices), 
that the analogs of (28) for body-centered- and face
centered-cubic lattices (BCC and FCC, respectively) 
with nearest-neighbor interactions only arell- 1a 

f = cos tql cos iq2 cos iq3' BCC, (29a) 

/ = l(cos lql cos lq2 + cos lq2 cos lqs + cos lqa cos lql), 

FCC. (29b) 

Their constant-energy surfaces can be obtained in the 
manner discussed for the simple cubic lattice. 

It was shown in I that the density of states of a 
simple cubic lattice can be derived from information 
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FIG. 6. A surface of 
constant energy for a 
simple cubic lattice. 

on the form factor f and from the distribution function 
Pa(x) of the variable 

Xa = cos CPl + cos CP2 + cos CPa (30) 

as each cP ranges with equal likelihood through all 
values between 0 and 21]. Thus, in the band of bound 
states, the density of states Gn(E) is given by 

Ga(E) = - (~)Pa[3f(E' IX, s)] df (31) 
E dE 

and, in the conduction band, by 

Ga(E) = - Pa[3f(K, IX, s)] - , (1) df 
K dK 

(32) 

where 

The properties of these distribution functions are 
summarized in I and, indeed, have been discussed by 
a number of authors including those listed in Refs. 
14-16, as well as 12. The function Pa(x) is plotted in 
Fig. 7(a). 

The density of states for s = 1 is plotted in I for 
several values of IX. Notice that, when s is an integer,f 
can be expressed in terms of elementary functions as 
can dffd€. Otherwise, it is very clumsy to deal with. 
In that case, calculations would be made on a com
puter and the best way to calculate derivatives would 
be through the aid of formulas such as 

df _1(1 1 1 a a - = h - (6.f -1 + 6.fo) - - - (6. '1-2 + 6. 'I-I) 
dE 2 23! 

+ ~ (6. 5
/_3 + 6.51_2) + ... ) (33) 

5! 

for the derivative where I has the value fo when the 
values' .. ,f-2' f-l , fo, and 11 are known at points 

separated by intervals h. Also, 6.h = h+l - h' 
6.'1; = 6.h+l - 6.h, etc. 

Sincefis a smooth function, the derivative expansion 
converges rapidly. A variety of derivative formulas 
are given in Ref. 10, Chap. 25. The simple cubic lattice 
density of states for several values of s and IX is plotted 
in Fig. 8. 

Let PBdx) and PFdx) be the distribution functions 
of the body-centered and face-centered structure 
functions 
XBC = cos CPl cos CP2 cos CPa, (34a) 

X FC = cos CPl cos CP2 + cos CP2 cos CPa + cos CPa cos CPl . 
(34b) 

Then the respective densities of state are 

(/) 
Z o 
i= 
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z 
::> 
u.. 

z 
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i= 
::> 
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a:: 
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1 df 
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E E 
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FIG. 7. Basic distribution functions which, when properly modu
lated [see Eqs. (32) and (35»), yield the density of states for various 
cubic lattices. 
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The functions PBC and PFC have recently been dis
cussed in detail by Jelitto16 (his formulas, however, 
must be divided by 87Ta in order to satisfy our normal
ization). 

The distribution functions Pnc(x) and PFc(x) can 
be written, respectively, (letting cj == cos cpj) as the 
Fourier transforms of 

and 
(exp ilX(Cl C2 + C2Ca + CaCl»av' 

Je1itto has shown, for example, that 

Pnc (x) = (~r f (12 - X
2)-tK '(l) dl, (36) 

where 
K'(l) = K«l - 12)1) 

and where K(z) is the elliptic integral of the first kind. 
The numerical integration of (36) has been carried out 
by Je1itto. The graph of PBc{x) is given in Fig. 7(b). 
A similar analysisl6 can be made of PFc(x). This is 
plotted in Fig. 7(c). 

By combining Je1itto's formulas and our expression 
(19) for j, we find the density of states for BC and FC 
cubic lattices as plotted in Figs. 9 and 10. 

IV. DEFECTS 

A defect can be produced at a lattice point by intro
ducing a different number of bound states, say s ->- t, 
or by changing the parameter y ~ y' and, hence, 
IX ->-~. We consider a lattice with one defect at the 
origin in an otherwise perfect network. Our defect 
corresponds to the case of a change in spring constant 
and mass in the theory of lattice vibrations. The meth
ods developed for analyzing the effect of the defect 
on the frequency spectrum can be used to discuss the 
effcct of the defcct on the energy levels. 

We consider the continuity of the wavefunction and 
its derivative at the node point and at thc midpoint 
between nodes as in Sec. II. With a defect node at the 
origin of a lattice, there are three situations to con
sider: 

(i) a perfect node connected to other perfect nodes 
(this case has been considered in Sec. II), 

(ii) a defect node connected to perfect nodes, and 
(iii) a perfect node connccted to one defect node and 

other perfect nodes. 
We derive the form factors relating the wavefunc

tions at the nodes for cases (ii) and (iii) and show how 
the set of differcnce equations for the network can be 
solved by a Green's-function method. The method 
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Fio.9. Body-centered cubic lattice density of states, one bound btate per atom (8 = 1). 

used is that developed by Lifshitz17 and Montroll and 
Potts18 for lattice vibrations in the presence of defects 
and by Slater and Koster12 for the tight-binding 
model of electrons in crystals. 

Let s = t and y = 1" at the defect point. The solu
tion of the SchrOdinger equation and its derivative on 
each of the bonds attached to the defect are of the 
forms 

"PD(X) = A[P(E, t, y', x) + DT(E, t, 1", x)], (37a) 

"P~(x) = Ay'[R(E, t, y', x) + DQ(E, t, 1", x)], (37b) 

respectively, where P, T, R, and Q are defined by (6) 
and (9) with s -+ t and y -+ y'. Now we consider the 

Since "P'(O)/"P(O) = y'D, the boundary conditions at 
the defect node are !i Doi , which gives 

no(otPpQ .. + f3 T .. Rp) "P[O] = ~ "PU]. (40) 
otp .. Q .. - otT .. R.. ' 

Here, Pp == pee, t, f3) and p .. == pee, s, ot), etc. The 
summation extends over all points connected to the 

matching of this wavefunction with the wavefunction 
of the perfect lattice at the midpoint between nodes. 
With f3 = iI" I, following the notation of Sec. II [see 
line below Eq. (IOd)], we note that 

h~~+~~=~W~+~~, O~ 

where j represents a node connected to the origin. 
Using the convention that distances are measured 
away from each node for each segment, we find that 
continuity of the derivatives gives 

f3"PD[O][Rp + DOiQp] = -ot"PfJ[j][R .. + DjoQ .. J. 
(38b) 

The elimination of Dio from (38a) and (38b) gives 

(39) 

orlgm. For ot = p, the form factor f reduces to 
the perfect-lattice case, as it must. 

Next, we have to consider the form factor for the 
case in which a perfect-lattice point is connected to a 
defect as well as the other perfect-lattice points. 

Let us represent a perfect-lattice point which is 
connected to our defect by i. Then, from (38a) and 
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(38b), we find 

_tp. _[,,""-O;:..:;](P-=Q~p-:P p"""-----=-.P_R!:-p T.~p)_--...:.tp..:....[ i=..;.](P:....:Q:=!:P_P=-a +_IX--,Tp~R..:::..a) 
D,o =-

tp[iJ(PQJlT", + IXTpQrz) 
(41a) 

and, from (14), if j is any normal node point which is 
connected to i, we have 

If If I > 1, it is well known that 

g(j,f) = Hsgnf)i+1(f2 - I)-tf/fl - (f2 - I)t]lil 

(47a) 

= (2 sinh z)-l(sgnf)i+1 exp (- /jl z), (47b) 

where z is defined by 

If I = coshz. (47c) Dii = {(PaQ", - TrzRrz)tp[jJ 
Incidentally, 

- (PaQa + TrzR",)tp[iJ}f2TrzQatp[i]. (41 b) 

Then, by applying the conservation condition (16), we g(j,f) = g( -j,j) and gU, -f) = (-I)Hlg(j,f)· 
have (48) 

If F(j) is the right-hand side of (44), i.e., 
nJtp[iJ - ~ tp[ik ] = (f - A)tp[i] - (1 - e)tp[O]. (42) 

1c 2ftp[j] - tp[j - 1] - tp[j + IJ = F(j), (49a) 

The summation over k extends over all nodes con
nected to i (including the origin), and 

2TrzQiPQpPa + IXTpRrz) 
A= , ~~ 

(PaQrz - TaRa)(PQpTa + ocTpQ",) 

then one can easily verify from (49a) that 

00 

1pUJ = L g(j - j',J)F(j'), (49 b) 
j'=-oo 

so that, after introducing F(j) from the rhs of (44), we 
(43b) obtain 

We also define 

If i is neither a defective node nor connected to a 
defective node, then the standard node-connection 
equations (17) are still valid. 

As an example of the manner in which these equa
tions are to be applied, let us consider a I-dimensional 
chain. Then Eqs. (17), (40), and (42) can be written as 

2ftp[jJ - tp[j - IJ - tp[j + IJ 
= (f - A)(r5 i •1 + r5 i .-1)tpUJ 

+ [2U - f*)r5;.o - (1 - e)(~i+l.O + ~;_l.O)]1p[O]. 
(44) 

Under some conditions, a new bound state develops 
in which an electron or a deficiency of an electron 
develops around the defect position. This situation 
would correspond to the existence of a solution of (44) 
which would vanish as Ijl ~ 00. 

To find the new defect bound state, we start with the 
Green's function g(j) which satisfies 

2fg(j) - g{j - 1) - g{j + 1) = 15;.0, 

gU) ~ 0, as /jl ~ 00. (45) 

This Green's function is 

( . j) _ ~ J" exp (iN) de/> g), - . 
41T -11 f - cos e/> 

(46) 

tp[jJ = (f - A){g(j + I)tp[ -IJ + g(j - l)tp[IJ) 

+ [2(ef - f*)g(j) + (1 - e)r5i ,o]tp[O]. (50) 

From these equations we see that, if we know the 
contribution of the wavefunction nodes 1, -1, and 0 
due to the existence of the defect at the origin, the 
defect contribution to the wavefunction at any node 
point can be found. We also see, from (47), that the 
effect of the defect in a ID chain dies out exponenti
ally as one recedes from the defect. If the defect atom 
introduces a new electron, it is localized to within a 
distance rl = (cosh-I Ifl)-I. This distance depends 
on the energy level associated with the defect wave
function. This level is found by solving an appropriate 
eigenvalue problem. The energy is then to be sub
stituted into the formula which expresses the form 
factor as a function of energy to fi.nd f 

The value of the form factor f which gives us the 
localizability is obtained by successively letting j = 
-1, 1, 0 in Eq. (50). Three homogeneous equations 
result in tp[l], 1p [0] , and tp[-l]. In order for these 
equations to have a solution, the determinant of the 
coefficients must vanish. Two independent character
istic equations follow from this condition: 

(f - A){f - (sgnf)(f2 - 1)t} = 1 (51) 
and 

(sgnf)[f* - fA] = -(j2 - 1)t)., (52a) 
where 

). = e - f*(A - f) = (e - Af*) + ff*. (52b) 
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Let us consider (51) first. It is compatible with 

(53) 

One must be a bit careful with signs. We always use 
the convention that (X2)! = Ixl; then there are two 
cases: 

(i) If A > 0, then (f2 - 1) = A2, so that 

so that 1p [j] is an odd function of j with 

1p[j] = -1p[-j]. (63) 

When A > 0 and F < -1, one finds [using (47)] that 

1p[j] = -2(f - A)(J2 - I)!g(j)1p[I] 

= 2A(A - f)g(j,f)1p[IJ (64) 

(f - A)(f - A sgnf) = 1, (54) and that 1p[j] is an odd function of j, i.e., 

which is compatible with (53) iff < O. In this case, 

A > 0 implies f = - (1 + A2)!. (55) 

(ii) If A < 0, then (f2 - I)! = -A, so that, in a 
similar manner, 

A < 0 implies f = (I + A2)!. (56) 

Now consider the second characteristic equation 
(52). It is easy to show that this is compatible with 

f2 = 1 + (c - Af*)2f(J*)2, (57) 

and that 

(c - Af*)!!* > 0 implies 

f= [1 + (f*)-2(C - Af*)2]!, (58) 

(c - Af*)!!* < 0 implies 

f = - [1 + (f*)-2(C - Af*)2]!. (59) 

The parameters A, c, andf* depend on the energy 
E or, equivalently, on E. The same is true of the 
structure function f Hence, if the right-hand and 
left-hand sides of Eqs. (53), (58), and (59) are plotted 
on the same figure as functions of E or E, the intersec
tion of the two curves gives the value of E and E for 
the bound state due to the existence of the impurity in 
the lattice. The bound state energies are plotted as a 
function of various parameters in Fig. 11. The 3D 
bound state energies for simple cubic lattices are 
plotted in Fig. 12. The details of their calculations are 
given below Eq. (66b). 

Let us now investigate the symmetry properties of 
the various nodal wavefunctions. First consider the 
case withfrelated to A by (56). Then it can be shown 
that (50) becomes 

1p[j] = (f - A)[g(j - 1) - g(j + l)]1p[I]. (60) 

We first assume thatf > 1. Then, from (60) and (47), 
we have 

1p[j] = 2(f - A)(f2 - l)!g(j)lp[IJ 

= 2(A - f)Ag(j)1p[IJ, if j> 1, (61) 

since A < 0 whenf > 1. Similarly, we find that 

1p[-j] = -2A(A - !)g(j)1p[IJ, if j> 1, (62) 

1p[j] = -1p[-j]. (65) 

Now we consider the case associated with the 
second characteristic equation (53). In this case, 

1p[j] = f*g(j,f)1p[O]/g(I,j) (66a) 

which is an even function of j. 
The number of lattice spacings from the origin over 

which the defect wavefunction remains localized is 
[from (47b)] 

l/z = l/cosh-I If I· (66b) 

The above results can be generalized to 20 and 30 
lattices. While the ideas are the same, the equations 
become a bit longer. The 20 and 3D analogs of Eq. 
(50) are 

1p[jl,j2] = (f - A){g(jl + 1 ,j2)1p[ -1,0] 

+ g(ji - I,j2)1p[l, 0] 

+ g(ji ,j2 + I)1p[O, -1] 

+ g(jI,h - I)1p[O, In 

+ [4(fc - f*)g(ji ,h) 

+ (1 - c)bh .ob;t.o]1p[O, 0], (67) 

1p[jI,h,ja] = (f - A){g(jl + I,h,ja)1p[-I, 0, 0] 

+ g(b - l,j2,ja)1p[I, 0,0] 

+ g(jI,h + I,ja)1p[O, -1,0] 

+ g(jl,j2 - I,ja)1p[O, 1,0] 

+ g(h,j2,ja + I)1p[O, 0, -I] 

+ g(h ,j2 ,ja - 1)1p[0, 0, In 

+ [6(fc - f*)g(ji ,h ,h) 
+ (1 - c)bh .ob; •. ob;3' O]1p[0, 0, 0]. (68) 

The Green's functions are 

-IT 

(69b) 
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FIG. 11. (a) Variation of impurity energy levels with fJ = lly', where 2(y')2 is the well depth of the impurity potential, when oc = !yl = 2. 
The case s = 1, t = 1 corresponds to one bound state per defect atom and one bound state per normal atom. The case s = 1, t = 2 corre
sponds to a normal atom with one bound state and an impurity atom with two bound states. When fJ is small, the defect potential is shallow 
and broad. The energy level associated with it falls in or close to the free electron range (band n). However, as fJ increases, the well deepens 
and narrows so that, if a localized electron is identified with it, the electron decreases until fJ = oc (= 2 in the special case plotted, when it 
goes into band 1). The solid line which drops from band n to band 1 in the figure exhibits this process when t = 1. The two dotted lines which 
behave in the same way exhibit the process when t = 2. The levels which hug the bottom of band 1 reflect a somewhat different mechanism. 
When fJ < 2, the impurity potential is shallower and broader than that of the normal atoms. This gives a lowering of the connecting energy 
path between the two neighbors to the defect. When electrons are given more space to expand into, their energy decreases (for example, the 
lowest energy level of an electron in a box ofiength a is E,..", l/a2). The level which drops from band I in the t = 2 is merely the location of 
the lower bound state which does not exist in the normal atoms. This diagram corresponds to a 10 chain with a defect. 

(b) Impurity levels in a I-dimensional chain. As with (a), oc = 2 for host chain, but now we also choose the atoms of the host chain to have 
two bound states per atom. The effect of two types of defects presented those in which the defect has two bound states, s = 2, and those 
in which it has only one, t = 1. 

respectively, with 

g(1, 0;1) = g( -1,0;1) = g(O, 1;/) 
= g(O, -1 ;f), etc., 

and similarly for the 3D Green's function. 

(70) 

In the 20 case one can successively let Ul,j2) be 
(-1,0), (1,0), (0, -1), (0, 1), and (0, 0), while in the 
3D case one successively lets (A,h,ja) be (±1, 0, 0), 
(0, ± 1, 0), (0, 0, ± 1) and (0, 0, 0). In both the 20 
and the 3D cases, one obtains a set of homogeneous 
equations for the values of the wavefunctions at the 
node points listed above. Since the determinants of 
the coefficients of these wavefunctions must vanish in 
order for the set of equations to have a nonvanishing 

solution, these determinants can be factored, and one 
obtains three characteristic equations for a system of 
given dimensionality. The first set is 

f = (AI* - c)/!* + [g(O)fg(1)] in 10, (71a) 

f= (AI* - c)/!* + [g(0, O)/g(1, 0)] in 20, (7tb) 

f = (AI* - c)/!* + [g(O, 0, O)fg(l, 0, 0)] in 3~. 

(71c) 

The 20 Green's functions can be expressed in 
terms of elliptic integrals.14 While the 3D functions 
have no simple relation to more standard functions, 
they have been tabulated in Ref. 19 where their various 
properties have been discussed. The corresponding 
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FIG. 12. Impurity levels in 3D network, again with ex = 2 for host 
atoms and s = t = 1. The main difference between the ID and 3D 
cases is that, in the 1 D case, any small change in a defect parameter is 
sufficient to give a defect level. In the 3D case, the difference between 
the parameter for the defect and for the perfect atom must exceed a 
critical value before the defect level appears. This situation is well 
known in the case of localized vibrational states in crystals. 

body-centered and face-centered cubic lattice Green's 
functions have been tabulated in Ref. 20. 

The second set of characteristic equations has the 
form 

f = A + [g(0) - g(2)]-1 once in 10, (72a) 

f = A + [g(0, 0) - g(O, 2)]-1 twice in 20, (72b) 

f = A + [g(0, 0, 0) - g(O, 0, 2)]-1 thrice in 30, 

(72c) 

while the third set has the form 

f = A + [g(0, 0) + g(O, 2) - 2g(1, 1)]-1 

once in 20, (73a) 

f = A + [g(O, 0, 0) + g(O, 0, 2) - 2g(l, 1,0)]-1 

twice in 30. (73b) 

There is no 10 characteristic equation of type (73). 
The words once, twice, and thrice represent the degree 
of degeneracy of the characteristic equations with 
which they are identified. 

The 20 wavefunctions which correspond to the 
characteristic equations (7Ib), (72b) , and (73a) are, 
respectively, 

tp[h ,ja] = 4[(fc - f*) 

- f(f - A)Ta]g(jl,jJtp[O, 0], (74a) 

with 
Ta = [4(cf - J*)g(O, 0) - c]g(2, O)/g(l, 0), 

(74b) 

tp(jl,ja) = (f - A)[g(jl + l,h) + g(h - l,jJ 
- g(jl,j2 + 1) - g(jl,h - 1)]11'[1,0], (75) 

and 

tp[jl,h] = (f - A)[g(jl - l,jJ - g(h + l,h] 

x 11'[1,0] + (f- A)[g(jl,h -1) 

- g(jl ,h + 1)]11'[0, 1]. (76) 

In the 30 case, the corresponding equations for the 
wavefunctions, associated respectively with (7Ic), 
(72c), and (73c), are 

tp[jl,h,h] = 6[(fc - f*) - f(f - A)Ta] 

X g(jl ,h ,h)V' [0, 0, 0] (77a) 
with 

Ta = [6(cf - f*)g(O, 0, 0) - c]g(2, 0, O)/g(l, 0, 0), 

(77b) 

V'[jl,j2,h] = (f- A){[g(jl + l,h,jJ 

and 

+ g(jl - l,h,ja)]V'[I, 0, 0] 

+ [g(jl,h + I,h) 
+ g(jl,h - l,h)]V'[O, 1,0] 

+ [g(jl,h,h + 1) 
+ g(jl,h,h - 1)]'1'[0,0, In, (78) 

tp[jl ,j2 ,js] = (f - A){[g(jl - l,h ,ja) 

- g(jl + I,h,hHip[I, 0, 0] 

+ [g(jl ,h - l,h) 

- g(jl,jz + I ,j3)]V' [0, 1,0] 

+ [g(jl ,h ,j3 - 1) 

- g(jl ,h ,h + 1)]11'[0,0, In· (79) 

In the 30 case, the degree of localization of the 
impurity wavefunction follows from the asymptotic 
character of g(jl ,h,h): 

g(jl, i2, i3) 
exp (-AR) 

f""oo/ 

47TR 

+ 1 (16(j~ + i: + i:) (AR)tKt(AR) 
7687T(27T)i R7 

_ 48(j~ :!~ + i;) (AR)tKi(AR) 

+ ~~ (AR)!K~:CAR») + ... , (8QJ 

where Kn(x) is modified Bessel function of the second 
kind, 

A2 = 6(/ - 1), and R2 = n + n + n. 
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FIG. 13. The range of influence of a defect in a 3D network as a function of the location of the impurity energy level. The further the im
purity level from band edges, the longer its range. 

To a first approximation, the range of localization is 
obtained by setting AR = 1 or 

R ~ [6(1 - I)]!. (81) 

This quantity is plotted in Fig. 13 as a function of 
energy when s = 1 for various IX'S. Notice that, as an 
impurity approaches the allowed band edge with 
IFI ~ 1, the range of localization tends to infinity. 

Certain symmetries can be deduced from Eqs. 
(77a), (78), and (79). The wavefunctions (77a) [which 
correspond to characteristic equations (71)] are sym
metrical with "P[j] = "P[-j] and "P[O] finite. Wave
functions (78) are symmetric with "P[O] = 0, while (79) 
is anti symmetric with "P[O] = O. 
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The theory of formal series is developed in such a way that it includes conventional formal series as well 
as Volterra's series (generating functionals) as special cases. A method for expressing solutions of nonlinear 
equations is developed. 

INTRODUCTION 

In quantum field theory one encounters infinite sets 
of symmetric distributions,! "r and T functions," 
satisfying complicated nonlinear integral equations 
such as Schwinger's2 equations and the general 
unitarity equations.3 These equations may be brought 
into a compact form by the introduction of formal 
"generating functionals" and formal functional differ
ential operators.2.4- 6 

These generating functionals are formal Volterra's 
series 

.1'[J] = 1 f·· ·fdxl ••• dXn 
n2:0 

X CPn(Xl ," . , Xn)J(Xl) ... J(xn). (1) 

However, such a series is not a conventional one. 
Indeed, its coefficients should be the "values 
CPn(xl , •.. , xS' of CPn for given sets of points (Xl' ... , 
xn), expressions which are generally meaningless since 
the CPn are not functions. This is because the defining 
property of the CPn is such that they are symmetric 
multilinear mappings over some function's vector 
spaces. 

Therefore, the "indeterminate function" J appearing 
in (1) must not be considered as an infinite family 
(J(x))x of indeterminates J(x) but as one indeterminate. 

The aim of this paper is a generalization of the theory 
of formal series such that it includes the formal 
Volterra's series considered in (1). 

Let IK [[Xl' ... , X mJJ denote the algebra of the 
formal series7 •8 with respect to the indeterminate 
(Xl' ... ,Xm ), with coefficients in a field IK, and let 

1 (! ! a;';i,,·· .,i.X il •.. Xi.)' A = 1,2, ... , n, 
02:0 il=l i.=l 

(2) 
be n formal series of IK [[Xl' ... , XmJJ. 

which will be called a formal series of IK minto IK n 

with respect to the indeterminate X. The IXq are, by 
definition, the kernels of this formal series. Conversely, 
there corresponds to (3) one and only one set of n 
elements of IK [[Xl' ... , Xm]]. 

Suppose that E and F are two vector spaces over 
the field IK. A formal series of E into F with respect to 
the indeterminate X is an expression of the form 
102:0 iioX(I, where ii(l is a q-linear symmetric mapping 
on E with values in F. We denote the set of these for
mal series by F[E, [X]]. 

If E and F are finite-dimensional spaces (dim E = 
m and dim F = n), then E is isomorphic to IKm and 
F to IK n. Therefore, the notion of a formal series of E 
into F is equivalent to the notion of formal series of 
IK minto IK n and hence to the notion of n formal 
series with respect to m indeterminates with coeffi
cients in IK. 

However, this is not the case for general vector 
spaces E and F. This is the reason why the concept of 
formal series of E into F is the generalization of the 
usual notion of formal series with coefficients in a 
field K. Roughly speaking, the idea of a kernel is 
more general than the idea of coefficient even if both 
concepts are equivalent for the finite-dimensional 
case. Clearly, the former concept includes the formal 
V olterra series. 

In the first four sections of this paper, the con
ventional concepts which enter in the theory of formal 
series are generalized. In Sec. 5, differentials for such 
series are defined and a differential calculus developed. 
In Sec. 6, the existence and uniqueness of solutions for 
formal series equations are investigated, while in Sec. 
7 we solve these equations in specific cases; as an 
example, we shall write down the perturbative solu
tion of the classical (c-number) Yang-Feldmann equa
tion in compact form. 

The coefficients a;,;i, ..... i. of the terms of degree q 
define a q-linear symmetric mapping which we shall 
denote by 1X0 with values into IKn. Therefore, with the 
n series (2), we may associate the expression 

1. MONOMIAL AND POLYNOMIAL MAPPINGS 

Let I be a finite set of indices. Let F denote a vector 
space over a commutative field IK and (Ei)iEI denote 

(3) a family of vector spaces over the same field IK. (IK is 
supposed to have the characteristic zero.) 

2539 



                                                                                                                                    

2540 M. DUBOIS-VIOLETTE 

If ~ is the set of natural integers, then ~I denotes 
the set of families (ni)iEI with ni E ~, i E I. We shall 
also write simply (n i ) for such a family when no con
fusion can arise. 

Definition 1: A mapping 9'5: ITiEI Ei ---+ F is said to 
be a monomial of degree (ni)iEI if there is a linear 
mappingD 

such that 

9'5(Ui» = <I>(~ (®ii))' 

The integers n. will be called partial degrees of 9'5 and 
the integer l(ni)1 = !iEI ni will be called the total 

2. FORMAL SERIES 

Definition 3: A formal series of (Ei)iEI into F with 
respect to the indeterminates J. (i E I) is a pair 
«Ji)iEI' (9'5(n)(ni ) E ~I), where (Ji)iEI is a family 
whose terms are called indeterminates and where 
(9'5(n)(n/)ENl is a family of mappings of ITiEI Ei into F 
having ~I as the set of indices such that, for any 
(ni ) E ~I, 9'5(n/) is a monomial mapping of degree (ni ). 

We write 

for such a formal series. The fJJ(n.) are the kernels of 
:F, for P(n;) E £:(®iEI (yn/ Ei),F):We make the identi
fication fJJ(O) ITielJf == P(O) E F. 

degree of 9'5. The set F[Ei' [Ji]] 'EI of these formal series is, by 
The set M(n') [ITiEI Ei' F] of the monomial map- construction, in bij~ction with the vector space. 

pings of degree' (ni) of I1EI Ei into F is a subs~ace of - IT(n/)ENI £:(®iEI (ynl Ei), F). We define a structure of 
the vector space of the mappings of ITiEI Ei mto F. vector space on F[Ei , [Ji]]ieI such that this bijection 
M(ni)[ITieIEi' F] is isomorphic to the space becomes an isomorphism of vector spaces. 

of the linear mappings of ®iEI (yril Ei) into F. In fact, 
for any 

9'5 E M(n;) [IT Ei , FJ 
iEI 

there is one and only one P E £:(®iEI (yril Ei), F) such 
that 

9'5(Ui» = p(® (V ii))' for all (ji) En Ei · 
ieI tel 

This one-to-one mapping 9'5 ~ P is clearly linear. 
We shall write P(®iEI Nriiji» = fJJ ITieI j:1 when no 
confusion can arise. Then (j)iEI ~ fJJ ITiEI j:1 de
notes the monomial mapping 9'5. 

Definition 2: A mapping: w ITiEI Ei ---+ Fis said to 
be polynomial if it is a finite sum of monomial map
pings. The supremum of the total degrees of these 
monomial mappings will be called the degree of w, 

degree (w). 

The set P[ITiEI Ei ' F] of the polynomial m~ppings 
is a subspace of the vector space of the mappmgs of 
TIiEI Ei into F. P[TIiEI Ei , F] is isomorphic with the 
space E8(ril) £:(®ieI (yril Ei), F). 

We shall write (ji)ieI ~ L(n;) fJJ(ni) TIiEI j:i for 
the polynomial mapping sum of the monomial map
pings (ji)iEI ---+ fJJ(ni) TIiEI j;i with distinct degrees (ni); 
this decomposition is clearly unique. 

Definition 4: A polynomial of (Ei)iEI into F with 
respect to the indeterminates Ji (i E I) is a formal series 
L(n;) fJJ(n;) ITiEI J:i such that fJJ(nl) = 0 except for ~ 
finite number of (n;). When there is only one (n i ) E ~ 

such that fJJ(n.):¢ 0, this polynomial is called a 
mono.mial of d~gree (ni) of (Ei)iEI into F with respect 
to the indeterminates J. (i E I). 

The set F[E., J.]iEl of these polynomials is a sub
space of F[Ei , [Ji]]iEl; this vector space is isomorphic 
to P[ITiEIEi , FJ. 

For the polynomials and the monomials we have 
also the notions of degree, partial degree, and total 
degree defined for the corresponding polynomial and 
monomial mappings. 

Definition 5: The order w(:F) of a formal series 

:F = ! P(ni) IT J:I :¢ 0 
(ni) iEI 

is the lowest number 

w(:F) = L ni = l(ni)1 with fJJ(!I/):¢ o. 
iEI 

If L is a set of indices, a family (:FA);.EL of formal 
series :FA E P[E., [J.]]ieI is said to be summable if, for 
any n E ~, w(:FA) > n except for a finite number of 
indices A. If (:FA)AEL is such a family with 
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then for each (n;) E ~I there is only a finite number of be two formal series of F[E;, [J;llieI' The family 
q;fn,) =;I:. O. Therefore, 

has a meaning, and 

.1"[(Ji)] = 1 q;(n,) TI Jf' 
(ni) ieI 

is a well-defined formal series. This formal series is 
called the sum of the family (.1").heL, and we write 

.1"[(J;)] = 1.1").[(J;)]. 
).eL 

Let .1"[(J;)] be a formal series whose kernels are 
q;(n.) for (n;) E ~I. The family 

is clearly summable and its sum is just .1" [(Ji )]. This is 
a justification of the notation 

3. PRODUCTS OF FORMAL SERIES 

A. Case of F an Algebra 

Suppose now that F is an algebra over the field IK 
and let us denote by IT!, the product of two elements 
land!, of F. 

Given two mappings u and u' of TIiEl E; into F we 
define a new mapping uTu' of TIiEI E; into F by 

uTu'«i;» = u«ji»Tu'«ii» for any (ji) E IT Ei . 
;eI 

With this product the vector space of the mappings of 
TIiel E; into F becomes an algebra over IK, and the 
space P[TI;eI E;, F] of the polynomial mappings is a 
subalgebra of this algebra. If ip is a monomial mapping 
of degree (n;) and if ip' is a monomial mapping of 
degree (n~), ipTip' is a monomial mapping of degree 
(n; + nJ We denote by q;Tq/ the element of 

corresponding to 

ipTip' E M(n,+nl)[rr Ei , FJ 
ieI 

[therefore, ipTip' = (q;Tq;')-]. 
Let 

.1"'[(J;)] = 1 q;cn,) TI Jf' 
(ni) ;eI 

and 
.1""[(J;)] = ! q;'(ni) II Jf' 

(ni' ;eI 

(
, T" TI J nJ+n .")« ') ("» ",I ",I q;(n;') q;(n,") ; • , ni , ni E '''' X '''' 

ieI 

is summable. We denote its sum by .1"' T.1"" [(Ji )], and we 
call it the product of the series .1"' and .1"" . 

We have 

.1"'T.1""[(Ji )] = 1 q;(n.) IT Jf', 
(n,) tel 

with 

With this product, F[Ei , [J;nieI becomes an algebra 
over the field IK. F[Ei ,J,]iel is a subalgebra of this 
algebra (in fact, F[E; , J;];eI is clearly isomorphic with 
the algebra P[ITiEI E;, Fl). 

B. Algebraic Inverse 

We suppose now that there is an unit element in the 
algebra F; this element is denoted by u. If IE F has an 
inverse (for T), we denote it by IT-lor T-lj. 

In the algebra F[E;, [Ji]]ieI there is also a unit 
element, which is the formal series whose kernels are 
q;(O) = u and q;(ni) = 0 if (ni) =;I:. O. We denote it also 
by u. If.1" E F[Ei , [Ji]];el has an inverse, we shall write 
T-l.1" for this inverse. 

Let .1" be a formal series of F[Ei , [J;]]ieI; for any 
n E ~ we define Tn.1" by TO.1" = u, TI.1" =.1", and 
rn.1" = (Tn-I.1")T.1" for n > O. 

Proposition 1: For any .1"[(J;)] E F[Ei , [Ji]]iEl such 
that w(.1") ~ I, the family (Tn.1")neN is summable and 

T-I(u - .1") = 1 Tn.1". 
neN 

Corollary: A formal series 

1 q;(n,) IT Jfi E F[Ei , [J;]];eI 
(n,) ieI 

has an inverse if and only if q;(O) E F has an inverse 
(in F). 

C. Case of F a Vector Space 

We come back now to the general case where Fis an 
arbitrary vector space over the field IK. F may be 
considered as subspace of the tensor algebra T(F) or as 
subspace of the exterior algebra A F or as subspace of 
the symmetric algebra V F: 

T(F) = n~o( ® F), 
AF = (f) (A F), 

n2:0 

VF=(f)(VF) . 
.. 2:0 
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As a result of this, any formal series of F[Ei , [Ji]]iEl 

may be considered as an element of T(F) [Ei' [li]]iElor 

as an element of "F[E;, [li]];EI' Therefore, if :F' and 
:FT' are two formal series of F[E;, [li]];EI' we define 
as in Sec. 3A the tensor product :F' @ :F", the exterior 
product :F' " :F", and the symmetric product :F' V 

:F". We have the following inclusions: 

F[E;, [li]]iel @ F[E;, [l;l]iEI c F @ F[Ei' [l;]]iEI' 

F[E;, [li]]iEI " F[Ei' [l;]]iel C F " F[Ei' [li]]iEI' 

F[Ei' [li]]iel V F[E;, [li]]iel C F V F[Ei' [li]];el' 

D. Formal Series 

More generally, let L be a finite set. of indices and 
(1).);.eL a family of finite sets of indices. (F;);.eL and 
(Ei))i).ElA for A E L are families of vector spaces over 
K 

The spaces F;.[E;;" [li).]]i).ElA for A E L may be con
sidered as subspaces of the algebra 

® T(F;.)[E; , [l;]]ie U 1;. • 
;'eL ).EL 

Therefore, for any family (:F;')).EL of formal series 
:F;' E F;.[E;)., [l;).]];).E1;. we define their tensor product 
®;.eL:F;.. This product is an element of 

® F;.[Ei' [lillie UI;.· 
LE;' ).EL 

Remark: If, for any A E L, F;. = F, this tensor 
product is obtained as a specific case of the tensor 
product defined in Sec. 3C because F[E;)., [Ji).]];).EI;' 
may be considered as a subspace of F[Ei , [l;1]ie U I;. . 

).eL 

4. SUBSTITUTIONS OF FORMAL SERIES 

Let L be a finite set of indices and (/))).eL a family 
of finite sets of indices. (F;');'EL and (E;);).E1). for A E L 
are families of vector spaces over the same field IK, 
and F is a vector space over K Let (:F;'[(l;)D;.eL be a 
family of formal series 

:F;'[(Ji;.)] = 1 CPtn;;.) IT Jf;;' E F;.[E;;.' [Ji;,1]i),el;.' 
(n;;.) i;.el;. 

and let CP(n;.) II;'EL J~). be a monomial of F[F;., J;.lAEL· 
CP(n;.)(®;'eL (Vn;.(:p» denotes the formal series of 
F[Ei , [J;]];E U"eLIA whose kernels are 

CP(nA) 0 L~ (VCPtn;.»)}' 

More generally, if 'lIT [(J;.)] is a polynomial of 
F[F;.,J . .lAEL whose kernels are (9'(n;,» , we define 
'IIT[(:FA)] by 

'IIT[(:F;');.EL] = 1 CP(n;.)(® (V:F;')). 
(n;.) AEL 

w[(:FA)] is a formal series of 

F[E;, [li]]iEUI;.' 
).eL 

which is said to be obtained by substitution of the 
series :F;' to the indeterminates 1;. for A E L in the 
polynomial 'tIT [(J;.)]. 

Suppose now that, for any A E L, w(:F;') ~ 1, and 
let :F[(J;.)] be a formal series of F[F;., [l;']];'EL whose 
kernels are the CP(n).) for (n;.) E NL. The family 

( CP(n;.)(® (V:F;'))) 
AEL (n)EN 

is summal?le. We denote its sum by:F[(:F;')]. 
:F[(:F;');'EL] is a formal series of F[Ei , [li]]iEU I;. ,which 

).EL 
is said to be obtained by substitution of :F;' to the 
indeterminate lA for A E L in the series :F[(l;.)]. 

The indeterminate J;. may be considered as formal 
series of F).[F;,[l"I]' This justifies the notation :F[(l;.)]. 

Any element of F[E;, [J;]];EI may be considered as 
an element of F[Ei , [li]];EC'/I' [Ej , [lj]]jE/' if I' eland 
ell' = 1 - I' is its complement. A formal-series 
element of F[Ei , [l;]]iEI is said to be polynomial in 
lj , j E 1', if it is a polynomial element of 

F[E;, [J;]]iEI-I' [E; , 1;];E1' . 

If :F[(J;.)] is polynomial in 1;.' (A' E L') (L' c L), we 
may substitute a series :F;" of arbitrary order w(:F;'') for 

- the~in(feterminate 1;." A' E L', in :F [(1;.) I. 

5. TRANSLATIONS, DIFFERENTIALS, AND 
DERIVATIVES 

Definition 6: Let :F[(li)iel] be an element of the space 
F[E;, [l;]];EI' and let (J;)iEI be a family of indeter
minates. The translation of indeterminates, (J;)iEI is 
by definition the mapping . 

t(Ji')iE1::F[(Ji)] -'IN'+ t(Ji,):F[(J;)] = :F[(J; + J;)], 

where li + 1; is considered as being an element of 
E;£Ei , Ei' [li ,1;]]. 

Therefore, 

The homogeneous part of degree p, pEN, of 

! CP(n;) II J;' 
(n,) iEI 

with respect to the (Ji ')i'E1', I' c I, is the formal 
series 

where 
(n;) E N 1 and ! n; = p. 

i'El' 
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Definition 7: The differential of the formal series 
.'1'[(Jj )iel] is the homogeneous part of degree 1 of 

Ll.1"[(Jj); (J~)] = .r[(J; + J;)] - .r[(Ji )] 

with respect to (J;\el' We denote it by d.1" or d.1"[(Ji ); 

(1;»). 

From this definition, we may write 

d.1" = ! .1";1; , 
iel 

with 

Definition 8: .1"; is the functional derivative of .1" 
with respect to Ji . We write it .'1'i = 6.1"I61i . 

or 

We also write 

d.1" = ! J' 6.1" 
iel • 6Jj , 

d.1" = 2, / J; 6.1"\ 
iel \ 61/ 

For .1"[(Ji)] = Jio ' io E 1, we have d.1" = J;o' In 
view of this we write dJi for J; , and we write 

6.1" 
d.1" = ! dJ; - = d.'1'[(Ji); (dJi)]. 

iel 6Ji 

Let.r and .1"' be two elements of P[Ei' [Ji]]iEI' and 
let A and A' be two elements of IK. We have 

d(A.1" + A.' .1"') = A d.1" + A' d.1"'. 

If F is an algebra over IK, we have 

d(.1"T.1"') = (d.r)T.1"' + .1"T(d.r'). 

Let (jj)iEI be a family of jj E Ej , i E 1. The j; may be 
considered as trivial formal series; if .1"[(J;)] E 

P[E;, [Ji]];EI, we have also 

d.1" [(Ji); (j;») E F[E;, [Ji]]iEI' 

The mapping 

! ji ~: P[E;, [JilliEI ~ P[E i , [J;]];EI' 
iel 6Ji 

defined by 

.r ~ (1 ji ~).r = d.r[(Ji); (j;»), 
iEI 6J; 

is linear; if F is an algebra over IK, then 2,iElj; (6IOf;) 
is a derivative of this algebra. 

The mapping 

(j;)iEI ~ (~/i 6~J.1"[(Ji)] 

is a polynomial mapping of P[IIiEI Ei , F[E;, [Ji J1tel]' 

Let 

be the corresponding homogeneous polynomial of 
F[E;, [J;]]idE; ,JniEI 

Let 

be an element of the algebra IK [[X]] = IK [IK, [X]]. 
The family 

is summable; we denote its sum by 

f (2 \/ J;, ~ \/).1"[(J;)]. 
tEl 6Ji 

Proposition 2: For any .1"[(Ji )]EF[Ej , [Jjlliel , we 
have 

.1"[(Jj + J;)iEI] = exp (2/\J;,~ \/).1"[(Ji)iel]' 
.el 6J; 

This is Taylor's formula (or Volterra's formula) for 
the formal series we consider here. 

Proposition 3: Let .1"[(J,J] EP[F,I.' [J,d).<eL' and let 
(.1";.);.eL be 'a family of formal series which may be 
substituted for the J.< (A E L) in the .1"(J..)]. We then 
have 

Notations: (1) In view of Proposition 2, if .1" [(J.<)] E 

F(F;., (J;']];'eL' we may write 

:F[(J;.)] = 2 (II J...(~)n;).1"[O] II J~i. 
Ini) jel njl dJ j jel 

Therefore, 

(2) If (.r ;'»).eL is a family offormal series which may 
be substituted for the indeterminates J). in 

fC~ (Jl' 6~)).1"[(J;.)], 
we denote the result of this substitution by 
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6. FORMAL-SERIES EQUATIONS 

Let E be a vector space over the field IK. If :t[J] = 
~"2:0 cp .. r is a formal series of E[E, [J]], the kernel 
cp" = (l/n!)t5":t[O]/M" is an n-linear symmetric map
ping of E into E. Therefore, :t[0] E E and t5:t[O]/t5J E 

C(E, E), where C(E, E) is the algebra of the linear 
mappings of E into E. 

Theorem 1: Let :t[J] E E[E, [J]]. There is a formal 
series &[J] E E[E, [J]] such that :t[&[J]] = J and &[0] = 
0, if and only if :t[O] = 0 and t5:t[O]/t5 Jhas an inverse 
in C(E, E). If these conditions are satisfied, there is 
only one such &[J] and &[:F[J]] = J. 

Proof: We must have :F[&[O]] = :FlO] = 0 and 

t5:F[&[O]] = t5:F[O] 15&[0] = I. 
M bJ M 

Therefore, the conditions that :F[O] = 0 and that 
t5:F[O]/bJ have an inverse are necessary conditions. 
Suppose that these conditions are satisfied. We must 
also have 

or 

o = b:F[O] (~)"&[O] + <l> (b&[O] ... (~)"-\[O]) . 
bJ M .. t5J' 'bJ 

This equation determines (t5/t5J)n&[o] if the (t5/b1)P&[O] 
for p < n are known and we hi:\.Ve 

b&[O] = (t5:F[O])-l. 
t5J t5J 

Therefore, &[J] is uniquely defined by these equations. 
If &[0] = 0 and if b&[O]/M has an inverse, there is an 
:t'[J] E F[E, [J]] such that &[:F'(J]] = J, where 

:F'[J] = :F(&[:F'[J]ll = :F[J]. 

Therefore, :E' == :E. 
Suppose that :t satisfies the conditions of Theorem 

1. We can suppose (with a trivial substitution) without 
restriction that:F is of the form :F[J] = J + Je[J] with 
w(Je) ~ 2. Then the theorem says that there is one 
and only one solution &[J] of order wee) ~ 1 of the 
equation 

&[J] + Je(&(J]] = J (4) 

and that this solution satisfies 

&(J + Je[J]] = J. (5) 

This last equation can be written 

J exp « Je[J], t5~) ) &[J] = J, (5') 

where we have used Proposition 2 (Taylor's formula) 
and the notation (2) introduced in Sec. 5. 

Therefore, in order to solve (4), we have only to 
find the inverse of the linear functional differential 
operator 

J exp « Je[J], :J») : E[E, [J]] ~ E[E, [J]]. 

7. SPECIFIC CASES 

A. Finite-dimensional Vector Space 

Let E = rK n (or any n-dimensional space over rK 
owing to the isomorphism between them). We identify 

canonically rKn[rK n, [J]] with (rK [[J1 , ••• ,In]])n and 

rK[rK", [1]] with rK[[J1 ,'" ,In]]. Then Eqs. (4) and 
(5) may be written 

&,,[J1 ,"', I n] + Je,,[&l,' ", en] = J", 
I-' = 1, 2, ... ,n, (6) 

&,,[J1 + Je1,"', I n + Jen ] = J", 
I-' = 1, ... ,n, (7) 

and 

(
).=n 0 ) 

J exp ~Je). - &,,[J1 ,···, I n ] = Jp , 
),=1 oj). 

I-' = 1, ... ,n. (7') 

We see here that the symbol J before the exponential 
means that, in each term of the expansion of this 
exponential, all derivatives have to be translated to the 
right; i.e., for any :F[J1 , ••• ,In ], 

J ~Je).- :t (
no )P 

).=1 oj). 

Let us introduce, in the same way, 

r( I oJe).)P:F = i ... i OPJe)'1 ... Je),,,:F 
),=1 oj), ),1=1 )',,=1 oJ),I'" a]),,, ' 

and define the operator r exp (-~A=l oJe),/oJ).) by 

For w(Je) ~ 2, this is a well-defined operator. We 
have, for any .'F[J1 , ••• ,In ], 

( 
).=n aJe ) (p=n a ) 

rexp -! -), J exp !Je,,-:F 
),=1 aJ), ,,=1 oJp 

( 
y=" oJe ) 

=:F·rexp -! _v 1. 
y=10Jy 
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Therefore, (6) is solved by 

B. Function Space 

Let E be a space of functions. With the usual nota
tions of Volterra's series, Eqs. (6) and (7) may be 
written 

(8) 

field equation and the asymptotic condition, A(x) 
satisfies the Yang-Feldmann equation 

A(x) + A f dY~R(X - y)[A(y)]k = Ai,,(x), 

where ~R(X) is the retarded solution of 

(0., + m2)~R(x) = ~(x). 

The formal Volterra series or order ~ 1 solution of 

is 
&(X; J) + Je(x; &(J) = J(x), 

&(x; J + Je(J» = J(x), 
&(X; J) 

(9) 
= r exp (-Af· . ·fdY dz b~R(Y - z) [J(Z)t)J(X). 

J exp (fJe(Y; J) _b_ dy)&(x; J) = J(x). (9') 
!H(y) 

In analogy with Sec. 7 A, we formally introduce 

r(fdX _b_ Je(x; J»)1>:;
!H(x) 

f f 

_~n_Je~(x=J_·_··_Je~(x~J~:;-= ... dx l '" dXn !H(Xl) ... !H(xn) 

and the corresponding term 

r exp (-fdY _b_ Je(y; J»):;-. 
M(y) 

Formally, we have 

r exp (-fdY _b_ Je(Y»)J exp (fdZJe(Z) _b_):;-
M(y) M(z) 

= :;-. r exp (-fdX _b_ Je(X») 1. 
!H(x) 

Therefore, if Je is such that, for any integer, 

f 
. . . JbPJe(Xl ; J) ... Je(xp; J) 

bJ(xl) ... bJ(xp) 

exist, then the solution of (8) is 

rexp (-fdY~Je(Y;J)j!H(Y»)J(X) 
&(x; J) = . 

r exp ( - J dybJe(y; J)jbJ(Y») 1 

As an example of the application of this formula, 
consider the classical (c-number) theory of a real 
scalar field A(x) satisfying 

(0., + m2)A(x) + )'(A(X)k) = 0, k ~ 2, 

with A (x) -+ Ai .. (x) as XO --+ - 00, where Ai,,(x) is 
solution of (0 + m2)Ai". As a consequence of the 

M(y) 

Note that 

r exp (-Af· . ·fdY dz b~R(Y - z) [J(Z)t) 1 = 1 
bJ(y) 

if closed loops of ~R vanish as usual. In order to 
obtain the formal solution of the Yang-Feldmann 
equation, which is also the perturbative solution here, 
we have only to substitute Ai" for J in the formal 
Volterra series &(x; J). 

c. Remarks on the General Case 

In analogy with what has been done in Sees. 7A 
and 7B, we want now to study tbe general case of 
"abstract" spaces E; we thus have to introduce first a 
concept like I,.. a,..Je,.. or S dx (~Je(x)jbJ(x» very similar 
to the divergence of a vector in elementary vector 
analysis. This is indeed possible and we give the fol
lowing definition of a generalized divergence. 

Definition 9: A divergence on E[E, J] is a pair ~ = 
(D, div), where 

(1) D is a subspace of the space E[E, [J]] such that, 
for any :F E D and <I> E IK [E, [l]], <1>:;- E D; 

(2) div is a mapping of D into IK [E, [J]] such that, 

for any :F and :F' of D and for any <I> E IK [E, [ll], 

div (:F + :F') = div:;- + div:F', (10) 

div (<1>5') = <I> div:J' + <5', ~~> (11) 

Then, we may try to define recurrently r«(bJe/bJ)n 
operators. This is, however, formal because we cannot 
control the domains Dn to which Je must belong for 
any n. This is the reason why we do not go further in 
this direction in the present paper. 
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8. CONCLUDING REMARKS 

The theory we have been studying here may be 
extended in two ways: One may develop a topo
logical generalization or an algebraic one. 

(1) In the case of a topological extension, (Ei)iEl 
and F are supposed to be topological vector spaces. 
We define then :F-continuous formal series of (Ei)ieI 
into F as being formal series of (Ei)ieI into F such that 
their kernels ((J(n.) define continuous monomial map
pings of TIiEl Ei into F. For instance, in quantum 
field theory the "generating functional" 

IS expected to be a continuous formal series of 

c: [8, [JJ], where C is the field of complex numbers 
and 8 the space of rapidly decreasing functions. 

JOURNAL OF MATHEMATICAL PHYSICS 

(2) In the case of an algebraic extension, (Ei)ieI and 
F are no longer supposed to be vector spaces, but they 
are modules over a ring A (or A-modules). 
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A Green's function for the elastic wave equation, which satisfies certain boundary conditions on the 
surface of a homogeneous half-space, is derived by means of the Fourier transformation. This half-space 
Green's function is then applied to the computation of radiative effects due to the earth's surface when a 
radiating source is located on or within that surface. The results obtained are to be taken as an extension 
of a previous and similar formulation for the infinite medium due to Case and Colwell. 

1. INTRODUCTION 
A method for computing the elastic radiation from 

a small source in the earth's interior has been presented 
by Case and Colwell,1 This method, which assumes 
the earth to be an infinite medium, can be modified 
to include effects due to the earth's surface simply by 
replacing the (known) infinite-space Green's function, 
which is used, by an appropriate half-space Green's 
function. Our purpose here is, first of all, to obtain a 
representation for the half-space Green's function, and 
secondly, to demonstrate its applicability in computing 
corrections to the solution of Case and Colwell. 

Our method is straightforward. To obtain the de
sired Green's function, we formulate the problem in 
terms of an integral equation, which equation is then 
solved by Fourier transforms. Our application of the 
Green's function then proceeds in a manner closely 
parallel to that of Ref. 1. The only complication lies 
in the fact that, once we choose a definite orientation 
for our half-space, the matrices which occur are not 
tensors, i.e., not rotation covariant. Hence tensor 
theory arguments, with the computational simplifica
tions they often afford, are not available to us. 

The notation to be used here differs in several minor 
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respects from that of Case and Colwell. In particular, 
2-dimensional vectors will be denoted by an arrow: 

a == (al , a2), a = (a, a3) 

and we will use the convenient abbreviation 

We now integrate Eq. (2.6) over V, apply the diver
gence theorem, and note Eq. (2.2). Upon renaming 
variables (and indices) and using the facts that 

(2.7) 
and 

0; == ~, i = 1,2,3. 
ox~ 

we obtain the desired equation 
The Fourier transforms of a function fer) with respect 
to 2- and 3-dimensional space will be denoted by r 
land], respectively, with the conventions .!tir, ro) = Gilr, ro) + J/2rlllk(r/)fzlr/, ro) 

l(k, X3) = J exp (ik . r)f(r) dr, 

/(k) = J exp (ik • r)f(r) dr. 

Note that we deal exclusively, and hence tacitly, with 
the Fourier transforms with respect to time. (It will 
become evident below that the inverse transform for 
the time variable is essentially as trivial here as it was 
in Ref. 1.) The summation convention is used through
out. 

2. THE HALF·SPACE GREEN'S FUNCTION 

Integral Formulation 

We consider first a general region V of r-space, and 
seek thesolutionhi(t, ro) to 

-w2Phi(r, ro) = OkDiI,m(a)fmi(t, to) + t5ii t5(r - to), 

r,roEV, (2.1) 

with the boundary condition 

niDikm(a)fmi(r., ro) = 0, r8 E S. (2.2) 

Here, ni is (the ith component of) the inward normal to 
the region V with boundary Sand 

Dikm(a) == lt5i1,om + !-'(t5imOk + t5kmo;), (2.3) 

The infinite-space Green's function Gil satisfies 
Eq. (2.1) with V including all space: 

-w2pGi!(r, r') = 0kDik>n(a)Gm/(r, r') + t5i/t5(r - r'), 

all r, r'. (2.4) 

We now proceed in a standard way to multiply Eq. 
(2.4) by hi' Eq. (2.1) by Gil' and subtract. Using the 
easily verified identity 

GilGkDikmfmi - hiokDikmGm! 

= (l;[GkIDikmfmi - h;DikmGma, (2.5) 
we find 

GiI(t, r /)t5i,t5(t - ro) - h;(r, ro)t5i!t5(r - r/) 

+ 0i[Gkl(r, r/)Dikm(a)Jm;(r, ro) 

- fk;(r, rO)Dikm(a)Gm/(r, r')] = O. (2.6) 

X· Dk1m(a')Gm;(r', r). (2.9) 

A method for determining hi(r, ro) is clear from 
Eq. (2.9). Indeed, our problem clearly reduces to 
finding fli (r., ro); and, by taking the limit of Eq. (2.9) 
as r -- r., we obtain an integral equation which may 
be solved for f!i(r., ro). 

Specializing to the case in which V is the half-space 
X3 ~ 0, we denote the half-space Green's function by 
gii: 

gi;(r, ro) = Gilr, ro) + J df'glj(f', 0; ro) 

X [Ds/m(a')Gm;(r', r)]"'3'=O' (2.10) 

A certain amount of care is required in taking the 
limit X3 -- 0 of Eq. (2.10), since the integrand is 
singular on S. In fact, if we define 

1:sll(r, r') == Ds/m(a)Gmlr, r'), (2.11) 

then it easily follows from Eq. (2.4) that 

1:3/lr, 0+ ; 1',0) -1:s/;(r, 0- ; f', 0) 

= -t5Iit5(r - f'). (2.12) 

Thus, we define the "principal value" 

1:~Ii(r, f') == H1:s!;(r, 0+; f" 0) + 1:sli(r, 0- ; f',0)]. 

(2.13) 

Now let Xa -- 0 in Eq. (2.10). Using Eqs. (2.12) and 
(2.13), the result may be written as 

!gilr, 0; ro) = Gil', 0; ro) + S?P, ro), (2.14) 

where 

S?,(r, fo) == J df'g!l'I, 0; to)1:~Ii(1', f). (2.15) 

Equations (2.10) and (2.14) are the basic relations by 
means of which our problem is to be solved. 

Solution of the Integral Equation 

Because of the translation invariance of Go;. 
l:g/P' ,f) depends only on the difference f' - r. It 



                                                                                                                                    

2548 K. M. CASE AND R. D. HAZELTINE 

follows that the 2-dimensional Fourier transform of In Eqs. (2.26), we have introduced the abbreviations 
Eq. (2.14), 2 -2 2 

KI.t = k - k l •t • (2.27) 

reduces to the purely algebraic equations 

[lbi! + H:I(k)Jgli(i<, 0; ro) = Gi;(k, 0; ro). (2.17) 

Here, we have introduced a less cumbersome notation 
for tgli(O; k): 

H~/(k) == UHdk, 0+) + Hil(k, 0-)J, (2.18) 

where 

Hil(k, xa) == -liro 

dkae-ik9aJ31:.a/i (k; r' = 0). (2.19) 
27T -ro 

[The minus sign is occasioned by Eq. (2.8).J It is con
venient to note here the identity 

Hi/(k, 0+) = H~/(k) - lbil , (2.20) 

which follows from Eqs. (2.12) and (2.13) and which 
will be useful below. 

Equation (2.17) has the solution 

gli(k, 0; ro) = IIA-1 1l zi Gu(k, 0; ro), (2.21) 

where II A-!II is the matrix inverse to 

II A IIi! = lbil + H~z(k). (2.22) 

We obtain H?z from the known! fact that 

J"I - , _ eik
•
r
,( kik j k~bij - kik;) 

v;;(k, r ) - 2 k2 k2 + k2 k2 ' 
wp - Z - t 

(2.23) 

where 
k~ = WZpl(A + 2p,), kt

2 = w 2plp, (2.24) 

and from Eq. (2.13). A straightforward computation 
yields 

27Tiw2pHik = Ak~bak[(kj - ba;ka)Iol + baj1izl 

+ p,{2(k~ - k:) 

where2 

X [(kk - bakka)(k j - ba;ka)I2 

+ (k; - bajka)bakla + (kk - bakka)ba;Ia 

+ bSkbajI4] + k:[t5s;(kk - bskks)Iot 

+ bakb3ilt + bkjluJ), (2.25) 

I (k~ x ) - .!!.- e-K1 ,.laJ31 
Ol,t , 3 - , 

K 1•t 

I (k ) - :r::' -KI •• laJal > 0 1I.t ,xa - ,/7Te ,Xa < , 
J2(k, xa) = [i7T/(k~ - k~)J(e-KdaJal_ e-K,'aJ31), 
Ja(k, xa) = [7T/(k; - km(Kle-ICllaJal - Kte-IC,laJal), 

Iik, xJ = [=Fi7T/(k; - km(K~e-ICllaJ.1 - K;e-K,laJal), 

xa ~ O. (2.26) 

From Eqs. (2.18), (2.25), and (2.26), we have 

o - -2). -2 
H;;(k) = taCk ,balki - baika) + tb(k )bai(k j - bsjks), 

where 
(2.28) 

a(k2
) = -i[AKt - (A + 2p,)Kd/(A + 2p,)KlKz + Kt), 

(2.29) 

b(k2
) = i[AKt - (A + 2p,)KZ]/(A + 2p,)KtCKz + /(t), 

whence 
(2.30) 

(2.31) 

=;::J 
(2.32) 

Equations (2.10), (2.21), and (2.32) provide the 
desired half-space Green's function. It is conveniently 
written in the form 

(2.33) 
where 

-1 
Silr, ro) = --2 

(27T) 

X f dk exp ( - ik . I)Hiz(k, xa) 

X IIA-111zm Gmik, 0; ro)' (2.34) 

3. APPLICATION OF THE HALF-SPACE 
GREEN'S FUNCTION 

We demonstrate the usefulness of the Green's 
function obtained above by applying it to the solution 
of an idealized problem similar to that considered by 
Case and Colwell. That is, we provide an integral 
formulation by means of which the radiation field 
from a small radiating cavity may be computed. As in 
Ref. 1, the problem is simplified by assuming to be 
given certain quantities which could in theory be 
determined (by solving an integral equation). Our 
refinement here consists, of course, in taking the earth 
to be a homogeneous half-space, rather than an 
infinite medium. It is to the effect of this refinement, 
i.e., to the difference between the half-space solution 
and thti solution of Case and Colwell, that we gener
ally confine our attention. 
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General Formulation 

Let V be the half-space as in Sec. 2, with the ex
clusion of a small cavity, located on or "above" S, 
with boundary B. Note that, ifr = (Xl' X 2 , x3) is with
in B, then X3 ~ O. We wish to determine the functions 
u;(r) which satisfy 

-w2pui(r) = 0kDik".u".(r), rEV, (3.1) 

with the boundary conditions 

rES, (3.2) 

That is, the normal component of the stress is to 
vanish on the surface of the earth and to be prescribed 
on the surface of the cavity. 

Following a procedure closely analogous to that of 
Eqs. (2.1)-(2.9), it is a simple matter to show that 
Eqs. (3.1)-(3.3) may be restated in the form 

uj(r) = Ld2rB[gi;(rB , r)Fi(rB) 

- u;(rB)nkDki".g".;(rB, r)]. (3.4) 

Given the geometry of B, we could now, of course, let 
r ---+- rB and attempt to solve the resulting integral 
equation for ui(rB) (as in Sec. 2). Instead, we take a 
more practical approach, paralleling that of Case and 
Colwell, and assume the u;(rB) to be known. But first 
it is convenient to isolate the effects of the surface S, 
with which effects we are exclusively concerned below. 
Let u}O)(r) satisfy 

u~O)(r) = f/2rB[G;j(rB, r)F;(rB) 

- u;(rB)nkDikmG mlrB' r)]. (3.5) 

u}O) is precisely the solution investigated by Case and 
Colwell. Here, we are interested in the functions 

vlr) == ulr) - u~O)(r). (3.6) 

It is clear from Eqs. (2.33) and (3.5) that these are to 
be determined from 

vir) = Ld2rB[S;,crB , r)F;(rB) 

- ui(rB)nkDkimS".lrB, r)], (3.7) 

where Sij is given by Eq. (2.34). 
Our problem is solved by Eq. (3.7). The remainder 

of this paper is concerned with bringing this equation 
into an explicit form directly suitable for evaluation. 

The Case of a Source on the Surface 

We consider first a situation in which the com
plexities of Eqs. (3.7) and (2.34) are considerably 
reduced: When the source cavity B is on the earth's 
surface S. That is, 

rB=(XlB,X2B'0+). (3.8) 

[The + sign is necessary because of the discontinuity 
of the integrand in Eq. (3.7) on S-cf. Eqs. (2.26). 
Note that our original differential Eq. (3.1) holds only 
for X3 ~ 0.] Recalling the identity (2.20) and Eq. 
(2.22), we see that the integrand of Eq. (2.34) here 
takes the form 

Hil(k, 0+) IIA-III I ". G".lk, 0; r) 

= [lIAllil - bil ] IIA-Ili lm Gmlk. 0; r) (3.9) 

= -Bim(k)G".lk. 0; r), (3.10) 

where we have introduced the quantities 

Bi". = IIA-III;m - bim • (3.11) 

The Bij are most conveniently given in matrix form: 

[

-abk: abklk2 -akl] 
IIBII = 2 ~2 abklk2 -abki -ak2 . (3.12) 

1 - abk 
-bkl -bk2 0 

The "surface-effects Green's function" is now given by 

1 
SU(rB' r) = --2 

(27T) 

X J dk exp (-if· rB)Bi".(k)G".,(k, 0; r). 

(3.13) 

Heretofore, we have been dealing with the total 
elastic disturbance. We now wish to compute the 
effects of the radiation field only. This may be accom
plished,! assuming the origin of coordinates to be 
within B, by replacing in our formulation the exact 
infinite-space Green's function 

by its asymptotic form for Irl » Ir'l: 

(3.15) 
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where f == rllrl. Because of the very simple dependence 
upon r' in Eq. (3.15), there is no difficulty in obtaining 
the Fourier transform needed for Eq. (3.13): 

~ - -(277)2 1 [ (- ') ~ ~ ikzr Gilk, 0; r) = --2- - b k - kz- uiu;e 
477W p r r 

- b( k - kt ;)(k~bi; + 0io;)eiktr J. 
(3.16) 

Here, of course, 

b(k - kz.t{r/r» == b(k1 - kz. t(x1/r»b(k2 - kZ.tCx2/r» 
(3.17) 

and, since Eq. (3.16) is exact with regard to the radia
tion field, we have omitted the error term. 

From Eq. (3.16), we see that the integral of Eq. 
(3.13) is entirely trivial. The result is conveniently 
written as 

SH(r', r) = S:;(r) exp (-ikzr. r') 

+ S!;(r) exp (-iktf' r'), (3.18) 

where 

(3.19) 

(3.20) 

and, similarly, 

If we also define the (known) vector quantities 

f~·z(f) == L d2r'F;(r') exp (-ikt.zf. r') (3.22) 

az == a( k~ ':) 
\ r 

and the symmetrized tensors 

T;/ == t L d2r'[u;(r')n;(r') + ni(r')u;(r')] 

X exp (-ikt.zr. r'), (3.23) 

then it requires only some elementary manipulations 
to write Eq. (3.7) in the form 

v;(r) = S:;(r)f!(r) 

+ ikz[J.rmS~;(r)T~n(r) + 2,ur;T:k(r)S~i(r») 
+ SL(r)f!(r) 

+ ikt[J.rmS~;(r)T~n(r) + 2,uri Tik(r)Si;(r»). 

(3.24) 

Note, from Eqs. (3.20), (3.21), and (3.24) (which are 
exact for the radiation field), that the transverse and 
longitudinal waves are unmixed when the source is on 
the surface. 

We could now proceed, as in Ref. 1, to make the 
small source approximation (r' E R ==> kur' « 1) and 
expand the exponentials in Eqs. (3.22) and (3.23): 

exp (-ikt.zr. r') = 1 - ikt.zf· r' + .. '. (3.25) 

Since this calculation would proceed exactly as in 
Ref. 1, we omit it, and instead consider the explicit 
form of the matrices S!jt. 

Consider first the longitudinal terms. According to 
Eq. (3.20), our first task is to substitute klfr for k in 
the matrix Rim' This entails the substitution [cf. Eqs. 
(2.27)] 

K Z = ikz cos 0, Kt = i(k: - k~ sin2 0)1, (3.26) 

where 0 is the angle between r and the positive z axis, 
and we have chosen the signs in Eqs. (3.26) essentially 
by means of a radiation condition (that we have 
chosen them correctly will become clear below). 
Using Eqs. (3.26) we compute 

C~[(C~ - C~ sin2 0)1 - Ct cos 0] - 2C~(C~ - C~ sin2 0)* 
(3.27) 

= - wCz cos O[Ct cos 0 + (C~ - C~ sin2 0)1] 

where the C's are the velocities of the longitudinal and transverse modes: 

C~ = (J. + 2p.)/ p. C~ = p./ p. (3.28) 

Similarly, 

bz == b( k~ ::) 
C~Ct[(C~ - C~ sin2 0)1 - Ct cos 0] - 2C~(C~ - C~ sin2 0)1 

= 
wCzCC~ - C~ sin2 O)l[(C~ - C~ sin2 0)1 + Ct cos 0] 

(3.29) 
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The matrix product in Eq. (3.20) is now easily computed and we find 

a1f1i\f3 

azf~f3 
b1f2 sin2 () 

-at(btktflf2 + flf2f3) 

at(btc: - f~C3) 

btf2f: 

(3.30) 

CICt[(C; - C~ sin2 ()f - Cl cos ()] + 2C~ cos () 
at = f t ' (3.32) 

w(C~ - C~ sin 2 
() [(C; - C7 sin2 

() + Cl cos ()] 

b
t 

= _ CzCt[(C~ - C~ sin2 
()f -Cl cos ()] + 2C~ cos () 

wCz cos ()[(C; - C~ sin2 ()t + Cz cos ()] 
(3.33) 

Actually, Eqs. (3.32) and (3.33) are correct only for 
() < ()e, where ()e is the angle at which the radicand 
vanishes: 

sin2 ee == C~(C~ = ft(A + 2ft). (3.34) 

For () > ()e' we must modify (3.32) and (3.33) by the 
replacement 

(C; - C: sin 2 ()t -+ i(C7 sin2 e - C;)t. (3.35) 

Equations (3.24) and (3.27)-(3.35) provide an 
exact description of the surface corrections at any 
point r to the radiation field from a surface source. 
We observe from (3.27)-(3.35) that 

(i) the matrices IIB(kz.ilr)11 are independent of w; 
thus, the inverse Fourier transform with respect to 
time is essentially as trivial here as it wasl in the in
finite medium case; 

(ii) no radiation due to the surface appears (i.e., the 
radiation field of Ui coincides with that of u~O» on the 
axis f = 0; 

(iii) there may also occur, depending upon the rela
tive magnitudes of J. and ft, cone-shaped regions on 
which either the longitudinal or the transverse parts of 
the radiation field due to the surface vanish. Specifi
cally, we find from Eqs. (3.27) and (3.29) that IISt l1 is 
zero on the cone (which mayor may not be physical) 

cos () = A/2ft (3.36) 

and, similarly, from Eqs. (3.32) and (3.33), that the 
transverse terms do not appear on 

cos () = (J. + 2ft)/4ft. (3.37) 

We conclude our discussion of the case of a source 
on the earth's surface by considering the effects 

observed at a point r which is also on that surface. 
(The result here is atypically simple.) Thus, we set 

r = (Xl' X 2 , 0), () = !7T (3.38) 

and find, from Eqs. (3.27)-(3.33) that a z and ht are 
infinite. It follows immediately that 

and 
(3.39) 

o 
~). (3.~) 

Thus, the longitudinal waves on the surface are just 
as in the infinite medium case, while the transverse 
modes are modified by the correction term 

V;(Xl' X2, 0) 

k; eiktr 

= ---- (2bki - fJi) 
47TW

2p r 

x {fi(f) + ikt[AckT;nCc) + 2ftfnT;k(f)]}, (3.41) 

where i,j, k = 1,2 only and Va = O. 

The Case of a Source in the Earth's Interior 

While no serious difficulties occur in using Eq. 
(3.7) to determine the surface effects due to a source 
buried within the earth, it is not possible in the case to 
write the equation in any substantially simplified form. 
[This is because the identity (2.20) is no longer appli
cable.] Therefore, we confine our attention here mainly 
to isolating the radiation field. 

In this regard, a minor difficulty is seen to occur. 
Equation (3.15), which we previously used to deter
mine the radiation part of the field, is true for r » r', 
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but no such inequality holds if the source is deeply 
buried and if, as we have stipulated in Sec. 2, our origin 
of coordinates is on the surface S. Hence, first of all, 
we affect on Eq. (3.7) a displacement of the origin 
by a distance R in the Xa direction. Since the only 
relevant quantity which is not invariant under such a 
displacement is Hi/(ic, X3)' this modification is easily 
accomplished. We let [cf. Eq. (2.34)] 

Ri;(r', r) == -\ Jdk exp (-ik' f') 
(27T) 

x Hi/(ic, x~ + R) IIA-11l 1m Gm;{k, 0; r). 

(3.42) 

Then we can conveniently compute the radiation due 
to the surface S from Eq. (3.7) with SiJ replaced by 
Rij : 

v;(r) = Ld2r'[Rdr', r)FtCr') 

- utCr')nkDkim(8')Rm;(r', r)]. (3.43) 

Equation (3.16) is now directly applicable (i.e., we 
may again assume the origin is within B), and we find 
that for the radiation field, Eq. (3.42) reduces to 

X Hi/( kt ;, x~ + R) IIA-
1

( k = kt ;)IL. 
(3.44) 

Here we recall 

IIA-1 (k = kl.tCf/r»lIlm = ~/m - IIB(kl,t(fjr»II'm' 
(3.45) 

where the IIBII matrices are given by Eq. (3.12), with 
Eqs. (3.27), (3.29), (3.32), and (3.33). The quantities 
Hi! are obtained by making the appropriate substitu
tion (k -+- k,.tCf/r» in Eq. (2.25); for example, a fairly 
typical longitudinal matrix element is readily found to 
be 

Hl1(kl;'X~ + R) 
= :~( k~{exp [ -ik, :3 (X~ + R)] 

(3.46) 

The other elements Hi; are similarly trivial to deter
mine but lengthy to reproduce and it seems hardly 
worthwhile to exhibit them here. We leave our formu
lation ofEqs. (3.43)-(3.46) with the following remarks: 

(i) for a small, deep source (R» x~), we might 
approximate by setting x~ equal to .zero in Eq. (3.46). 
Unfortunately, this does not yield any major com
putational simplification. In fact, the only apparent 
situation in which the complexities of Ri; are drasti
cally reduced is that for· which f = 0, i.e., when the 
observation point is directly above the source (it is 
easily verified that, in this case, most of the quantities 
R;; vanish); 

(ii) unlike the case of a surface source, the surface 
correction to the radiation from an interior source 
cannot be separated into terms propagating purely at 
the velocities of Eqs. (3.28) [cf. the square-root ex
ponents in Eq. (3.46)]; 

(iii) finally, it is clear from Eq. (3.46) that we chose 
the signs properly in Eqs. (3.26). 

4. CONCLUSION 

Equation (3.7) gives a prescription, based on the 
half-space Green's function presented by Eqs. (2.33) 
and (2.34), for calculating the elastic disturbance due 
to the earth's surface when an arbitrary source is 
embedded on or within that surface. (The earth is 
idealized as a homogeneous half-space.) We have 
examined the consequences ofEq. (3.7) in some detail, 
especially in the case of a source on the surface, and 
shown in general how the radiation part of the field is 
to be distinguished. In the combination of our results 
with those of Ref. 1, a fairly complete prescription for 
the elastic half-space problem is obtained. 
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• The correspondence between the (~) signs and the (I, t) sub
scripts in Eqs. (2.26) is such that the 1 goes with the upper (-) sign. 
Note also that the subscripts on kf and k: are not coordinate sub
scripts [cf. Eq. (2.24)] and therefore are not summed over. 
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Quantum mechanics has several deficiencies as a complete theoretical description of the measurement 
process. Among them is the fact that the quantum mechanical description of correlations between the 
single measurements of a sequence is quite problematic. A single measurement is defined to be a prepara
tion followed by an observation. In particular, one feels that an infinite sequence of such single measure
ments which corresponds to the measurement of a question 0 on a state 'T} where 'T} does not lie entirely 
in an eigenspace of 0 should generate a random output sequence. However, quantum mechanics seems to 
say nothing about this. In this paper, physical theories are defined in such a manner that correlations 
between single measurements are explicitly included. In particular, a physical theory is considered to be 
a mapping U, with domain in the set [QS'T] of infinite instruction strings for carrying out infinite sequences 
of single measurements and range in the set of probability measures defined on A, the usual a algebra of 
subsets of n. n is the set of all infinite sequences of natural numbers. A fundamental property which any 
valid physical theory must satisfy is that it agrees with experiment. It is proposed and discussed here 
that much of the intuitive meaning of agreement between a theory U and experiment with respect to H 
is given by the statement 

VQS'T [U(QS'T) defined * E(H, U(QS'T), 'PQsr)], 

where U(QS'T) is the probability measure U associates with the infinite instruction string QS'T and V'Q'T 

is the outcome sequence obtained by carrying out QS'T. E(H, U(QS'T), V'Q8T) is the statement that all 
formulas in H with one free sequence variable which are true on n almost everywhere with respect to 
U(QS'T) are true for V'QRT' H is a subclass of the class of all formulas in a formal language L. A theorem 
is proved which states that, if U(QS'T) corresponds to a nontrivial product probability measure and U H
agrees with experiment, then the outcome sequence V'QST is H-random. H-randomness is defined here 
in terms of the statement E(H, P, 4». Another property of a valid physical theory, which is defined here, 
is that, for some QS'T, U(QS'T) must be determinable on much of Au from V'Q8T' Sufficient conditions for 
this property to hold are given. Au- is the class of all H definable subsets of n. Some properties of the 
statement E(H, P, 4» are given. Among other things, it is proved that, if E(H, P, 4» holds and P is a 
nontrivial probability measure on A, then'" is not definable in H. 

I. INTRODUCTION 

The success of quantum mechanics in explaining 
many features of the physical world is remarkable 
indeed; yet there are continuing problems. In par
ticular, quantum mechanics seems to be incomplete 
when it is. used to describe the measuring process. 
For example, quantum mechanics, in its present form, 
does not define the class of Hermitian operators to 
be associated with laboratory procedures. Thus, no 
one knows what procedure, if any, correspondsl to 
the Hermitian operator xYpz. Furthermore, the super
selection rules which state the nonexistence of certain 
observables, and thus the nonexistence of certain 
measurement procedures,2.3 cannot be derived within 
quantum mechanics. 

Another difficulty is that there are many properties 
of sequences of single measurements which are 
clearly empirical, but whose description within 
quantum mechanics is quite problematic. For 
example, it appears impossible to describe the 
statistical properties of different single measurements 
in a sequence' where each single measurement 
consists of a preparation procedure followed by an 
observation procedure. 

It is necessary here to distinguish clearly between 
the statistical properties among different single 
measurements in a sequence and those of the different 
parts of a compound single measurement. For 
example, consider the expression 

Tr [p(1, 2, ... , n)P~l(l) 

X eiH·(t.-ft)Pf
2
(2)· .. eiH·(tn-tn-l)Pfn(n) 

X e-iH'(tn-tn-l) . .. Pl'Jl)], (1) 

where, for i = 1, 2, ... , n, PJ:(i) is the projection 
operator given by , 

P~i(i) = 11 X ... X l i - 1 X P.l;(i) X li+1 X '" X In 

and H' is an n-body Hamiltonian. If one assumes 
some postulate,5 such as the problematic6,7 projection 
postulate of von Neuman,s then Eq. (1) gives the 
pro bability, within a compound single measurement, 
that eigenvalue Al is observed at time 11 and, .. and 
eigenvalue An is observed at time In on state p(l ... n) 
with 11 S 12 S ... S In. On the other hand, even if 
one assumes the validity of the projection postulate, 
the use of expressions like Eq. (1) to describe the 
statistical properties between different single measure
ments (compound or not) in a sequence is quite 

2553 
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problematic. One reason is that each single measure
ment consists of a preparation followed by an 
observation whereas Eq. (1) describes a single n-body 
preparation ~ time t1 and a single n-body compound 
observation. 

It is to be noted that we are not saying that the 
usual intuitive assumption that each single measure
ment in a sequence is independent of the surroundings 
(including the other single measurements) is wrong. 
This assumption is very likely correct. Rather, the 
point is that the precise statement of this independence 
does not seem to be possible within quantum mechan
ics. To make such a statement within quantum 
mechanics requires, among other things, the assign
ment of a quantum mechanical state to the universe 
including the conscious observer as these are the 
surroundings of any single measurement. 

An example of this deficiency in quantum mechan
ics, which is a motivation for the present work, is 
given by the following statement (a single measure
ment is a preparation followed by an observation): 
If an infinite sequence of single measurements corre
sponds to the measurement of a question, 0, on a 
pure state 'YJ where 'YJ does not lie entirely within an 
eigenspace of 0, then the associated outcome sequence 
is random. Now, offhand, one feels that this statement 
should be provable. However, in spite of the fact that 
one can give crude arguments to support the validity 
of this statement, it seems impossible to find a proof. 
Among the problems is the fact that the concept of 
randomness is so far not defined in quantum mechan
ical terms. 

Another problem with quantum mechanics arises 
from the association of eigenvalues of an observable 
with a set of possible single measurement outcomes. 
The problem arises from the fact that, in general, 
eigenvalues are real numbers whereas the outcomes 
of single measurements are basically natural numbers 
and never real numbers.9 In essence, a pointer reading 
is (a symbol for) a natural number which states 
between which marks on the dial the pointer lies. 
[Acceptance of this aspect of experiment does not 
mean that the mathematics of physics must give up 
real numbers (see the Appendix).] 

One cannot avoid this problem by assuming that 
a single measurement outcome is some real number 
in an interval [r, s 1 of the real line. One reason is 
that this requires that one be able to determine, as 
single-measurement outcomes, the real numbers r 
and s. Allowing rand s to be rational numbers does 
not help as these end points have meaning only as 
replacements for particular real numbers. 

These and other aspects of quantum mechanics 

(see the Appendix) suggest that quantum mechanics 
is a part of some underlying structure or process. 
Clearly, the process must describe in detail the basic 
aspects of the construction of a physical theory from 
experiment. In essence, this process is the epistemo
logical process, the importance of which to physics 
was suggested by Wigner1.l0 and others.3,1l It is this 
author's belief that, besides clarifying the above and 
other problems, a precise description of this process 
will not only aid the understanding of the relation 
between the observer and the physical world, but will 
shed light on "the limits of explanation" of the 
physical world by any physical theory and may even 
yield new physics. This latter possibility arises from 
the circumstance that, at the most basic level, physical 
reality may not be independent of this process but 
may be essentially defined by it. 

That mathematical logic may playa role in resolving 
these problems has received little attention. The 
literature includes discussion on the relation between 
the measurement process, physics, and logic,12-14 
discussions and attempts to axiomatize physical 
theories as formal systems and models,1u6 and other 
papersY Of special interest are the attempts18 ,19 to 
bring explicitly into physics some properties of actual 
measurement procedures. 

Among other reasons, the close relation between 
mathematical logic, physics, and the epistemological 
process arises from the fact that the basic aim of the 
process is to construct a physical theory which 
"explains" the empirical world. A physical theory 
includes a formal system of symbols, formulas, 
axioms, etc., which is the subject of mathematical 
logic. 

Another reason which is more important for our 
purpose is that, for infinite sequences of natural 
numbers, the concept of randomness appears to be 
definable in mathematical logical terms only. Exten
sions of these definitions into classical mathematical 
definitions fail. Because of the importance of this 
fact, the literature definitions of randomness are 
reviewed in Sec. II and a definition of H-randomness 
is given in Sec, III. 

This limitation on the definition of random 
sequences does not become relevant to physics until 
one notes that infinite sequences of single measure
ments are a very large part of the total contact (in the 
rigorous sense) between physical theory and experi
ment. Furthermore, it requires an infinite amount of 
time for an observer to carry out an infinite sequence 
of steps, be they computing steps or sequences of 
single measurements. These two basic facts of the 
epistemological process are given in slightly different 
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form as PI and P2 in the Appendix. There, we 
briefly discuss why PI and P2 are required by quantum 
mechanics and an upper limit to signal velocities. P2 
and its consequences, which also apply to infinite 
sequences of computing steps, mean that the result 
of a single measurement cannot be a real number 
since an infinite number of steps in general are needed 
to record or read a real number. This fact applied to 
the epistemological process is also given in the Appen
dix as P3, which says that counting is basically the 
only operation by which one obtains numbers from 
the real world. 

Clearly, if one is to understand the epistemological 
process and its relevance to physics, one must under
stand exactly what is meant by a physical theory 
"explaining" the empirical world. This paper takes 
steps in this direction by defining a class of mappings 
and considering a physical theory to be an element 
of the class. Then some necessary conditions are 
given and discussed for a mapping to be a valid 
physical theory. 

One of the main results of this paper is an exact 
statement which includes much of the intuitive 
meaning of agreement between theory and experi
ment. To give a brief review of this result, let the 
triple (QST) denote an infinite string of instructions 
for carrying out an infinite sequence of single meas
urements. Q is a function from N, the set of natural 
numbers to the class of instructions for carrying out 
single measurements. sand T are functions from N 
to N which denote the space position and calendar 
times at which each single measurement is to be 
carried out. The jth single measurement in a sequence 
is described by Q(j), s(j), T(j). Let [QST] denote 
the class of all instruction strings which can be 
carried out by an observer. Let 1JlQST be the outcome 
sequence of natural numbers obtained by carrying 
out QST. 

Let H denote a subclass of formulas over N, n 
(the set of all functions from N to N), and R (the 
real numbers) of those of a formal language L. 
Define a physical theory to be a mapping U with 
domain in [QST] and range in the class of probability 
measures defined on A, the classical (1 algebra of all 
subsets of n. Then much of the intuitive meaning of 
agreement of theory U with experiment with respect 
to H is given in the statement (12) 

V(QST) [U(QST) defined => E(H, U(QST), 1JlQST)]' 

where E(H, P, 4» is the statement (8) that every 
relation in H which is true P almost everywhere on 0 
is true at 4>. In words, Eqs. (12) and (8) say that, for 
all triples (QST) for which U(QST) is defined, every 

relation which is true almost everywhere with respect 
to the measure U(QST) is true for 1JlQST' 

This statement is discussed in detail in Sec. IV. 
There it is shown that, for a particular definition of H, 
much of the intuitive meaning of agreement between 
theory and experiment is included. If some proba
bility-theoretic statements are added [Eqs. (14)-(18)], 
then some other properties of H-agreement between 
theory and experiment are included. 

Another requirement on U is that there exists a U 
with a "large" domain of definition which satisfies 
Eq. (12). At present, not much can be said about this 
requirement as not much is known about the relation 
between [QST], H, and E(H, P, 4». 

A third requirement on U which is discussed in 
Sec. IV is that, for some QST for which U(QST) is 
defined, the measure U(QST) should be determinable 
from 1JlQST on much of AH . AH is the class of H
definable subsets of O. This requirement is given by 
Eq. (22), which is 

VF [FE AH A 6F E Lo~ M6F1JlQsr exists 

A M6F1JlQST = U(QST)F] , 

where the mapping 6 F with domain and range in n 
is defined by Eq. (19). Equation (22) says that, for 
each Fin AH for which 6F is in L o, the computed 
probability U(QsT)F of F is obtained from the out
come sequence as M6F1JlQsT' M1Jl denotes the limit 
mean of 1Jl. It is shown, among other things, that a 
sufficient condition for this requirement to be satisfied 
is that the one-sided shift operator is measure pre
serving and ergodic with respect to U(QST) (Theorem 
5). 

In Sec. III, definitions of E(H, P, 4» and Hare 
given and discussed. In particular, an existence 
theorem for E(H, P, 4» is given. It is also proved that, 
if the class of formulas in H is closed under negation 
and P is nontrivial (that is, PS = 0 for any single 
element subset, S, of 0), then E(H, P, 4» implies 4> is 
not definable in H (Theorem 3). 

Finally, it is to be emphasized that a physical 
theory, as defined here, shares with quantum mechan
ics the correspondence between expectation values 
and empirical limit means obtained from infinite 
sequences of single measurements (Appendix). The 
fact that it requires an infinite amount of time to 
carry out an infinite sequence of single measurements 
(Appendix) and that these numbers cannot be 
rigorously obtained by any finite time is felt by many 
to be a difficulty with this interpretation of quantum 
mechanics. Thus, to the extent that this is a deficiency 
in the above interpretation of quantum mechanics, it 
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will also be a corresponding deficiency in the theories 
discussed here. 

II. REVIEW OF DEFINITIONS OF 
RANDOMNESS 

Before reviewing the literature definitions of 
randomness, it is worthwhile to set out some defini
tions. Let .0 denote the set of all total (everywhere 
defined) functions from N to N, A the usual (1-

algebra of subsets of .0 and P a probability measure 
defined on A. Define a mapping 'Jg with domain 
and range in .0 by 

('JA»(j) '" r/>(g(r/>,j» , (2) 

where g is a function with domain in .0 x Nand 
range in Nand c::: means that both sides of Eq. (2) 
are simultaneously defined or undefined and, when 
defined, are equal. 

Clearly, the mapping defined by Eq. (2) is a 
subsequence selection procedure with 'Jgr/> the subse
quence of r/> selected by g. The term subsequence 
selection procedure includes those mappings such 
that 'Jur/> is a proper subsequence of r/>, as well as those 
for which 'Jur/> is a permutation of r/>. The set trans
formation Tu induced by'Jg is defined by 

TuE = [r/> I 'Jgr/> E E] (3) 
for each E E A. 

Define a mapping En from .0 to .00 ,1 by 

(Enr/»(j) = fn(r/>(j)) , (4) 
for each j, where 

In(!) = t5n,l' (5) 

En is a mapping which projects r/> onto a 0-1 sequence 
such that (Enr/»(j) = 1 (0) if r/>(j) = n (r/>(i) ¥= n) . .00,1 

denotes the set of all infinite sequences of O's and 1 'so 
Finally, let M'IjJ denote the limit mean of r/> given by 

1 i-I 
M r/> = lim -:- 2r/>U), 

i-+ co I i=O 

if it exists. MFnr/> gives the limit relative frequency of 
occurrence of n in r/>. 

One of the first definitions of random sequences 
was that given by von Mises.20 He defined a sequence 
1> to be random if each component limit mean RFn1> 
exists and has the same value under the operation of 
subsequence selection. A subsequence selection pro
cedure was defined as any rule whereby the selection 
or rejection of r/>(I) can depend at most on cp(O) ... 
1>(1 - 1) but not on cp(/). Examples of selection 
procedures are "select in the natural order all even 
numbered elements" or "select in the natural order 
all elements following the occurrence of a 3 by 2 
places," etc. 

This definition, with some minor alterations, may 
be given in the form [V (for all), 3 (there exists), A 
(and) v (or), ~ (implies), and 1 (not)] 

Rs(r/» == VnVg [MFnr/> exists AgE S 

~ MFn'Jgr/> = MFncp] 
A 3a3b [a ¥= b A MFaCP > 0 A MFbr/> > 0]. (6) 

The requirement 3a3b[ ] removes trivial sequences 
which, except for a finite number of terms, are 
constant. The mathematical definition given by 
von Mises of a selection rule corresponds to defining 
S to be the set of all monotonic increasing functions 
g from .0 x N to N such that g(r/>,j) depends at most 
on r/>(O)·· 'r/>(g(cp,j) - I) and not on cp(g(r/>,j». 
(The form of von Mises' original definition differs 
in essentially from this.) 

It was soon shown that, for this classical mathe
matical definition of allowed subsequence selection 
procedures, no random sequences exist. To see this, 
restrict S to be the set of all monotonic increasing 
functions from N to N independent of .0. Then, for 
each sequence cp E n which assumes the values m and 
n an infinite number of times, there exist a g and a 
g' E S such that 'Jgcp and 'Jg.r/> are constant sequences 
of m's and n's, respectively. 

Ways out of this difficulty were suggested by 
Wald21 and Church. 22 Wald proposed that S be 
restricted to be a denumerable set such that each 
selection rule in S was definable in some given logic. 
The monotonicity and r/>-dependence requirements on 
elements of r/> were kept the same as in von Mises' 
definition. Wald also proved that, under his definition, 
random sequences exist. 

Church22 defines random sequences by restricting S 
in Eq. 6 to be the set of all functions g such that (1) 
as a function of j, g(r/>,j) is monotonic increasing, 
(2) g(r/>,j) depends at most on r/>(O) ... cp(g(r/>,j) - 1) 
(these are the same as in von Mises' definition), and 
(3) g is r/>-effectively calculable. Church's original 
definition was given for 0-1 sequences but is easily 
extended [Eq. (6)] to sequences with range in N. In 
brief, a cp-effectively calculable function from N to N 
is one for which there exists a precisely defined com
putation procedure which, given any argument j, 
outputs the value of the function in an arbitrary but 
finite number of steps. Among the allowed steps are 
questions of the form, "does cp(m) = n?" The yes or 
no answers are to be supplied by an external agent or 
oracle.23 •24 

The existence of random sequences satisfying 
Church's definition is a consequence of a theorem of 
Doob. 25 This theorem states that any selection rule 
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[Eq. (2)] of a type which includes those defined by 
Church generates a set transformation [Eq. (3)] which 
is measure preserving with respect to any product 
probability measure defined on A. 

A product probability measure P is a measure with 
respect to which PEn! is independent of n for each 1 
and for all intersections n:1 Ef(i) .h{i) , where h is any 
one-to-one function from N to N, 

En! is the subset of n defined for each n, 1 E N by 
En! = [0 I O(l) = n]. 

Loveland26 has extended Church's definition by 
allowing g to be one-to-one instead of monotonic 
increasing. He limits g to be cP-effectively calculable 
and requires, for eachj, that cP(g(cP,j)) need not have 
been examined by the computation procedure for 
g(cP, k) for all k ~ j. Doob's theorem25 is also used in 
this case to prove the existence of random sequences. 

It can be shown constructively27 that there are a 
denumerable infinity of effectively calculable selection 
procedures which are excluded by Church's and 
Loveland's definition and which still satisfy Doob's 
theorem. In particular, the requirement that the 
computation procedure not examine an element of cP 
prior to its selection can be relaxed. A set of conditions 
on S in Eq. (6), which are sufficient as far as the 
existence requirement is concerned are (1) that S be 
denumerable and (2) that each g in S generate a 
measure preserving transformation Tg on A with 
respect to all product probability measures defined 
on A.27 

The difficulty with using subsequence selection 
procedures only, to define randomness, as in Eq. (6), 
was noted some time ago by Ville. 28 He showed 
(nonconstructively) that for any denumerable set of 
selection procedures there exists a 0-1 sequence cP 
whose limit mean is the same for all subsequences 
selected by the procedures in the set. Yet cP has the 
property that 

for each m, where MmcP is the mean of the outcomes of 
the first m single measurements. Obviously, such a 
sequence where the mean sequence approaches the 
limit from one side only is not random. 

Definitions of random sequences which avoid 
Ville's objection have been given by Martin Lof29 and 
Kruse.30 Martin Lof's definition is given for 0-1 
sequences where the product measure P is such that 
PEu = PEo! = ! for alll. Martin LOf defines a class 

of tests for randomness to be those given by the set 
,of all hyperarithmetic relations with one free function 
variable which are true almost everywhere with respect 
to P. He then defines the class of random sequences 
as the i~tersection of all hyperarithmetic subsets of 
0-1 sequences of P measure 1. Since there is only a 
denumerable infinity of such sets, the existence of 
random sequences follows immediately. 

This definition, which is an extension of an earlier 
definition,31 can be easily extended to sequences in n 
and arbitrary product measures. Martin LOf further 
notes that, if the class of tests, for randomness is 
extended to include the classical totality of all subsets 
of n of P measure 1, the set of sequences passing 
these tests is empty. 

In brief, the hyperarithmetic relations are those 
which are "just beyond" the arithmetic relations. The 
arithmetic relations are those relations which are 
made up from the usual logical symbols, the 
"equality," "plus," and "times" symbols, variables 
for natural numbers and functions in n, and the 
numerals 0, 1, .... The quantifiers V and 3 act only 
on number variables and not on function variables. 

If one now allows V and 3 to act on the function 
variables as well, an extended class of relations, the 
analytical relations, are obtained. These can be 
converted into a standard form with the quantifiers 
in front and the function quantifiers ahead of number 
quantifiers. Then the hyperarithmetic relations are 
those which can be written in both one function 
quantifier forms. That is, R(' .. ) is hyperarithmetic if 
and only ifVfS(f"') = R(" -) = 3fT(f·· .), where 
S(f· .. ) and T(f· .. ) are arithmetic relations and f is 
a function variable. A hyperarithmetic subset of n is 
a set defined by [0 I R(O) true], where R(O) is hyper
arithmetic. 23 .32 

The definition of random sequences given by 
Kruse30 is of the same type but more general. He first 
defines a collection of all "mixed" relations formed 
using the logical symbols of a set theory and objects 
from a model for the set theory. Then, for each 
product probability measure P such that PEn! > ° for 
each n and I, the class of tests for Z-randomness is 
defined to be the class of all such "mixed" relations 
where the model objects are in a class Z and the 
relations are true, P almost everywhere on n. Each 
test in the class defines a "Z-nameable" subset of n of 
P measure 1. A sequence rp is Z-random if, for some 
product measure P of the type described, rp is contained 
in the intersection of all "Z-nameable" sets of P 
measure 1. Kruse proves that if Z is countable, then 
Z-random sequences exist. This definition applies 
directly to sequences with range in N. Kruse gives his 
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definition in a different form and proves it to be 
equivalent to the above description. 

One reason for studying these definitions of random 
sequences is that one intuitively feels that, for many 
infinite sequences of single measurements in physics, 
the associated outcome sequences are random. In 
particular, for certain sequences such as the example 
given in the introduction, one should be able to prove 
the randomness of the outcome sequence. Because 
this appears hard to carry out for quantum mechanics, 
a physical theory is defined in such a way that various 
properties of outcome sequences, including random
ness, can be discussed. Such a discussion first requires 
a framework for discussing mathematical properties 
of the outcome sequence. 

III. FRAMEWORK 

To begin with, a formal language L is needed, 
relative to which the various concepts can be de
scribed. In order to make the discussion explicit and to 
clarify certain points, a particular L and set of for
mulas H in L will be chosen. At this point, it is neither 
necessary nor desirable to make a final choice for L 
or H and, with the exception of Theorem 1, none of 
the theorems which follow are dependent on such a 
choice. It is also clear from the discussion in Sec. IV 
that the L chosen here must ultimately be changed, 
as it is too simple in many respects. 

Here, L is chosen to be a language somewhat more 
extended than that used for second-order arithmetic.23 

That is, L has a denumerable supply of variables 
i,j, i',j',··· ; t/>, 0, t/>', 0',··· ; IX, {J, IX', {J' ..• which 
range over N, n, and R (the class of real numbers), 
respectively. Besides these symbols, L contains the 
names 0, ... , n, I, m, ... ; "P, ... and r, s· .. of all 
the elements of N, n, and R, respectively. Thus, L 
contains nondenumerably many constant symbols as 
names of elements in nand R. 

The only primitive nonlogical predicate and opera
tion symbols in L are the equality symbol (=) and 
the symbols + (plus) and X (times) defined on n, R, 
and N [(t/> + O)(j) = t/>(j) + O(j) and (t/> X O)(j) = 
cp(j) X O(j) for all j]. Terms which designate individ
uals of n, R, or N are built up in the usual inductive 
manner: (1) Variables and names are terms; (2) if t/> 
is a sequence variable and Y is an N-term, t/>( Y) is an 
N-term; (3) Y + Z and Y x Z are terms if Y and Z 
are terms of the same type (i.e., both N-terms or both 
n-terms or both R-terms). Similarly, by use of the 
nonlogical symbols 1 (not), " (and), V (or), => (im
plies), V (for all), and 3 (there exists), formulas are 
built up inductively as follows: (1) Y = Z is a formula 
if Y and Z are terms of the same type; (2) 1 Y, 

Y "Z, Y V Z, Y => Z are formulas if Y and Z are 
formulas; (3) 3x Y and V x Yare formulas if Y is ~ 
formula and x is a variable of n, R, or N. 

The reference class of formulas H used here is 
defined as follows: Let Ho be the class of formulas in 
Lo, where Lo is the sublanguage of L obtained by 
removing from L the names of elements of Rand n. 
Define a class of formulas H' in L as follows: 

For each Lo-definable operation 0: n -- n, define 
the class of formulas, HO, as follows: (1) for each 
real number r and sequence variable t/>, the formula 
MOt/> = r is in HO and (2) 1 Y, Y V Z, y" Z, Y => Z 
are in HO if Y and Z are formulas in HO. Then H' is 
defined by H' = U HO, where the union is taken over 
all Lo-definable operations 0. The Lo-definability of ° 
means that there exists a formula q' in Ho such that 
for all t/> and 0, OCt/»~ = o <=>q'(t/>, 0). Finally, His 
defined as H = Ho U H'. Clearly His a subset of the 
class of formulas of L. The reason for defining H in 
such a manner becomes clear later on. 

From the definitions of Lo and H, it is clear that 
statements about many operations are included in H. 
For example, the projection mappings of Eqs. (4) 
and (5) are definable in Lo as are all subsequence 
selection mappings of Eq. (2) where g is definable in 
Lo. That is, there must exist a formula q in Ho such 
that for, allt/>,j, and k, g(t/>,j) = k <=>q(t/>,j, k) holds. 
In particular, the one-sided shift operator '6: n -- n 
defined by 

('6t/»(j) = t/>(j + 1) (7) 

is included. For example, H includes the formulas 
MOt/> exists and MOt/> = MO' t/> for all Lo-definable ° 
and 0' as these formulas are equivalent to the Cauchy 
limit statements 3IXVi3jVi'(2i IMJ+i,Ot/> - IXI < 1) 
and Vi3jVi'Vj'(2 i IM;+i'0t/> - MJ+;,O't/>I < 1), respec
tively, where the indicated operations and relations 
are obviously Lo-definable. 

Let A denote, as before, the usual classical (J 

algebra of subsets of nand [P), the class of all 
probability measures define'd on A. Let AH denote the 
class of all H-definable subsets of n. A subset of n 
is H-definable if it is given by [0 I q«() true], where q 
is some formula of Hwith exactly one free sequence 
variable. Clearly, any measure P in [P] is defined on 
AH as AH cA. 

Finally, it should be noted that the discussion of 
this and the next section are all in a metalanguage 
which is not part of L. This includes expressions such 
as Eqs. (8), (9), etc., and the theorems which are all 
metatheorems. In this connection, the symbols Yand 
Z are syntactic variables which range over terms and 
formulas of L. Also, expressions such as MOt/> exists, 
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M04> = MO'4>, etc., are syntactic names for formulas 
in H. Clearly, these expressions and symbols are all 
part of the metalanguage and are not in L.32 

Define E(H, P, 4» by 

E(H, P, 4» == Vq lq E H " q has exactly one free 

sequence variable 

"p [0 I q(e)1 = I ~ q(4))1. (8) 

Here, q is a syntactic variable which ranges over all 
formulas of L. E(H, P, ep) says that all formulas in H 
which contain exactly one free sequence variable and 
are true P almost everywhere are true at ep. Equiva
lently, E(H, P, ep) says ep is contained in the intersec
tion of all H-definable subsets of P measure 1. The 
requirement that q have exactly one free sequence 
variable excludes formulas with free number variables. 

The following theorem, which shows that the above 
definition is not empty, requires that P be nontrivial 
or 

ve (p[e1 = 0). (9) 

This excludes pathological measures which are non
zero on any single element subset of n. The proof of 
the theorem is quite long. 

Theorem 1,' If P is nontrivial, then there exist 
sequences ep such that £(H, P, 4». 

Proof: The goal of the proof is to show that 
P[4> I E(H, P, 4»] = 1. By the definition of H, one has 

[4> I E(H, P, ep)] 

= [ep I E(Ho, P, ep)] n [ep I E(H', P, ep)]. 

Since Ho is denumerable, Eq. (8) yields immediately 
that P[ep I E(Ho, P, ep)] = 1. It remains to show that 
P[tp I E(H', P, tp)1 = 1. 

Suppose that it can be shown that, for each 
sequence variable ep, some formula B(Lo, P, 4» exists 
such that (1) P[4> I B(Lo, P, ep)] = 1 and, for each 
formula q(ep) in H' with one free sequence variable, 
(2) if Ple I q(e)] = 1, then B(Lo, P, 4» implies q(ep), 
and (3) if pre I q(O)] = 0, then q(4)) implies lB(Lo, P, 
ep). Then, for each q(4)) in H' for which P[4> I q(ep)1 = 
I, one has [epIB(Lo,P,4»]s;; [eplq(ep)]. From this 
and Eq. (8), one obtains immediately the result that 

[ep I B(Lo, P, ep)] s;; n' [ep I q(ep)] = [ep I E(H', P, ep)], 
qEH' 

where n' means the intersection is taken over all 
H' -definable subsets of P measure 1. Since 

P[ep I B(Lo, P, ep)] = 1, 

one has the desired result that P[ep I E(H', P, ep)] = 1. 

In order to show that a formula B(Lo, P, 4» exists 
with the desired properties, one proceeds as follows: 
For each Lo-definable operation 0, define the set Ao 
of real numbers by r E Ao if and only if 

P [ep I MOep = r1 > o. 
Either Ao is empty, in which case P [ep I M04> does 
not exist1 = 1, or Ao is not empty, in which case 
P [4> I MOep does not exist] < 1. 

Let Fp( -, -) denote the choice function such that, 
for each Lo-definable operation 0 and each sequence 
variable ep, 

(I) Fp(O, ep) = M04> does not exist if P [ep I MOep 
does not exist] = 1. 

(2) Fp(O, 4» = VrEAo M04> = r if 

P [4> I V M04> = r] = 1. 
rEA 0 

In this case, P [4> I M04> does not exist] = O. 
(3) Fp(O, 4» = VrEAo M04> = r V M04> does not 

exist if 0 < P [4> I M04> does not exist] < 1. These 
cases are clearly exhaustive. Define B(Lo , P, 4» by 

B(Lo, P, 4» = A F1'(O, 4». 
OEL. 

By this definition, it is clear that Plep I B(Lo, P, ep)1 = 1 
as there is, at most, a denumerable number of Lo
definable operations 0 and, for each such 0, 

P[4> I F1'(O, 4»] = I. 

To show that B(Lo, P, 4» has the other desired 
properties, one proceeds by induction on the length of 
the formulas in H'. It is necessary to consider the 
logical connectives 1 and " only as v and => can be 
defined in terms of these two. The following state
ments, with R(4)) and S(4)) denoting formulas of H, 
are easily seen to be true. 

(a) If P[4> I R(4))] = I and P[4> I S(4))] = I and 
B(Lo, P, 4» implies R(4)) and B(Lo, P, 4» implies Seep), 
then P [4> I R(4)) " S(4))] = I and B(Lo, P, 4» implies 
R(4)) " S(4)). 

(b) If P[4> I R(ep)] = I and P[4> I S(4))] = 0 and 
B(Lo ,P, 4» implies R(4)) and S(4)) implies lB(Lo, P, 4», 
then P [4> I R(4)) " S(4))] = 0 and R(4)) " S(4)) implies 
lB(Lo, P, 4». This latter implication follows from the 
proof, by truth-table construction, that the formula 
«B ~ R) " (S => lB)) => (R " S => lB) is a tautol
ogy.32 The argument for the case in which the roles of 
Rand S are reversed is the same. 

(c) IfP[4> I R(ep)] = OandP[ep I S(4))] = o and R(4)) 
implies lB(Lo,P,ep) and Seep) implies lB(Lo,P,ep), 
then P[ep I R(ep) " S(4))] = 0 and R(4)) " Seep) implies 
lB(Lo, P, ep). Again, the latter implication follows 
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from the fact that 

«R => lB) 1\ (S => lB» => (R 1\ S => lB) 

is a tautology. 
(d) If P[</J I R(</J)] = I and B(Lo, P, </J) implies R(</J), 

then P[</J 11R(</J)] = 0 and lR(</J) implies lB(Lo, P, </J). 
(e) If P[</J I R(</J)] = 0 and R(</J) implies lB(Lo ,P, </J), 

then P[</J 11R(</J)] = 1 and B(Lo, P, </J) implies lR(</J). 
The induction begins with the following two state

ments. 
(f) For any Lo-definable 0 for which Ao is finite and 

P [</J VrE..4.o MO</J = r] = 1, B(Lo, P, </J) implies 

V MO</J = r. 
,E..4.o 

[This follows directly from the definition of B(Lo, P, </J).] 
(g) For any Lo-definable 0 and s for which 

P (</J I MO</J = s] = 0, MO</J = s implies lB(Lo, P, 
</J). The truth of this statement can be easily seen 
by considering separately the three cases in the 
definition of Fp(O, </J) with s ¢ Ao. 

The formulas V'E..4.o MO</J = r with Ao infinite and 
VrE..4.o MO</J = r V (MO</J does not exist) with Ao finite 
need not be considered in the initial statements of the 
induction since neither formula is in H'. [B(Lo, P, </J) 
is also not in H'.] 

Comparison of the above seven statements with 
the definition of H' shows that the above induction 
includes all formulas of H' whiGh are true P almost 
everywhere on O. Thus, the B(Lo, P, </J) constructed 
has the desired properties. QED 

The following theorem about Hand E(H, P, </J) is 
almost self-evident. 

Theorem 2: Let H be closed under negation, let q 
be any formula in H with one free function variable, 
and suppose E(H, P, </J) holds. Then P[O I q(O)] = 
o => q(</J) false. 

Proof" For any q E H, one has lq E H. Because 
E(H, P, </J) holds, one has 

p[OI q(O)] = 0 => P[O Ilq(O)] = I=> lq(</J) true 

=> q(</J) false. 

QED 

A more important property of Hand E(H, P, </J) 
is given by the next theorem. The condition that H be 
closed under negation is clearly satisfied by the H as 
defined here. 

Theorem 3: Let H be closed under negation and P 
be any nontrivial probability measure defined on A. 

Then, for any sequence </J, E(H, P, </J) implies that 
</J is not definable in H. 

Proof" Assume the converse, that E(H, P, </J) holds 
and </J is definable in H. If </J is definable in H, then the 
formula qg(f) defined by Vj (g(j) = O(j)) is in H where 
g = </J and g is definable in Lo. Since H is closed under 
negation, the relation lqg(O) defined by 3 j (g(j) ~ O(j» 
is also in H. Consider the set [0 Ilqg(O) true]. Since 
this is the complement of the one point set [</J] and P 
is nontrivial, one has p[8Ilqy(0) true] = 1. However, 
since lqg(</J) is false, one has, qy Eq. (8), that 
E(H, P, </J) is false. Thus, a contradiction is reached 
and </J must not be definable in H. QED 

It should be stressed that this theorem holds for 
any nontrivial measure P, not just for product 
measures. Thus, there are many sequences </J which 
are not H-random CEq. (10)] for which E(H, P, 4» is 
true. By this theorem, these sequences are not defin
able in H. Conversely, this theorem implies that 
there are many 4> such that E(H, P, 4» is false for all 
nontrivial measures P. This includes any 4> which is 
H-definable or is computable by a mathematical 
computation procedure. Computable functions are 
included in the definition of Lo given here. 

It is also clear that this theorem holds for many 
languages, not just the one defined here. This arises 
from the fact that the proof does not depend on any 
detailed properties of H. The only requirements are 
closure under negation and the containment of rela
tions of the types Vj (g(j) = O(j». 

Theorems 1 and 3 are the reason that formulas 
which contain the names of elements of 0 are excluded 
from H. For, if H contained all formulas of L which 
include the names of elements of 0, then, for any 
sequence name ?p, the formula ?p ~ 4> is in H and has 
exactly one free sequence variable. By the proof of 
the above theorem, E(H, P, ?p) would be false, giving 
E(H, P, </J) false for all </J. Similarly, if H contains 
all formulas of L which include the names of elements 
of R and any one-to-one mapping from R to 0 (or 
from the irrationals to 0) is L-definable, then H would 
again contain alI formulas of L which contain the 
names of the elements of O. 

H-randomness is defined by the expression 

RH (4)) == 3P [P is a nontrivial product measure 
defined on A 1\ E(H, P, </J)]. (to) 

The existence of H-random sequences is an immediate 
consequence of Theorem 1. 

This definition of H-randomness, with suitable 
modification of H, includes the definitions discussed 
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before. If one replaces H by Hi' where Hi is the class 
of hyperarithmetic relations (Hi c Ho as defined 
here), then Eq. (10) gives Martin Lof's definition29 

(generalized to sequences in n and arbitrary product 
measures). If L is redefined to be the language of a set 
theory to which a denumerable collection Z of names 
of sets have added and H is the class of formulas of 
L, then one has Kruse's definition.30 

With respect to subsequence selection tests 'Jg , 

Eq. (2), the formula qn(f)), defined by 

gn(f)) == MFnf) exists A MFn'J/J = MFnf), 

is in H if'Jg is Lo-definable. Furthermore, qn«()) is true 
P almost everywhere for any product probability 
measure P if Tg [Eq. (3)] is measure preserving with 
respect to all such P.25.27 Thus, Church's,22 Love
land's,26 and Wald's2i definitions are included as each 
allowed 'Jg is Lo-definable (or, in Wald's case, L
definable, where H is the class of formulas of some 
logic L) and Tg is measure preserving. 

So far, infinite sequences 4> and the measure P have 
been considered in the abstract. In order to relate the 
foregoing to the empirical world and use it to define 
properties of physical theories, one must relate 4> and 
P to empirical procedures and their outcomes. 

IV. PROPERTIES OF PHYSICAL THEORIES 

A. Preliminaries 

To begin, one notes that, in order for an observer 
to construct an infinite sequence of single measure
ments, he must at least (1) decide for each single 
measurement what preparation and observation 
procedures to use, and (2) decide the space position 
and calendar time at which each single measurement 
is to be carried out. To this end, let C and D denote 
respectively the classes of all instruction sets, written 
in some informal language, for preparation and 
observation procedures. Any C E C or dE D denotes 
a set of instructions for carrying out some prepara
tion or observation procedure, respectively. It is to be 
noted that C and D contain all such sets of instruc
tions, not just those which are applicable to physics. 

Define the mappings Q:N -4- C x D, s:N -4- N, 
and T:N -4- N, where N is the set of natural numbers. 
Clearly, the triple (QST) represents an infinite set of 
instructions for carrying out an infinite sequence of 
single measurements. For each j, the ordered pair 
Q(D denotes the preparation and observation instruc
tions to be followed for the jth single measurement. 
s(j) and T(j) denote, respectively, the space position 
and calendar time (relative to some space and time 
measuring procedures) at which the jth single meas
urement is to be carried out. The fact that the 

orientation, must also be given for each single meas
urement is ignored here. Also, each dE D is assumed 
to include instructions for the space-time positioning 
of the observation procedure relative to any prepara
tion procedure in C. 

By PI, the domains of Q, s, and T must be Nand 
not some initial segment of N. By P2, it takes forever 
to actually complete the carrying out of (QST). Let 
'lJ!QST denote the infinite outcome sequence of natural 
numbers33 obtained upon the carrying out of (QST) 
and let [QST] denote the class of all infinite sequences 
of instructions and space-time positions which an 
observer can carry out. Let [Q] denote the set of all 
mappings from N to C x D and n, the set of all 
functions from N to N. Then [QST] is a subclass of 
[Q] x n x n, as there are many sequences that 
cannot be carried out by any observer. For example, 
a necessary restriction is that T be a nondecreasing 
function, as the (n + l)th single measurement 
obviously cannot be performed before the nth. 

At this point, it may be helpful, especially to those 
not familiar with mathematical logic, to briefly discuss 
the definitions given so far. N, n, and R, the respec
tive sets of natural numbers, infinite sequences of 
natural numbers, and real numbers and the many 
mathematical properties of these sets, are part of 
intuitive, or informal, mathematics. As such, they 
form a structure within which the otherwise meaning
less symbol sequences of Land H are given meaning. 

Each element of the class [QST] is an ideal, informal 
element. It is ideal in that it cannot be carried out by 
an observer in any finite time [see the Appendix]. It 
is informal in that, for each j, Q(j) is written in an 
informal language intuitively understandable to an 
observer and which is not part of L. Let Do denote a 
mapping with domain [QST] and range in n. Then 
DO(QST) = 'lJ!Q8T is the infinite sequence of natural 
numbers asymptotically obtainable by doing QST. 
Strictly speaking, 'lJ!QST is an infinite sequence of sym
bols, each symbol of which is a name of a natural 
number. This distinction will be ignored here, as it 
is unimportant for this work. 

It might be wondered why this work is not based 
instead on the class of all finite initial segments of the 
elements of [QST] rather than on [QST], since each 
finite segment can be completed by an observer by a 
finite time. One reason is that probability theoretic 
relations between a mean obtained by carrying out a 
finite initial segment of an element of [QST] and an 
expectation value are given an exact, well-defined 
meaning in terms of infinite sequences only of single 
measurements (See the Appendix). 

Let U denote a mapping with domain in [QST] and 
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range in [P] the class of probability measures defined 
on A. Here, a valid physical theory is defined to be 
some mapping U. Now, clearly, not all mappings U 
are valid physical theories. For example, [QST] can 
include nonsense sequences or single measurements 
such as "Scratch your ear; if it hurts, output 1, if it 
does not, output 0," etc. Thus, if U is to represent a 
valid physical theory, it cannot be defined on all 
elements of [QST]. However, there are other restric
tions on U which must be satisfied if U is to be a valid 
physical theory. 

B. H-Agreement Between Theory and Experiment 

One very important restriction on U is that it 
agree with experiment. Intuitively, this means that, 
for any infinite sequence QST of physical measure
ments, there are many properties of the outcome 
sequence "PQST which must be given by the theory. 
For example, if the theory states that the limit mean 
M"PQ"T exists (does not exist), then M"PQST should 
exist (not exist). If M"PQ8T exists, then the theory 
should give the value of M"PQ8T' The theory should also 
give the value of MFn"PQ8T [Eq. (4)] for each n. This is 
the limit relative frequency of occurrence of n in 

"PQST' 
Besides these, there are many other properties 

of "PQST which should be given by the theory. For 
example, let 6g denote the subsequence selection 
procedure "select all and only the even numbered 
elements of "PQST in the natural order" [69"PQST is given 
by Eq. (2) with g(c{>,j) = 2j]. Then the theory should 
tell one whether M6g"PQaT = M"PQ.<r is true or not, 
and give the value of M6g"PQST' if it exists. Also, the 
theory should give the value of M(F m"PQsT x Fn61"PQST)' 
if it exists. 6 is the shift operator defined by Eq. 7. This 
expression gives the limit relative frequency of occur
rence of n and then n, I places further on, in "PQST' 
Clearly, the value of this expression, or whether the 
statement 

M(Fm"PQsT x Fn61"PQST) = MFm"PQ8T x MFn61"PQaT 

(11) 

is true or not, is related to the question of whether or 
not QST is a correlated sequence of single measure
ments. 

Besides making predictions about properties of 
single sequences, a physical theory also compares 
different sequences of single measurements. For 
example, the theory may state that, for sufficiently 
weB-isolated preparation and observation procedures, 
the space-time positions, at which sequences using 
these procedures are carried out, are irrelevant 
variables. (This is part of the statement of homogeneity 

of space-time.) This implies that, for some Q, the 
instruction sets QST and QS'T' with s'(j) = s(j) + m 
and T' (j) = T(j) + n for all j and m, n independent of 
j and arbitrary, are "equivalent" experiments. This is 
empirically testable by carrying out QST and QS'T' 
and seeing whether or not all empirically predictable 
properties of "PQST are the same as those of "PQ8'T" 

From these examples, it is clear that, for each QST 
for which U(QST) is defined, there is a large class of 
statements which one requires to be true for "PQ8T as 
part of the intuitive meaning of agreement between 
theory and experiment. Furthermore, the class de
pends on QST. For example, a physical theory may 
well give the prediction that the statement "M6u"PQST= 
M"PQST" is true for some QST, false for others, and 
for still others it may not be predictable whether the 
statement is true or false. Thus, any acceptable 
definition of agreement between theory and experiment 
must define such a class for each physical QST and 
contain the dependence of the class on QST. 

To this end, we submit that much of the intuitive 
meaning of the agreement, with respect to H, of 
theory U with experiment is given by the statement 
R1(U, H) defined by 

R1(U, H) == V(QST) [U(QST) defined 

=> E(H, U(QST), "PQST)]' (12) 

with E(H, U(QST), "PQST) given by Eq. (8). That is, if 
the theory U is to H-agree with experiment, then for 
any QST for which U(QST) is defined, the class of 
statements which must be true for "PQST are those 
which are in H and are true almost everywhere with 
respect to U(QST). 

To see that this statement satisfies many intuitive 
aspects of the meaning of H-agreement between 
theory and experiment, some examples are considered. 
Let qnle) be the formula in H defined by e(/) = n. 
By the definition [Eq. (8)] of E(H, P, "P), Eq. (12) 
says that if U and QST are such that 

o < U(QST) [9 I e(l) = n] < I 
then one cannot predict from the theory U whether 
"PQST(1) = n or not. However, if U(QST) ce I e(l) = n] = 
1(0), then Eq. (12) states that the theory predicts that 
"PQST(l) = n is true (false). 

This is in accord with intuition. For example, let 
U be a statistical theory of coin tossing. That is, U 
takes as input the properties of the coin and tossing 
procedures for each toss in a sequence and outputs 
the probabilities of various events. If U gives the 
probability of heads on the Ith toss as a number 
between 0 and I, one does not require the theory to 
give a prediction of the outcome of the Ith toss. Such 
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a prediction is not part of the meaning of agreement 
between theory and experiment. However, if U and 
QST are such that the probability of heads on the 
lth toss = I (0) [e.g., a two-headed (two-tailed) coin 
with no edge effects was used for the lth toss], then 
the theory does predict heads (tails) for the lth toss. 
In this case, agreement of theory and experiment 
requires that heads (tails) occur on the lth toss. 

Other examples which are in accord with intuition 
include any finite string of the formulas qn!(O) and 
lqmk(O) connected by V or A, as well as the formulas 
discussed previously. For example, for each 6g which 
is definable in Lo, the formulas qng(O) defined by 
MFn6g0 = MFnO are in H. If U(QS1') is such that 
qng(e) is true U(QST) almost everywhere, then Eq. (12) 
requires, as a necessary condition of agreement 
between theory and experiment, that MF~6g"PQST = 
MFn"PQ.T' However, if 0 < U(QST) [0 I qniO) true] < 
I, then Eq. (12) says nothing about whether qng("PQST) 
is true or not. In this case, one cannot predict from 
the theory U whether qng("PQsT) is true or not and this 
formula does not give a test, at QST, for agreement 
between experiment and theory U. Similar arguments 
hold for other formulas such as "MFnO exists," Eq. 
(11), etc. 

Furthermore, suppose that the theory predicts that 
QST and QS'1", where s' and 1" are constant shifts of S 
and T respectively, are "equivalent" experiments. For 
a theory U, this prediction is obtained by determining 
from computation that U(QST) = U(QS'1"). 

Now intuitively, the verification of this prediction 
of empirical equivalence means (1) that the class of 
statements about properties of the outcome sequences 
by which one tests for agreement between theory and 
experiment is the same for "PQST as for "PQN and (2) 
that each statement in this class is true (false) for 
"PQST if and only if it is true [false] for "PQ"T" That is, 
by no statement in the class can one distinguish 
between "PQ.T and "PQS'T" 

These intuitive requirements are satisfied by Eq. 
(12). For clearly, if U(QST) = U(Qs'T') on A H , the 
class of formulas in H with one free function variable 
which are true (false) U(QST) almost everywhere is 
the same as the class which are true (false) U(QS'T') 
almost everywhere. Furthermore, by Eq. (8) and 
Theorem 2, each relation in the class is true (false) 
for "PQsr if and only if it is true (false) for "PQN' 

Perhaps the most important part of the meaning 
of comparison between theory and experiment is the 
comparison of the empirical limit means with the 
expectation values computed from theory. To this 
end, we consider the formulas MOO = r. For any 
operation 0 defined in Lo and any real number r, 

these formulas are in H. (This is the reason why H 
was defined by Ho U H' rather than by the simpler 
H = Ho.) If the theory U H-agrees with experiment, 
then Eq. (12) gives the result that, for each QST for 
which U(QST) is defined and for each 0 in La and r, 
U(QST) CO I MOO = r] = I requires that MO"PQST = r. 
Also, for each 0 in Lo, there is at most one r such that 
Eq. (12) requires that MOIjJQST = r hold. (Proof: 
Assume the converse, i.e., that for some measure P, 
P [0 I MO = r] = 1 and P [0 \ Me = r ' ] = 1 with 
r ~ r'. Since the intersection 'of two sets of measure 
one is a set of measure one, there is some rp such that 
Mrp = rand Mrp = r', which is impossible.) 

Although there is, at most, one r for which 
U(QS1') [0 I MOO = r] = I, Eq. (12) does not tell one 
how to find such an r or relate it to an expectation 
value computed from theory. To this end, proba
bility theory is of value as it gives a relation between 
rand U(QST). To obtain the relation, one first 
considers MFmOrp, where 

(13) 

and Fm is given by Eq. (4). Let XF denote the charac
teristic function for any set Fin A H . That is, 

XF(rp) = 1, if rp E F, 

= 0, if rp ¢: F. (14) 

Now set F = 0' Emj where 0 ' is the set transformation 
[Eq. (3)] generated by 0 and Emj = [e I O(j) = m]. 
One has the result that (FmOrp)(j) = 1 (0) if and only if 
XO'Ejrp) = 1 (0). Thus, by the definition of the limit 
mean, one has 

1 i-I 
MFmOrp = lim -:- 'iXo'Emirp) = XO'Emo(rp). (15) 

i-+ 00 I j=O 

The expectation value of the limit random variable 
XO'Emo for a measure P is given by34,35 

_ 1 i-I . 

(XO'Emo) = lim -:- '2,PO'T 1Emo , (16) 
i-+ 00 I i=O 

where the relation Ti Emo = Emj with T, the one
sided shift operator [Eqs. (3) and (7)], has been used. 
Furthermore, if a random variable X is constant 
almost everywhere, then 

X = (X) (17) 

holds almost everywhere.34.35 

Thus, the following result is obtained. Suppose that 
a theory U H-agrees with experiment. Then Rl (U, H) 
[given by Eq. (12)] holds, and for any 0 in Lo and 
r E R such that U(QST) rtf I MOrp = r] = 1, one has that 
MO"PQST = r. By Eqs. (13)-(17), one has that 

1 i-I 
MOIjJQsr = ~ m lim -:- ~ U(Qs1')O'T iEmo (18) 

m i-+IX) 1 j=O 
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as the final relation between the limit mean of the 
sequence obtained by the operation 0 on the outcome 
sequence "PQST and the theoretical expectation value 
computed from U, QST, and O. Clearly, the right-hand 
side of Eq. (18) is equal to r. The complexity of the 
right-hand side of Eq. (18) is treated in the next 
section. 

It should be noted that Eqs. (13)-(18) hold for all 
operations in Lo, including those by means of which 
correlations among single measurements are deter
mined. For example, let 0 denote the operation of 
Eq. (II) where Oc/> = Ftc/> X Fk(5nc/>. In this case, 0 
maps every sequence of c/> onto a 0-1 sequence. Then 
the only nonzero term of Eq. (13) is for m = 1. 
Equation (18) becomes 

M(Ft"PQsT x Fk(5n"PQsr) 
. 1 i-l . 

= hm -:- L U(QsT)T'(Ew n Ekn), 
i .... 00 I j~O 

where the facts that 0 commutes with (5 and thus 0' 
commutes with T and 0' E10 = Eto n Ekn with 
Ent = [0 I 0(/) = n] have been used. 

From this discussion, one sees that the validity of 
RI(U, H) is a necessary but not sufficient condition 
for the theory U to agree with experiment with 
respect to H. The reason that Rl (U, H) is not sufficient 
is that Eqs. (14)-(18) are also necessary conditions 
and they have not been included in H. Whether or not 
one can find an H which includes these statements, so 
that H-agreement between theory and experiment can 
be defined by Eqs. (12) and (8) only, is a question 
left to future work. 

For a slightly different perspective on Eq. (12), 
suppose an observer is considering a physical theory 
which is new to him. After some study, he finds that 
the theory suggests entirely new experiments which 
he has never done and predicts their outcomes. On 
carrying them out, he finds that the results do indeed 
agree with the new prediction and thus, the empirical 
support for the theory is broadened. 

This characteristic of a theory giving new testable 
predictions is included in the description given here. 
In terms of Eq. (12), it means that for a new theory U, 
one must discover the domain of definition of U. At 
first, one knows that a certain class of empirical 
procedures is in the domain of U. By a study of the 
theory, he finds that another QST not previously 
carried out is in the domain of definition of U. Th~ 
predictions U makes about the new experiment are 
given by all statements in H which are true almost 
everywhere with respect to U(QST). By Eq. (12), if U 
is to H-agree with experiment at QST, all these 
predictions must be true for "PQST . 

With respect to randomness, one has the following 
easy theorem. 

Theorem 4: Let U be any map with domain in 
[QST] and range in [P] such that U agrees with 
experiment with respect to H. Then, for each QST 
for which U(QST) is defined and is a nontrivial 
product measure on A, "PQST is H-random. 

Proof: Since Rl (U, H) is a necessary condition for 
H-agreement of U with experiment, one has by 
hypothesis that R1( U, H) holds. This means that 
E(H, U(QST), "PQST) is true for every QST for which 
U(QST) is defined. This includes any QST for which 
U(QST) is a nontrivial product measure. Thus, any 
such U(QST) satisfies the conditions of Eq. (10) and 
"PQST is H-random. QED 

It is clear from this theorem that the problem of 
the relation between quantum mechanics and random
ness, mentioned in the introduction, is solved for a 
physical theory as defined here. All one has to know 
for any QST is whether or not U(QST) is a non
trivial product measure. If it is such a measure, and 
if U H-agrees with experiment, then "PQST is H
random. 

In order to apply the foregoing directly to quantum 
mechanics and prove the statement given in the 
introduction, one would have to show that quan
tum mechanics is a physical theory of the type 
discussed here. That is, one would have to show that 
(I) each QST which is a sequence of measurements in 
quantum mechanics defines a probability measure 
on A, and (2) in particular, if QST corresponds to 
measuring a question valued observable 0 on a pure 
state fj, then the associated probability measure is a 
product measure. Suppose this could be shown and 
one could demonstrate that quantum mechanics H
agrees with experiment as defined by Eqs. (8) and (12); 
then the above theorem allows one to prove that, if 
QST corresponds to the measurement of a question 0 
on a pure state fj with 'Y} not lying entirely within an 
eigenspace of 0, then the outcome sequence "PQsr is 
H-random. 

The main difficulty seems to be in showing 
that quantum mechanics is a physical theory of 

,the type discussed here, for, as was noted earlier, 
quantum mechanics seems to say nothing about 
the statistical relations between single measurements 
in a sequence. Yet, clearly, such information is given 
by any theory U and is also intuitively assumed 
whenever one actually carries out physical measure
ments. 
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C. Existence 

From the previous discussion, R1(U, H) is clearly a 
necessary condition for U to be a valid physical 
theory. However, there are other conditions. Of 
great importance is the requirement that there exist 
a U whose domain is not empty. In fact, the domain 
of U must be large in some sense if U is to be a com
prehensive physical theory. 

At present, not much can be said about this require
ment except to emphasize that it is nontrivial. For, 
by Eq. (12), it has the consequence that E(H, U(QST), 
'lfQsr) holds for each (QST) for which U(QST) is defined. 
If U(QST) is nontrivial [Eq. (9)] this places the 
restrictions of Theorems 1 and 3 on H. As was noted 
before, these restrictions first arose in the existence 
problem for random sequences.21 •22 ,29,30 Thus, H 
cannot be too large if a U which H-agrees with 
experiment is to exist. On the other hand, H cannot be 
too small if R1(U, H) with Eqs. (14)-(18) are to be a 
reasonable statement of H-agreement between theory 
and experiment. 

D. Empirical Determinability of UCQST) 

Another property which, intuitively, a valid 
physical theory should have, is that, for some 
sequences of single measurements, the probabilities of 
single measurement events should be determinable 
from the sequences of outcomes. For example, if the 
probability of heads occurring in the fifth flip of a 
sequence of coin flips is determined to be t, one 
feels that, at least for some sequences, this number 
should be determinable from the infinite sequence of 
outcomes. For the class of theories considered here, 
this is equivalent to the requirement that, if U H
agree~ with experiment, then, at least for some 
QST, U(QsT)F should be determinable from 'lfQsr for 
many F in AH • This requirement is re1ated34 to the 
problem in quantum mechanics of whether or not a 
state represents a single system or an infinite ensemble 
of systems.36 

Now it is clear from Eq. (18) that this requirement 
is not satisfied in general. If 0' commutes with T, Eq. 
(I8) simplifies to 

MO'lfQsr = L mU(QsT)O'E",o, 
m 

where U(QST) is the limit ensemble probability 
measure defined for each F in A H by 

-- 1 ;-1 
U(QST)F = lim -:- L U(QsT)TiF. 

i-+ 00 l ;=0 

However, even in this case, one determines U(QST) 
from experiment and not U(QST) , the measure 
associated with individual events.34 

In order to formulate this requirement and give 
sufficient 'conditions for it to be satisfied, some 
definitions are needed. For each F in AH , let 
a F: 0 ----Jo. 0 0,1 be defined by 

(aFe/»(j) = XTiF(e/» = XF(aie/» (19) 

for each e/> and j. X Ti F is the characteristic function 
for TiF [Eq. (14)] and T is the shift operator given 
by Eqs. (3) and (7). aF maps e/> onto a 0-1 
sequence such that (aFe/»(j) = I (0) if aie/> E F (61 ¢ F). 

Let T F denote the set transformation [Eq. (3)] 
generated by aF . Then, repeating the development of 
Eqs. (14)-(16) with T F replacing 0' and noting that 

TFEmj = <1>, if m> 1, 

= TiF, if m = 1, (20) 

= 0 - TiF, if m=O, 

where <1> is the empty set, one obtains for any FE AH 
with m = 1 and TFElO = F 

_ 1 ~1. _ 

(XF ) = lim -:- 2PT F = PF, (21) 
i-+oo 1 j=O 

if the limit exists. [By Eq. (15) and the above, M?sFe/> = 
XF(e/»·] 

The requirement that U(QST) be determinable on 
AH from 'lfQST' R2(H, U(QST), "PQsr)' is defined by 

R 2(H, U(QST), "PQST) 

== 'IF [FE AH A 6F is in Lo~ M6F"PQsr exists 

A M6F"PQsr = U(QsT)F]. (22) 

That is, for each Fin AH such that 6F is an operation 
in Lo, the limit relative frequency that "PQsr' a"PQST'" 
are found in F, exists and equals the probability of F, 
as given by the theory U. 

Theorem 5 gives sufficient conditions for 

R2(H, U(QST), "PQST) 
to hold. 

Theorem 5,' Let H be such that, for any real number 
r, and for each Fin AH for which 6F is an operation 
in Lo, the formula MaFe/> = r is in H. Let U be a 
theory which agrees with experiment with respect to H. 

Then, for each QST for which U(QST) is defined 
and nontrivial, sufficient conditions for U(QST) to be 
determinable from "PQST are (1) that the shift operator 
T [Eqs. (3) and (7)] be U(QST) measure preserving 
and (2) that T be an ergodic transformation. 

The first condition means that, for all FE A H, 

U(QsT)TF = U(QsT)F and the ergodicity of T means 
that, for each Fin AH for which ?sF is in La, the 

limit U(QsT)F [Eq. (21)] exists, and M?sFe/> exists and 
is a constant U(QST) almost everywhere.34 •35 
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Proof" By the ergodic conditions, one has that, for 
each Fin AH for which (tF is an operation in Lo, Eqs. 
(17) and (21) hold, and thus,34,35 

£l(tF4> = U(Qs-r)F 

U(Qs-r) almost everywhere. Since T is measure 

preserving, U(Qs-r)F = U(Qs-r)F [Eq. (21)] and, thus, 

£l(tFCP = U(Qs-r)F (23) 

almost everywhere. 
Let Qs-r be such that U(Qs-r) is defined and non

trivial. Then, since U(Qs-r) H-agrees with experiment, 
R1(U, H) holds and, by Eq. (12), E(H, U(Qs-r), "PQ8r} 
holds. Thus, by Eq. (8), £l(tF"PQsr exists as £l(tFCP 
exists U(Qs-r) almost everywhere. For any F in AH 
for which (t F is in Lo, let r be the real number such 
that U(Qs-r)F = r. By hypothesis and Eq. (23), 
£l(tFCP = r is in H and is true almost everywhere and, 
from Eq. (8), one has that M(tF"PQsr = U(QFs-r). 

QED 

As a consequence of the theorem, one has the 
following corollary. 

Corollary 1: Let Hand U satisfy the conditions of 
Theorem 5. Then, for each Qs-r for which U(Qs-r) is 
defined, a sufficient condition for U(Qs-r) to be 
determinable from "PQsr is that U(Qs-r) be a product 
measure on A H . 

Proof" Clearly, H contains all finite intersections, 
complements, and unions of the sets Em! = [cp I cP(l) = 
m] for m, 1= 0, 1 ... (beginning of Sec. III). Since 
U(Qs-r) is a product measure on these sets, it can be 
extended uniquely37 to a product measure defined on 
A. Since, for any such measure, T is measure pre
serving and ergodic on A34.35 and A H s;::: A, T is meas
ure preserving and ergodic with respect to U(Qs-r) on 
A H' By Theorem 5, U(Qs-r) is determinable from 

"PQ8~' QED 

This corollary corresponds with intuition since one 
feels that, for any infinite sequence of independent, 
identically distributed single measurements, the 
probabilities of various individual events should be 
determinable from the outcome sequence. Thus con
sider, for example, an infinite sequence of spin 
projection measurements on protons where each 
single measurement consists of a preparation of a 
proton in some state and observation of the spin 
projection of the proton along some axis. If each 
single measurement is independent of the other 
single measurement then, for example, one feels that 

the probability of observing spin up on the nth 
measurement should be determinable from the 
infinite outcome sequence. This is just what the 
corollary states. 

The next (and final) theorem shows that a potential 
difficulty for Hand E(H, P, 4» raised by the opera
tions (tF does not arise. To illustrate the problem, 
one notes that, if (t F is an operation in L o, the set 
Fr = [cp I £l(tF4> = r] is H-definable. If (tF is an 
operation in Lo, then the set Fr.s = [cp I M6;r cP = s] 
is H-definable. If 6 F is in Lo, then ... , etc. If the 

• • rtB. . 

approprIate operatIOn IS III Lo at each stage of this 
iterative process, then potentially this inductive 
process generates many new formulas in H which 
could conceivably cause E(H, P, cp) to be false for 
all cp. 

That this cannot happen is shown by Theorem 6. 
This theorem says, in effect, that the only new sets 
added to A H by the process are the Fr and their 
complements. (Of course, any union and intersection 
which is H-definable is also included.) It should be 
noted that, for the particular H defined here, none 
of the (tFr' 6Fr .• ,···, are defined in Lo. However, 
this theorem shows that, for any more general H for 
which the sets Fr , Fr .s , ••• , are H-definable, one does 
not add any new sets to A H by this process. 

Lemma 1: For any F in AH and any j, 6F61 = 
(t1(tF where 6 is given by Eq. (7). 

Proof: It is sufficient to prove (t F6 = 66 F' By Eqs. 
(7) and (19), for each cP and i, 

(6(tFCP)(i) = (tFCPU + 1) = XTi+1F(CP) 

= XTiF(6CP) = «(tF(tcp)(i). QED 

Theorem 6: Let rand s be any pair of real numbers 
in [0, 1]. Let Fr = [cp I £l(tFCP = r] and 

Fr .s = [4> I M(tFrcp = s]. 
Then 

(1) F, = Fr •1 , 

(2) Q - Fr = F •. o, 

(3) if 0 < s < I, Fr •s = <1>. 

Proof" (l.A) Fr s;::: Fr.1 • 

Let cP be such that M6FCP = r. By Eqs. (14) and 
(19), 

(6F
r
CP)(j) = I, if (ticpEF, 

= 0, if (ticp rt Fr. (24) 

Since cP E Fr and M6 1CP = Mcp for any I (this follows 
immediately from the fact that '61 discards the first I 
terms of cP only and does not affect the limit mean), 
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one has (by Lemma 1), for eachj, 

r = M'JFe/> = M'Jj'JFe/> = M'JF'Jie/> or 'Jie/> E Fr' 

Thus, ('JF.e/»(j) = 1 for each j and M'JFrcp = 1 and 
e/> EFr •l · 

(1.B) Fr.1 <;; Fr· 
If e/> E Fr ,1' there is some k such that 'Jlce/> E Fr, By 

the definition of Fr , this means that M'6F'Jlce/> = r, By 
Lemma 1 and the fact that M'Jle/> = Me/> for any t, one 
has that M'JI'JFCP = r for any t. In particular, for t = 0 
M'JFe/> = r and thus, e/> E Fr , 

(2,A) n - Fr <;; Fr,o' 
Let e/> be such that M'JF4> ¢ r, By the same use of 

Lemma 1 and the invariance of the limit mean under 
'Ji (this includes the case where M'JFe/> does not exist) 
as in case (l.A), one has that M'JF'Jje/> ¢ r for eachj. 
By Eq. (24), ('JFre/»(j) = 0 for each j, and thus, 
M'JF.e/> = 0 and 4> E Fr,o' 
(2,B) Fr,o <;; n - Fr' 

If cP E Fr.o , then 'Jkcp f/= Fr for some k. By Lemma 1 
and the invariance of M under 'Ji as in case (1.B), 
M'JFe/> ¢ rand cP E n - Fr. 

(3) By the arguments of cases (1.B) and (2.B), 
'J ]I'. e/> is either a constant sequence of O's or a constant 
sequence of 1 's for all cpo Let Fr ,8 be nonempty for 
o < s < 1. Then there is some 0 E Fr s' which means 
that M'JF 0 = S. Since 0 < s < 1, this means that 
'JFrO is not a constant sequence, which is a contradic
tion. Thus, Fr,s is empty for 0 < s < 1. QED 

V. CONCLUSION 

Although some steps have been taken here towards 
defining necessary conditions for a mapping V to be 
a valid physical theory, much work remains to be 
done. The open questions include: Can H be extended 
to include Eqs. (14)-(18) or their equivalents so Eqs. 
(8) and (12) are a complete statement of the meaning 
of H agreement between theory and experiment? How 
does one ensure that the existence condition on V is 
satisfied? Clearly, Theorems 1 and 3 are relevant 
here. What are sufficient conditions for V to be a 
physical theory and not a biological theory? What is 
the relation between this work and quantum mechan
ics?, etc. We hope to answer some of these questions 
in future work. 
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APPENDIX 

Two basic properties of the measurement process 
which are of relevance here are 

(PI) A very large part of the total contact between 
theory and experiment is made by means of infinite 
sequences of single measurements only. 

(P2) By any finite time, an observer can know the 
results of an arbitrary but, at most, finite number of 
single measurements. 

By contact between theory and experiment is meant 
the actual having in hand, by an observer, the 
empirical numbers which are to be directly compared, 
in terms of mathematical equality or nonequality, 
with numbers computed from theory. It is to be noted 
that .an immediate conclusion from PI and P2 is that, 
by any finite time, an observer cannot make contact, 
in the precise sense defined, between theory and 
experiment. The fact that observers can and do make 
approximate contact between theory and experiment 
in a finite time is discussed later, 

To see the relation of PI to quantum mechanics, 
one first notes that the only empirical numbers which 
can be directly compared with an expectation value 
is a limit mean. If 'IfJ represents the outcome sequence 
associated with an infinite sequence of single measure
ments and Mn'IfJ represents the mean of the first n 
single measurements, then one has the relation 

The right-hand equality holds only if 'IfJ corresponds 
to measuring the expectation value < > in question, 

In quantum mechanics, a very large part of the 
theory makes contact with experiment only through 
measurement of expectation values. This includes 
many statements about the physical properties of 
systems, expressed in terms of observables measured 
on states. Also, many mathematical properties can be 
defined in terms of corresponding properties of ex
pectation values.19 •3s For example, equality between 
two states or two observables is defined in terms of 
equality within many pairs of expectation values. 
Also, any statement to the effect that a system is 
prepared in an eigenstate of an observable is included. 
For the meaning of this is that, with probability one, 
the system will be found in an eigenstate of the 
observable. This corresponds to the empirical state
ment that, in an appropriate infinite sequence of 
single measurements, the limit relative frequency for 
the occurrence of one and only one outcome is equal 
to 1. Whether or not this case can be given the stricter 
interpretation that the associated infinite sequence of 
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outcomes is a constant sequence is, at present, an 
open question. 

In classical mechanics, the situation is quite 
different. There, if a system is prepared in a pure state 
one can, in principle, make one or more single meas
urements on the system and compare the results of 
each single measurement directly with the values 
computed from theory. Only for mixed states must 
one discuss their properties in terms of expectation 
values. This is in contrast to quantum mechanics, 
where one must discuss the physical properties of all 
states, pure or mixed, in terms of expectation values. 

P2 is perhaps more immediate than PI, in that it is 
a basic fact of epistemology and of any observer's 
experience that he can know by any finite time an 
arbitrary but, at most, finite number of empirical 
facts. To see that P2 is required by quantum mechanics 
and an upper limit to signal velocities,39 one first 
notes that, in quantum mechanics, any pair of single 
measurements must be separated by a finite space or 
finite time interval. (Again, each single measurement 
is to be carried out on a separate system.) To see this, 
one first notes that any state is described by a wave
packet which has a finite space extension. Thus any 
pair of single measurements carried out at the same 
time must be separated by a finite space interval. If 
one attempts to reduce this interval arbitrarily, the 
wave packets will strongly overlap, giving a large 
interference between the single 1l?-easurements. Similar 
arguments can be made against arbitrarily reducing 
the size of the measurement apparatus.40 

If one now adds the finite signal velocity of rela
tivity,6 it is clear that it requires a finite time interval 
to complete any single measurement. The reason is 
that, as noted above, the wave packet or measure
ment apparatus must be of finite size. It then takes a 
finite time for the packet to enter the apparatus or 
for a signal to cross the apparatus. Thus, any pair of 
single measurements which occur at the same space 
position must be separated by a finite time intervaL 
The reason is that a necessary condition for non
interference is that one single measurement be 
completed before the next one is begun. 

From the above, one concludes that for any space 
time arrangement of an infinite sequence of single 
measurements, an infinite time interval is needed for 
an observer to receive or know the infinite outcome 
sequence. If all the single measurements in a sequence 
occur at the same space position, then the above 
arguments give the immediate conclusion that an 
infinite time interval is necessary. 

If each measurement in a sequence occurs at the 
same time but at different space positions, then the 

time interval for receipt of the outcome sequence is 
also infinite. This holds, even if one arranges an 
infinite set of single measurements so that those 
occurring in distant space regions occur earlier with 
respect to their local times than the close ones. For 
just to set up such an arrangement, including syn
chronization of the clocks involved, requires sending 
light signals over arbitrarily great distancesY 

In classical mechanics, on the other hand, for any 
single particle state, one can, in principle, carry out 
one or more measurements on the particle at a point 
in space-time. Thus, even if such a state is a mixed 
state, the infinite sequences of one or more single 
measurements necessary for its determination can be 
carried out in an arbitrarily small space-time volume. 
This conclusion is independent of whether or not there 
is an upper limit to signal velocities. 

An immediate consequence of PI and P2 is that, 
by any finite time, an observer cannot obtain empiri
cally the value of even one expectation value. As 
noted, an infinite sequence of single measurements 
must be performed to measure an expectation value 
as a limit mean and it requires an infinite time interval 
to carry out such a sequence. This is the reason why 
an observer cannot make contact, by an finite time, 
between theory and experiment in the precise sense 
defined. 

It must be emphasized that this conclusion does not 
deny that one can make approximate contact between 
theory and experiment in a finite time in terms of 
means Mn"P of n single measurements. However, any 
comparison between an empirical mean Mn"P for n 
finite and an expectation value computed in a theory 
can only be made by some statistical statement. Now, 
alI such probability theoretic statements are asymp
totic. They state, in terms of real numbers, what will 
be found as limit relative frequencies, if either the 
sequences of n single measurements, considered as a 
single measurement, were repeated an infinite number 
of times, or if the sequence were extended to the 
limit of infinite n. Thus, it is clear that the use of 
probability theory or statistics to relate Mn"P to an 
expectation value does not remove the infinite 
sequences of PI. For the purposes of this work, then, 
we can dispense with such statistical comparisons and 
consider direct comparisons only between limit means 
and expectation values. 

In essence, P2 states the constructive nature of the 
epistemological process. Since each step of a mathe
matical computation procedure is a process largely 
subject to the laws of physics, P2 (or quantum 
mechanics and the finite signal velocity of relativity) 
has the consequence that an infinite number of 
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computation or measurement steps cannot be com
pleted in a finite time interval. 

It is also well known that no single measurement 
completed in a finite time interval ever gives, as an 
outcome, a real number. One reason is that the 
recording and reading of a real number will, in 
general, take an infinite number of steps and thus 
require an infinite amount of time. This fact can be 
stated as a third basic property of the epistemological 
process, namely: 

P3. The basic operation which generates numbers 
from basic sense data is that of counting. 

An immediate consequence of P3 is that, since all 
arithmetic operations are effective, one can generate 
rational numbers immediately from sense data. How
ever, the above arguments show that the outcomes of 
single measurements can be associated effectively with 
rational numbers, at most, and not real numbers.9 

It is to be emphasized that this does not mean that 
the mathematics of physics must give up real numbers; 
for, by PI, a very large part of the contact between 
theory and experiment is through measurement of limit 
means. Now, one way of defining real numbers is by 
convergent Cauchy sequences of rational numbers. 
Each infinite sequence of single measurements 
generates, through the outcome sequence "P, a 
sequence of means M n"P, n = 0, 1,'" , which, for 
the cases of interest, is a convergent Cauchy sequence. 
Thus, the operation of constructing the limit mean as 
an infinite sequence of effective arithmetic operations 
automatically introduces the needed real numbers. 
(Under P2, these are available only in the infinite 
future.) 

* This work performed under the auspices of the U.S. Atomic 
Energy Commission. 
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We solve the second-order linear inhomogeneous wave equation by the WKB method. Then a sequence 
of successive substitutions are developed, by the help of which solutions correct up to any higher order 
are reduced to the WKB solution of an equation like the original equation. This procedure is adopted 
to study propagation of electromagnetic wave obliquely through slowly but continuously varying plasma 
layers. Across a plane where N (the equilibrium plasma concentration) is continuous, but its first- and 
second-order space rate of variation along the normal are discontinuous, we have solved the boundary 
value problems for wave propagation. The characteristics of the reflected and transmitted fields depend 
on these derivatives of N such that the reflected wave vanishes in the limit of constancy of N. We find 
that the direction of flow of electromagnetic energy is deviated from its straight course in the uniform 
region. Expressions for relative shift of the wave vector along and perpendicular to the direction in the 
uniform medium, with respect to the distance of wave advancement in that medium in a given time, 
have been deduced. The deviation of the direction of propagation is slightly more for the field of trans
verse magnetic (TM) polarization than for the transverse electric (TE) polarization, but both these 
directions lie in the plane of incidence and are opposite to one another with respect to the direction in 
the uniform medium, where by transverse polarizations are meant those with respect to the plane of 
incidence. Hence, the original wave is split into two waves. Deflection is increased and, consequently, 
speed of propagation decreased for the TM field, whereas deflection is decreased and speed of propaga
tion increased for the TE component if the wave propagates into a plasma of increasing concentrations; 
consequently, the TM field will be reflected back earlier than the TE part. Besides these results, it is 
hoped that our treatment may help in attacking problems of coupling of different types of plasma waves 
due to slow variation of equilibrium parameters oeeuring from more complete set of equations describing 
plasma behavior. 

1. INTRODUCTION 

The study of propagation of electromagnetic and 
electroacoustic waves through nonuniform plasmas 
and their mutual coupling due to various factors have 
found important applications in space research. 
Considerable work on wave propagation in ionized 
media and also in dielectrics is known to exist.1- 15 

But actual progress towards understanding the 
phenomena is retarded by complications owing to the 
handling of several interrelated vector quantities and, 
besides, by both physical and theoretical difficulties 
coming from inhomogeneity of the equilibrium plasma. 
For this reason, approximation is essential, and it is 
the aim of the investigation that decides the nature 
of approximation to be followed. 

In a uniform plasma in the absence of any external 
magnetic field, high-frequency waves propagate freely 
without reflection and mutual coupling. I6 In a non
uniform plasma the situation becomes complicated 
and the picture of wave propagation loses its clarity. 
But it is possible and also worthwhile to study the 
development of complications by considering a very 
slowly varying plasma. In the present work we have 
confined our study to electromagnetic wave propaga
tion through a cold, slowly varying plasma medium 
in the absence of any external magnetic field. The 
works of Bremmer,17-19 Tidman,l Wait,S and Budden9 

have shown that the method of WKB would be suit
able for our purpose. 

It may be mentioned that there are, in general, the 
following three types of problems associated with 
wave propagation in a slowly varying plasma in the 
linearized approximation: (1) analysis of the equation 
governing a primary longitudinal perturbation and the 
subsequent production of the scattered secondary 
transverse field; (2) the same for a transverse primary 
field and the scattered secondary longitudinal field 
and (3) analysis of coupling between the primary 
longitudinal and transverse fields. 

Tidman i considered the influence of gradients of 
concentration and temperature on longitudinal wave 
and obtained expressions for the scattered transverse 
radiation field. Ignoring ion motion, Vlasov2 obtained 
equations linking electron density propagation with 
the transverse electromagnetic field through the 
gradient of the equilibrium charge density Po. Excita
tion of electron density wave by electromagnetic field 
was studied, assuming Po to be in the form grad Po = 
Pob(z), where b(z) is the fj function and Oz is a co
ordinate direction. Dunphy et al., 3 Kritz and Mintzer, 4 

and Chakraborty5 have also considered coupling 
between longitudinal and transverse waves. Their 
study, however, is confined to that at the plane of 
separation between two semi-infinite media of uni
form but different concentrations and hence, in these 
cases, the density does not continuously change, but 
abruptly jumps from one value to another within the 
thickness of an infinitely thin region. This is just 

2570 
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opposite to the case we have considered in the present 
paper, namely the case of approximation of geometri
cal optics in which the equilibrium density changes 
slowly but continuously in such a way that the 
characteristic length of variation is much larger than 
the wavelength of the transmitted wave. 

In Sec. 2 we solve the second-order linear inhomo
geneous wave equation by the WKB method. We then 
proceed further and find out a sequence of successive 
substitutions by the help of which solutions correct 
up to any higher order are reduced to the WKB 
solution of an equation like the simple original 
equation. Section 3 contains the appropriate plasma 
equations for electromagnetic field in the cold plasma 
approximation in the absence of any external magnetic 
field. We consider the effect of an electromagnetic 
wave propagation obliquely with respect to the slowly 
but continuously varying plane layers of plasma. The 
plane containing the wave vector and the normal to 
the layers of inhomogeneity is called the plane of 
incidence. Then the electromagnetic field has one 
part with electric field transverse to the plane of 
incidence and hence, denoted simply by TE field, and 
another part whose magnetic field is perpendicular to 
this plane, called the TM field, In Sec. 4, we have 
obtained the WKB solution for the TE field and made 
initial steps for the theory of higher-order approxima
tions, which is the subject matter of the next section. 
We have developed the sequence of the proper 
variables of substitution which makes study of 
approximations correct up to any higher order feasible. 
Across a plane, where N is continuous but its first
and second-order space gradients are discontinuous, 
we have solved the boundary-value problem for wave 
propagation using continuity of the tangential com
ponents of electric and magentic fields. We have 
verified that for our results the energy flow across the 
layer is conserved. The characteristics of the reflected 
and transmitted waves depend on the gradients and 
higher space derivatives of N, such that the reflected 
wave vanishes in the approximation of constancy of 
N. Expressions for the linear and angular deviations 
of the direction of flow of energy from its straight 
course in the uniform medium also depend on the 
gradient of N. We have obtained the values of relative 
shift of the wave vector along and perpendicular to 
the direction in the uniform medium, with respect to 
the distance of wave advancement in that medium in 
a given time. Higher-order coupling between the 
reflected and incident secondary waves show that the 
(m + l)th-order incident wave is scattered by both 
incident and reflected waves of the nth order. In Sec. 
6, analogous results for the TM field have been 

determined. Quantitative comparison of the results 
for the two cases leads to interesting conclusions. We 
find that the derivation of the wave vector for the TE 
field is slightly different in magnitude and direction 
from that of the TM field, but both directions lie in 
the plane of incidence and are opposite to one another 
with respect to the direction in the uniform medium. 
This shows that a small V N splits up the wave into 
two waves propagating in slightly different directions. 
It is known that a wave deflects away from the 
normal in a denser medium more than in a rarefied 
medium. The existence of V N works in such a way 
that this deflection is increased and consequently, 
speed of propagation is decreased for the TM part, 
whereas deflection is decreased and speed of propa
gation increased for the TE component. Again, for 
the same reason, if the wave penetrates obliquely 
through a region of increasing N, the TM field will 
be reflected earlier than the TE part. 

We believe that, besides obtaining these concrete 
and quantitative results, our approach and treatment 
would pave the way for attacking problems of coupling 
of different types of plasma waves due to slow varia
tion of equilibrium parameters, occuring from more 
complete set of equations describing the behavior of 
plasmas. 

2. THE PRELIMINARY ESSENTIAL 
MATHEMATICS 

Let us.consider the equation 

d21p~Z) + K2(Z)1p(Z) = 0, (2.1) 
dz 

where 1p(z) and K(z) are scalar quantities, K is slowly 
varying with z and takes up only large values. If K is 
independent of z, the solution is a wavefunction 
infinitely extended to both positive and negative 
directions of the z axis. If some properties of the 
medium slowly and continuously change perpen
dicular to Oz, then K comes out to be a slowly varying 
function z and the wave function solution of (2.1) is 
modified. We shall study this modification starting 
with the method of WKB. 20-22 

We seek solution of (2.1) in the form 

(2.2) 

where A is a constant and <p(z) is the generalized phase. 
WaitS obtained solution of (2.1) in which A is also 
assumed to be a function of z. But (2.2) is also a 
general solution where all functional dependence on 
z can be included within <p(z) by keeping constant. 
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Substituting (2.2) into (2.l), we get 

(
dqJ)2 = K2 + i d2

qJ . 
dz dz2 

(2.3) 

If qJ(z) only slowly varies with z, then the nontrivial 
first approximation would be 

dqJ d2qJ dK 
- = ±K, - = ± - . (2.4) 
dz dz2 dz 

The second derivative of qJ with respect to z is a 
quantity of order smaller than K. Putting the value of 
d2qJldz2 from (2.4) to (2.3), taking square roots and 
keeping up to first power of dKldz, we get 

~: = ±(K + 2~ ~~). (2.5) 

Integrating (2.5) and putting in (2.2), the WKB 
solution of (2.1) is given in the form 

1p = (;;i exp (-irK dZ) + (;;i exp (irK dZ). 
(2.6) 

The lower limit of the integral in the phase can be set 
equal to zero or any other value zo, since in effect, 
this alteration changes only the value of the arbitrary 
constants Ao and Eo. The range of validity of K is 
obtained by putting this solution into the left-hand 
side of (2.1) dividing it by K21p to make the quantity 
dimensionless and making the modulus of it much 
less than unity. This gives 

(2.7) 

showing that dKldz and d2Kldz2 should be sufficiently 
small and K large. 

If we now substitute 

and 

~ = j"K dz (2.8) 

(2.9) 
we get 

d
2

1p1 [ 1 d
2 
K 1 (dK\2] 

dz2 + 1 - 2K dz2 + 4K2 dz J 1p1 = O. (2.10) 

The introduction of ~ in place of z means the 
transition to a new unit of length depending on the 
local value of the wavelength. 

To contract Eq. (2.10) into shorter form, we 
substitute 

1 d 
R = - - - (log K). (2.11) 

4 d~ 

The quantity R has a physical significance23 because 
it can be written as 

R _ [1/(K)i]2 - [l/(K)!]1 
- [1/(K)!]2 + [l/(K)!]1 

(2.12) 

if the layers denoted by 1 and 2 are separated by the 
unit length of an infinitely thin stratum. Hence, up to 
the WKB order of solution, R is proportional to the 
ratio of the loss of amplitude to the total amplitude of 
the wave propagating through the unit length of an 
infinitely thin stratum of a nonuniform medium. 
Since the medium is assumed to be loss free, the loss 
of energy due to change of amplitude cannot be 
absorbed and so must be entirely reflected. For this 
reason, R can be called the reflected coefficient at the 
point. 

Equation (2.10) can be written as 

d2
1p1 

d~2 + (1 + 2P)1p1 = 0, (2.13) 

where 

dR 2 
P =- - 2R. 

d~ 
(2.14) 

The value of p, obtained as derivatives if z, is 

(2.15) 

and so, up to orders of first derivatives of K, the value 
of p is positive. 

Following (2.6) the WKB solution of (2.l3) is 

where 
(2.17) 

Again, if we put 

~l = fKI d~, (2.18) 

R = - !~logK (2.19) 
I 4 d~ I, 

dRI PI = - - 2R1 , (2.20) d; 
we would get an equation like (2.13) correct up to 
quantities of the order of the third derivative of K 
with respect to z. 
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We can now proceed further and get an equation 
like (2.13) in terms of tp2 and ~2' where 

tp2 = (K1)ltpl = (KK1)ltp, (2.21) 

K2 = (1 + 2Pl)t, (2.22) 

(2.23) 

etc. Thus, we can form a set of successive variables of 
substitution and consequently, equations such as 
(2.13), containing the substitution (2.17), which are 
like the original equation (2.1), and whose solutions 
are better solutions of (2.1) than an earlier member of 
the set of solutions. 

The inequality (2.7), written in terms of R and ~, 

becomes 

(2.24) 

The condition for the validity of the solution (2.16) 
can be obtained from (2.24), replacing R and ~ by 
Rl and ~l' respectively. Similarly the condition of 
validity of the solution of (2.1) correct up to any order 
of derivatives of K with respect to z can be written 
down from (2.24) replacing R and ~ by the R and ~ 

will be functions of x and z only, and their derivatives 
with respect to y will vanish. We take time dependence 
and x dependence of all perturbation variables to be 
contained in the expression exp (iwt - iKox), where 
Ko is a constant and w is the frequency of oscillation. 
Then expanding the curls, and simplifying and replac
ing the partial differentiation sign ajaz by the total 
differentiation djdz, we get 

iw H = dEy 
c '" dz' 

iw dE",. 
- -Hy = - + IKoEz, 

c dz 

iw Hz = iKoEjJ, 
c 

iK2c . dH", 
-- EjJ = IKoHy +-, 

w dz 

iK2c 
-- Ez = -iKoHy, 

w 

(3.5) 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 

associated with that order. where 

3. THE COLD PLASMA EQUATIONS FOR 
ELECTROMAGNETIC FIELD 

We study the simple case of electromagnetic wave 
propagation in a cold plasma. The relevant equations 
are 

laH 
(3.1) VxE=---, 

c at 
v x H = ! aE + 47T j, 

c at c 
(3.2) 

where 
j = -Neu, (3.3) 

au = _ ~E. (3.4) at m 

u is the velocity of electrons in the field E, H is the 
magnetic component of the field, N is the equilibrium 
electron-number density slowly varying in space, m 
is its mass, and other quantities have their usual 
meaning. 

We assume that electron concentration varies along 
Oz, i.e., that the plasma is stratified continuously 
perpendicular to Oz and that the incident wave falls 
at a nonzero angle with Oz. Let the (z, X) plane be 
the plane of incidence. Then all physical quantities 

(3.11) 

(3.12) 

Equations (3.5), (3.7), and (3.9) mutually relate 
E1)' H"" and HZ' and are independent of (3.6), (3.8), 
and (3.10), which connect Hy , E"" and Ez among 
themselves. These are two sets of equations which 
can be solved independently of each other. In the 
first set, the electric field is perpendicular to the plane 
of incidence and is the TE field. In the second set, 
the electric field is situated in the plane of incidence 
and is the TM field. The equations governing the 
behavior of the TE field would be slightly different 
from, and also simpler than, those associated with 
the TM part. As a result, the solutions also differ 
quantitatively to a certain extent though the methods 
of solution do not differ significantly. 

4. THE WKB SOLUTION FOR TE 
POLARIZATION 

From the set of equations (3.5), (3.7), and (3.9) 
associated with the TE field, we eliminate Hz between 
the last two equations and get 

dH", = iKic E 
dz w y, 

(4.1) 
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where 

K; = K2 - K~. (4.2) 

In (4.2), we should remember that K2 - K;, is a 
constant quantity for further evaluation of results. 

Elimination of H., between (4.1) and (3.5) gives 

d2EII 2 
-2 + KlE.JI = O. 
dz 

(4.3) 

Since this equation resembles (2.1), its WKB solution 
is 

E1/ = ~ exp (- iIzKl dZ) 
(Kd 

+ ~ exp (iIZKl dZ), (4.4) 
(K l ) 

where A and B are arbitrary quantities having constant 
values up to the WKB approximation; also, this K 
plays the role of K in (2.6) and so is different from Kl 
in (2.17) in value and meaning. Hence, K] must satisfy 
the inequality (2.7) and for this 

(4.5) 

which is true for very high frequences and large wave

lengths. 
Equations (3.9) or (4.1) show that dq;ldz slowly 

varies with z since it contains Wa [see (3.11), (3.12), and 
(4.2)]; whereas (3.5) requires that dq;fdz be a constant. 
Hence, as already remarked by Budden,9 functional 
dependence of the perturbed quantities on z is not 
the same in all the linear equations involved and so 
progressive wave solution is not, rigorously speaking, 
possible in any slowly varying, electrically conducting 
medium. But we can take progressive waves to be 
approximately possible in a slowly varying medium 
also, because free propagation is possible in the limits 
of uniform medium. 

Considering A and B in (4.4) as constants and using 
(3.5), we get for H., the expression 

A exp (- iIzKl dZ) 
( 

K]c ic dKl ) H - - - + ---- -----'---
., - W 2K1w dz (Kl)t 

+ - + ---- --exp 1 K1dz. (
K1C ic dK1) B ('Jz ) 

W 2K1w dz (K1)! 

(4.6) 

We may note that, if Kl is positive, the first term of 
(4.4) or (4.6) gives the wave progressing in a direction 
of increasing x and z both and the second term of 
these equations is associated with the wave progressing 
in a direction of increasing x and decreasing z. To 
keep our analysis and terminology close to the usual 

transmission and reflection of waves at the plane of 
separation of two media of different concentrations, 
we call the former the incident wave and the latter the 
reflected wave. The incident wave has field components 
whose mutual relations are given by 

Hi = _ KlC(l __ 1_' dKl)Ei Hi = Kac i 
., 2K2 d 11 'Z E1/ , 

W 1 Z W 

(4.7) 

and which are obtained from the first terms on the 
right-hand side of (4.4), (4.6), and (3.7). Similar 
relations can be obtained for the reflected field com
ponents by equating the second terms on the right
hand side of (4.4), (4.6), and (3.7). Besides this, we 
shall also use the connecting relations 

Ey = E! + E~, H., = H; + H~, etc, (4.8) 

in the next section. 

5. HIGHER-ORDER APPROXIMATIONS FOR 
TE POLARIZATION 

For higher-order approximations, we put the rela
tions (4.7) and the corresponding ones for the reflected 
quantities in (4.8) and the resulting relations in (3.5), 
(3.7), and (3.9), solve for dE~/dz and dE;ldz, and get 

dE~ + [iKl + _1_ dKl 

dz 2Kl dz 

3i (dKN i d
2K1JE i 

+ 8K~ dz J - 4K~ dz2 1/ 

= E~[- ~(dKl)2 + _i_ d
2

K l J, (5.1) 
8K~ dz 4K~ dz2 

dE~ + [_ iKl + _1_ dKl 

dz 2Kl dz 

3i (dK1)2 + i d
2
KJE r 

- 8K~ dz 4K~ dz2 1) 

_ Ei [ 3i (dKl \2 i d
2
K l J 

- II 8K~ d'z J - 4K; dz2 . (5.2) 

These are two linear first-order differential equations 
connecting E: and E; among themselves. Their right
hand sides are proportional to the squares of dKlldz 
and d2Klldz2, though the left-hand sides contain 
terms proportional to Kl and dKlldz. This shows that 
coupling is weak and up to orders of first power of 
dKlldz is negligible. This is contrary to results which 
follow from the work of Bremmerl ? for slowly 
varying dielectric media if extended to our case. When 
transformed to the plasma field Eqs. (3.1)-(3.4), 
Bremmer's equations5 show coupling even up to 
orders of dKlldz. The reason for this is that, if we 
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follow the treatment of Bremmer, then terms with 
coefficients dKl/dz would be neglected in (4.6), but 
later on, terms of this very order would be used for 
calculating higher-order quantities. This mistake then 
gives terms proportional to dK1/dz in the right-hand 
side of (5.1) and (5.2), but actually they exactly cancel 
with those gotten by including the full expression for 
Hz in (4.6), and so are absent. 

The question at this stage arises whether in each 
successively higher-order calculation the immediately 
next-lower-order answer exactly cancels or not. To 
answer this question, more accurate solutions of (4.3) 
than (4.4) have to be constructed, say, correct up to 
(2r)th order of smallness in the sense of order of 
quantities adopted in the present work. Then equa
tions should be constructed similar to (5.1) and (5.2), 
and the coefficients of E; and E; on the right side of 
these equations are to be studied. Exact behavior in 
this regard would be clear after finding out whether 
the (2r - I )th-order quantities exactly cancel out or 
not. This analysis is reserved for a subsequent 
investigation. 

If we substitute 

Ii = (Kl)IE~, Ir = (Kl)IE~, 

~ = fK1dZ 

into Eqs. (5.1) and (5.2), then we obtain 

(5.3) 

(5.4) 

dJ. 
-1 + i(1 + p)Ii = -ipIro (5.5) 
d~ 

dIr 
- - i(1 + p)Ir = ipIi' (5.6) 
d~ 

where p has the value given in (2.14) and (2.15) if K 
there is replaced by K1 • This change also gives the 
reflection coefficient R for the TE polarization. 

The second-order differential equation for Ii' 
obtained by eliminating IT from the above equations, 
can be written as 

~(!L) + (1 + 2p - i2S _ S2 + dS) (li.) = 0, 
de Jp d~ "ip 

(5.7) 
where 

d 
2S = - (log p). 

d~ 
(5.8) 

This equation contains both the solutions for the 
incident and reflected waves and is inhomogeneous, 
because p is a function of ~. If, from the properties of 

the medium, the function determining the slow varia
tion of N on Z is given, then we can determine the 
dependence of p on z and so, ultimately, on ~, and 
from that try to solve Eq. (5.7) exactly. But following 
the treatment in Sec. 2, we can solve (5.7) up to any 
order of accuracy desirable. We study below the simple 
case where p is a constant, because this restriction 
will also include within it considerably the effects 
of slow variation of the medium. 

To study scattering of reflected waves, we assume 
uniform plasma in z < Zo and slowly varying plasma 
in z ;;::: Zo. The concentration N continuously changes 
from the uniform to the nonuniform regions, but the 
derivatives of N discontinuously change from zero 
in ~< ° to nonzero quantities in ~ ;;::: 0. As a result, 
K and Kl are continuous throughout, but their 
derivatives and, consequently, the function pare 
discontinuous, being zero in ; < ° and nonzero in 
; ~ 0. The primary incident wave enters obliquely 
from the homogeneous region z < Zo into the inhomo
geneous part. We can then define equations of 1 in the 
two regions in the way. 

d2J 
-2 + (1 + 2p)J = 0, ;;;::: 0, d; 

d
2

J + 1 = ° I: ° d~2 ' ,,< . 

The solution necessary for our purpose is 

(5.9) 

(5.10) 

where 10 is the amplitude of the incident wave, T 
that of reflection, and D of transmission. If the 
square of dKl/dz and not d2K1/dz2 determines mainly 
the value of p, then p is positive. In that case, V N 
deflects the wave towards the normal as shown by the 
solution (5.10) in ~;;::: 0. This deflection, which is 
small in a slowly varying medium, thus slightly 
retards the deflection away from the normal as the 
wave enters from a rarefied to a denser region. 

The constants T and D are determined from the 
usual two boundary conditions which are the con
tinuity of the horizontal field components H", and 
Ey • When transformed in terms of 1 and ~, the 
boundary conditions turn out to be the continuity of 
II(Kl)! and Kl d[JI(Kl)!]/d~. The two conditions then 
give 

10 + T= D, 

10 - T = D[(l + 2p)! + 2iR]. 

(5.11) 

(5.12) 
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Solving for T and D, we get 

D _ 210 

- 1 + (1 + 2p)! + i2R 

10[1 - (1 + 2p)t - i2R] 
T - -=---'-~~~-----= 

- 1 + (1 + 2p)1 + i2R 
(5.13) 

We see that T = 0 and D = 1 when R and dR/d~ 
vanish, showing that there would be no reflection 
losses for transmission through uniform medium. 

If the Poynting vector (= (C/47T)[EHD for the 
incident, reflected, and transmitted portions respec
tively are Si, sr, and St, then their averages over one 
time period have the magnitudes 

i 2 2 (S) = 10Ke /87TK1w, 

(S') = \T\2 Kc2j87TKIW, (5.14) 

(st) = \D\2 c2(K2 + 2pKDt /87TK l w. 

Conservation of flow of energy across the layers, 
namely the relation 

(S!) = (S~) + (S~), (5.15) 

which is an inevitable consequence of the boundary 
conditions in a loss free plasma, is also satisfied by 
our solutions (5.13) or (5.14). 

If the direction of flow of energy as the wave enters 
the inhomogeneous region makes an angle cp + ocp 
with Oz and cp with Oz in the uniform region or in 
vacuum so that Ocp is the deviation due to nonuni
formity, then 

<S~)j(S~) = cot (cp + ocp) = K1(1 + 2p)!jKo (5.16) 

and 

It is evident that Ocp < 0 when p > o. 

terms of characteristic lengths I and 11 given by 

! = 1. dN == 1.. dw~, 1.. = 1.. d2
wg. (5.18) 

1 N dz wg dz 111 wg dz2 

The value of Ocp is cumulative if the nonuniformity 
is monotonic in a region. The formula for ocp suggests 
that within astronomical order of distances angular 
derivation from an early initial direction would take 
on a sizable value. 

We can also find out the shift in the position of the 
foot of the perpendicular from the origin 0 to the 
wave front. At a time t let A be that position for 
the uniform medium and B that in the slowly varying 
medium. Then the coordinates of B [say, (ox,oz)] 
with reference to axes through A parallel to the original 
axes are 

(OX,OZ) 

-2wKoK;pt, wK1t{K2[(1 + 2p)! - 1] - 2pKD 
= 

K2(K2 + 2pKi) 
(5.19) 

With reference to perpendicular to OA and the 
direction of OA if these deviations are denoted by ot 
and l1,respectively, then 

wKoK1t[(1 + 2p)1 - 1], 
(ot f1) = -wK;t(l + 2p)![(1 + 2p)t - 1] 

, K(K2 + 2pKi) 
(5.20) 

The relative shift of 11 with respect to the distance OA 
of wave advancement in time t in the uniform region 
along the above mentioned directions have approxi
mately the value 

otK = e
2 

sin oto sec
3 

oto[ 5 sec
2 

oto (dW~\2 + d2W~J 
wt 8(w2 - W~)2 4(w2 

- w~) dz J dz2 

Expanding (5.16), neglecting squares and higher and 
powers of p, and keeping terms which survive 
differentiation, we get 11K = (otK) ( -cot oto). 

w t wt 

(5.21) 

o cp = _ c
2 

sin oto sec
2 

oto [ 5 sec
2 

oto (dW~\2 + d2w~J, 
8(w2 - W~)2 4(w2 

- w~) dz J dz2 

(5.17) 

where ()(o is the inclination of the wave vector in the 
uniform region or in vacuum with Oz. This shows that 
ocp is negative, if the second derivative of w~ with 
respect to z is positive, or if the second derivative of 
w~ is negative but does not become the dominant term 
in comparison with the other term. The sign of ocp 
will be positive in the region where N is a maximum. 
We can also express (5.17) for practical purposes in 

The right-hand sides of the relations (5.17)-(5.21) 
vanish in the approximation of uniform medium. 
The negative value of 11 in (5.20) and (5.21) show 
that the propagation speed is retarded. 

Following the procedure of Bremmer,17 we have 
developed in Appendix A the series solution for A 
and B of (4.4) because it determines the mutual 
relation between the higher-order secondary waves of 
the types of incidence as well as reflection. The 
derivatives of a higher-order A or B become pro
portional to a linear relation of both A and B of one 
order less multiplied by the order-raising factor p. 
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Bremmer obtained the result that the (m + l)th
order incident wave can only be scattered by the 
mth-order reflected wave and is not related to the 
mth-order incident wave, and that similar conclusions 
hold for the (m + l)th-order reflected wave. 24 These 
results were deduced from the incorrect equations of 
coupling and from the consequent incorrect recurrence 
relations of Ref. 17. The equations (A 7) and (A8) of 
Appendix A show that the (m + 1 )th-order incident 
wave can be scattered by both the mth-order reflected 
and mth-order incident waves, and similarly for the 
(m + 1 )th-order reflected wave. 

6. PROPAGATION OF THE TM FIELD 

To solve the set of equations (3.6), (3.8), and (3.10) 
we eliminate Ez between (3.6) and (3.8). Then, using 
(4.2) we get 

. K2H K2 dE", 
-IW 1 1/ = C-. 

dz 
(6.1) 

The second-order equation for H y , which is simpler 
than those for E", and Ez , obtained from this equation 
by eliminating E", with the help of (3.8), is 

Though this equation is different from (2.1) and (4.3), 
a suitable rearrangement, however, gives 

~(H1/) + [K~ + l d
2

K _ ~(dK)~ (H'/I)' = O. 
dz 2 K K dz 2 K2 dz I J K 

(6.3) 

Up to the order of squares of the first derivatives of 
K and Kl and the order of the first power of their 
second derivatives, Eq. (6.3) can be solved straight
forwardly by the WKB method. For this, we put 

! , (K) H1/ 
I = -- (6.4) 

K 

~ = fKl dz 

in (6.3), and obtain 

where 

and 

d
2

1
2
' + (1 + 2p')I' = 0, 

d~ 

(6.5) 

(6.6) 

(6.7) 

(6.7') 

For normal incidence, R' becomes equal to R, but 
p' does not. become equal to p because of additional 
contributions to p' from the middle term of (6.2). 
Also, R', like R, is proportional to the ratio of loss 
of amplitude to the total amplitude for TM polariza
tion up to the WKB order of solution, and so may be 
similarly called the reflection coefficient of this field. 
It may be mentioned that the dimensions of l' is I/K 
times that of I of (5.3) and (5.9). 

We could also follow the treatment which gave Eq. 
(5.7) and obtain the analogous equation for this case. 
But, as we are content with orders of accuracy up to 
the constancy of p', we have avoided that procedure. 

Starting with (6.6), we now formulate equations 
like (5.9) in the uniform and nonuniform parts and 
seek solutions of the form (5.10). To solve for T' and 
D', the boundary conditions are the continuity of 
E", and Hy at ~ = O. In terms of l' of (6.4), these 
conditions lead to the continuity of I'Kj(K1)! and 

Kl d ( KI') 
K2 d~ (K1)! 

at the same level. We should remember that K and Kl 
are continuous, but that their derivatives with respect 
to ~ are discontinuous at ~ = O. The values of T' and 
D' are 

(D', T') = 21~, 1~[1 - (1 + 2p')! - 2iR'] (6.8) 

1 + (1 + 2p')! + 2iR' 

The incident, reflected, and transmitted parts of the 
Poynting vector, averaged over one time period, give 

(Si) = 1~2Kw/87TKl' 

(Sr) = 1T'12 Kwj87TKl' (6.9) 

(st) = ID'I 2 W(K2 + 2p'K~l/87TKl' 
The conservation of energy flow relation (5.15) is 
satisfied by our solution (6.8). 

The angular deflection br/ of the direction of energy 
flow has the value 

15cp' = - KIKo [(1 + 2p')! - 1] 
K2 

i"::::! c
2 

sin OCo sec OCo [( 12 - 5 sec4 
oco) (dW~)2 

8(w2 - W~)2 4(w2 - w~) dz 

d
2w2] + (2 - sec2 oco) __ 0 • 

dz2 
(6.10) 

Comparison with (5.17) shows that bcp' is quantita
tively different from 15cp. This indicates splitting of the 
single wave into two waves propagating in slightly 
different directions in the plane of incidence-the 
TM field is transmitted along one direction and the 
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TE along the other. For a wave almost normally 
incident from the uniform region we can take 
sin 1X0 ~ 1X0 and sec 1X0 ~ I, getting (I) lt5cp'l > lt5cpl, 
and (2) t5cp' > 0, while t5cp < 0. The first result shows 
that the TM field is bent more by V N than the TE 
field. As a result, when a wave propagates into a 
region of increasing concentration the TM field will 
be reflected back earlier than the TE part and so will 
not reach levels as far as the latter. The second result 
indicates that bifurcation of the wave is in opposite 
direction for the two component fields. 

Other results obtained for the TE field from 
relations (5.19)-(5.21) and from Appendix A can be 
easily extended to the TM part. It may be mentioned 
that the TM field is distinguished from the TE field 
in that it generates the density propagation of the 
longitudinal field given by 

dw2 1 
P =Ez_o. , 

dz 47T(W2 - w~) 

where p is the perturbed charge density. This relation 
is obtained by taking the divergence of (3.2) and 
utilizing the vector property 

div (NE) = N div E + (E. VN). 

The TE field is free from such conversions. If we 
ignore the divergence, then E"" Ez , and Hv vanish. 
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APPENDIX A 

Putting the values of E! and E! from (4.4) in (5.1) 
and (5.2), we get 

~~ = -dP[ A + B exp (2i{Kl dZ) J. (At) 

~! = EiP[B + A exp (-2i fKl dZ) 1 (A2) 

where p of (5.7) is replaced by EP, E being introduced 
as a parameter to facilitate expansion. The actual 
solution would be obtained for E = I, and E = ° 
would give A = Ao and B = Bo where Ao and Bo are 
constants, being actually the arbitrary constants of 
integration for the WKB solution. If Kl is real, the 
right-hand side of (AI) and (A2) are rapidly varying 
functions of z. The above equations give a simple 
relation between A and B, namely 

dB = _ dA exp (-2iI Z

K1 dZ), 
dz dz 

(A3) 

and also the following second-order differential 
equation for A: 

d
2
A (. dp )dA. 

Ep2 -2 + 1 - - 2K1P - - 21KIEp2A = 0, 
dz dz dz 

(A4) 

and an analogous equation for B. Their solutions are 
mutually related to each other by (A3) or by (AI) 
and (A2). For convenience and clarity we seek the 
power-series solution in the form 

A = Ao + EAl + E2A2 + ... , (AS) 

(A6) 

The series solution would be the most general one, 
provided it is convergent, since it would contain 
arbitrary constants Ao and Bo of integration. Putting 
(AS) and (A6) in (AI) and (A2), and equating powers 
of Em+! from both sides, we get 

d~:+1 = -iP[ Am + Bm exp (2i{Kl dZ)]' (A7) 

d~:+1 = iP[ Bm + Am exp ( -2i fKl dZ) J (A8) 

In these relations, a higher-order A or B is linearly 
related to both A and B of one order less multiplied 
by p. The constants Ao and Bo correspond to the un
correlated primary incident and reflected waves 
respectively, one or both of which, if introduced into 
the plasma, will scatter secondary waves of all higher 
orders. Since the equations are linear in A and B, 
the solutions are superposable. We can, therefore, 
start by first putting Bo = 0, i.e., assuming that only 
the primary incident wave is acting on the plasma, 
and solve for higher-order secondary scattered waves. 
Similarly, we can also solve for the secondary waves 
starting with the primary reflected wave only, i.e., 
with Ao = O. Then, finally, adding the two results, 
we get the complete solution. Let us denote by A~ 
and B~ the mth-order secondary quantities related to 
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the incident and reflected waves respectively scattered 
by the primary reflected wave. If we assume that the 
plasma is slowly varying only in the region z' ~ z ~ z", 
then we can assign the following boundary conditions: 

A~ = 0, Z < z', 

B~ = 0, z> z". (A9) 

This means that, in the uniform region z < z', there 
is no secondary incident wave, and, in the uniform 
region Z > z", there is no secondary reflected wave. 
In (A9), m is any positive integer and further 

A~ ~ 0, B~ ~ 0, 

A~ = 0, B~ = O. 

If the unbounded medium is throughout slowly varying 
then z' = - 00 and z" = 00. 

We have calculated A~, A~, Bi, B;, and B~. They 
have the values 

A~ = -Aoiiz P dz, 
z' 

A~ = -Boi fp exp (2i fKl dZ), 

B~ = Aoi fp exp ( -2i fKl dZ) dz, 

Bf = Boi fp dz, 

~: = - fp(Zl) f p(Z2) dZ l dZ2 

+ fp(Zl) exp (2i iZ'Kl dZ) 

where 

x f>(Z2)eXp ( -2i fKl dZ) dZl dz 2 , 

and Bo == B~. 
By repeated application of these formulas we can 

derive explicit expressions for A~, B~, etc., in the 

form of m-fold integrals. An mth-order quantity 
would be expressed in terms of one of the two primary 
quantities Ao and Bo and m-fold integrals, whose 
variables of integration may be denoted by Z1' 

Z2' ••• , Zm' As is evident from the evaluation of the 
second-order quantity A above, the limits of integra
tion involve all these variables except Zm-' the last of 
the sequence. Each of these m-fold integrals represents 
the field contributions of a scattered wave that origi
nated as a result of m-successive transmissions and 
reflections at levels which are the limits of integration. 
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Multipole moments are defined for static, asymptotically flat, source-free solutions of Einstein's 
equations. The definition is completely coordinate independent. We take one of the 3-surfaces V, orthog
onal to the timelike Killing vector, and add to it a single point A at infinity. The resulting space inherits a 
conformal structure from V. The multipole moments of the solution emerge as a collection of totally 
symmetric, trace-free tensors P, Pa , Pa., ••• at A. These tensors are obtained as certain combinations 
of the derivatives of the norm of the timelike Killing vector. (For static space-times, this norm plays the 
role of a "Newtonian gravitational potential.") The formalism is shown to yield the usual multipole 
moments for a solution of Laplace's equation in flat space, the dependence of these moments on the 
choice of origin being reflected in the conformal behavior of the P's. As an example, the moments of 
the Weyl solutions are discussed. 

1. INTRODUCTION multipole moments is both coordinate independent 
The purpose of this paper is to define the multipole and physically meaningful. 

moments of static, asymptotically flat solutions of It is not immediately obvious that it should be 
Einstein's equations. possible, in curved space, to find quantities which 

Perhaps the most important application of our can be interpreted as multipole moments. We might 
definition arises from the fact that the multipole expect the curvature to have a tendency to mix 
moments of a space-time can serve as a guide to its together the different multipoles. As we approach 
physical interpretation. It has been a recurring infinity, the curvature, and with it this mixing effect, 
problem in general relativity to interpret the exact becomes less and less. The question is, how quickly 
solutions-to somehow extract physical content from must the curvature fall off at infinity in order that 
a metric written in some coordinate system. The individual, pure multipoles can be identified there? It 
multipole moments obtained here (in a manifestly turns out, fortunately, that all static solutions which 
coordinate-independent way) furnish a new tool for one would want to call asymptotically flat are 
attacking this problem. For example, having once "sufficiently asymptotically flat" to have well-defined 
associated with a given solution of Einstein's equa- multipole moments. 
tions a set of multipole moments, we may proceed to One normally thinks of multipole moments of a 
construct the Newtonian gravitational field having field in connection with the multipole expansion of 
the same moments. It would be hard to imagine a that field. But such an expansion is appropriate only 
more satisfactory situation than this: We have a when the field in question satisfies a linear equation, 
precise Newtonian analog of each static solution. while Einstein's equations are not at all linear. Is it 

Consider the Weyl solutions1. 2 (the class of static, not unreasonable, therefore, to discuss solutions of 
axially symmetric, source-free solutions of Einstein's Einstein's equations in terms of multipole moments? 
equations). Certainly one of the Weyl solutions must In Newtonian gravitation, 0.£ course, the multipole 
be spherically symmetric (the Schwarzschild solution) moments have a number of equivalent interpretations, 
-but which one? To construct a Weyl solution, e.g., as coefficients in a multipole expansion, as 
one begins with some function IX satisfying Laplace's moments of the source distribution, or as objects 
equation in Euclidean 3-space. The Schwarzschild associated with the conformal group.3 It appears to be 
solution, however, corresponds to a rather compli- quite difficult to generalize the first two interpreta
cated IX (not a monopole). Using multipole moments, tions to curved space. For example, a fundamental 
on the other hand, one picks out the Schwarzschild theorem concerning expansions-that to essentially 
solution simply by asking for that Weyl solution any given set of moments there corresponds a solu
whose only nonvanishing moment is the monopole. tion of the equations-is not obvious in general 
The Weyl solution corresponding to a monopole IX relativity (although it is probably true). We shall 
turns out to have quadrupole as well as higher approach multipole moments from the point of view of 
moments. The point is that, although the function IX the conformal group. The multi pole moments in 
serves as a convenient label for the various Weyl Newtonian gravitation were discussed from this 
solutions, IX by itself has very little physical signifi- standpoint in Ref. 3. The moments were interpreted 
cance. The classification of Weyl solutions by their as multilinear mappings on the space of conformal 

2580 
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Killing vectors. In curved space there will, in general, 
be no conformal Killing vectors. However, we will 
still be able to recover multipole moments at infinity 
as objects acting on "asymptotic conformal Killing 
vectors." 

Consider a source-free solution of Einstein's 
equations which is static, that is, which has a hyper
surface-orthogonal, timelike Killing vector tao Let V 
denote a 3-surface orthogonal to t a, hab the (positive
definite) induced metric on V, and D a the covariant 
derivative on V (with respect to hab)' Set "P = 
( - tata)! - 1. Then the Einstein equations on the 
4-dimensional space-time reduce to the equations4 

DaDa"P = 0, 

:Rab = (1 + "P)-1DaDb"P (1) 

on V, where :Rab is the Ricci tensor of V. 5 Conversely, 
a 3-manifold V with positive-definite metric hab and 
scalar field "P (> -1), subject to (1), defines a static 
solution of Einstein's equations. 

It is well known that "P plays the role of a "New
tonian gravitational potential." For example, a time
like geodesic in the 4-dimensional space-time, when 
projected into V, defines a curve whose acceleration 
is essentially the gradient of "P. We shall take the 
"multipole moments" of a static solution in general 
relativity to mean the moments of the corresponding 
"P. Thus, we have only to define the moments of a 
solution of Laplace's equation in a certain curved, 
positive-definite, 3-space. 

Before defining multipole moments, we must 
introduce a suitable notion of asymptotic flatness. 
This is done in Sec. 2. The space V, hab is said to be 
asymptotically flat if it is possible to add to Va single 
point A "at infinity" such that the resulting space V 
inherits appropriate conformal structure from V. 
Asymptotic properties of V and of fields on V may 
now be treated as local properties at A. The con
formal behavior of a field and its equation thus plays 
a significant role in the asymptotic description of the 
field. The utility of this approach to asymptotic 
properties rests on the assertion that all conformally 
invariant constructions in V are meaningful in terms 
of V. To prove this fact, we must show that V, hab is 
unique, given V, hab • This uniqueness is established 
in the Appendix. 

The multi pole moments are defined in Sec. 3. 
"Asymptotic conformal Killing vectors" are intro
duced as certain combinations of tensors at A. Then 
the multipole moments, as multilinear mappings on 
such objects, can also be represented as tensors. We 
obtain in this way a collection P, Pa , Pab ,· •• of 

totally symmetric, trace-free tensors at A. Alterna
tively, these -tensors can be obtained directly by 
assigning "P conformal weight - t and taking certain 
combinations of the derivatives of 1jJ at A. The 
behavior of the usual multipole moments in flat space 
under change in the choice of origin is reflected in 
the present formalism in the conformal behavior of 
the P's. 

The multi pole moments of the Weyl solutions are 
discussed in Sec. 4. We first show that the Weyl 
metrics are asymptotically flat in the sense of Sec. 2. 
We then set up the general equations for the multipole 
moments of these solutions, and evaluate the first few 
moments explicitly. 

A number offurther ideas and conjectures concern
ing multi pole moments in general relativity are intro
duced in Sec. 5. 

2. ASYMPTOTIC FLATNESS 

In this section we shall give a definition of asymp
totic flatness for a 3-dimensional manifold V with 
positive-definite metric hab • One could approach such 
a definition by introducing certain coordinate systems 
which are to be "asymptotically Euclidean" in some 
appropriate sense. For example, one might say that 
V, hab is asymptotically flat if there exist coordinates 
x, y, and z with respect to which (i) the components 
of hab approach the unit matrix to order r-1 (r 2 = 
X2 + y2 + Z2) and (ii) the (coordinate) derivatives of 
these components approach zero to order r-2. 

Unfortunately, definitions along these lines are 
subject to a number of serious disadvantages. In 
formulating a statement concerning asymptotic be
havior, one would like to be sure that he is describing 
a property of the space itself or of certain fields on 
that space and not of his particular system of co
ordinates. Thus, a definition of asymptotic flatness 
in terms of coordinates is of very little use without a 
complete analysis of the freedom available in the 
choice of permissible coordinates. Any conclusion 
which is drawn in one coordinate system must then 
be checked to ensure that the same conclusion follows 
in every permissible set of asymptotically Euclidean 
coordinates. The important feature of a given set of 
coordinates is their asymptotic behavior, not their 
precise values in V. The coordinates themselves thus 
contain a great deal of extra information which is 
irrelevant to their primary purpose: to fix the asymp
totic structure of the space. To introduce a large, 
essentially unphysical, "gauge group" in this way 
makes the coordinate formalism more complicated 
and less natural than one would like. Furthermore, 
in order to formulate asymptotic statements about 
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fields, it is normally necessary to take limits (as 
r -. 00) of the components of the fields and their 
derivatives. While such a procedure is certainly 
permissible from a mathematical viewpoint, it is 
rather awkward to be forced always to speak in terms 
of limits. 

Fortunately, there is an alternative approach to 
asymptotic structure-an approach which completely 
avoids the shortcomings associated with coordinates. 
The idea is to attach an additional "point at infinity" 
A to the manifold V. Asymptotic properties of any 
field on V are then described in terms of the local 
behavior of the field at A. This is the approach which 
was used, for example, by Penrose6 in his treatment of 
asymptotically flat space-times. We shall proceed in 
a similar way for the case of a 3-dimensional manifold 
with positive-definite metric. 

In order to get an idea of what is involved in the 
introduction of a point at infinity, we begin with the 
example of flat 3-space. Choose coordinates x, y, and 
z with respect to which the metric takes the form 
ds2 = dx2 + dy2 + dz2. We now introduce new 
coordinates 

z = z. (2) 
x 2 + l + Z2 

[The barred coordinates (2) are valid everywhere on 
V except at the origin.] Our metric may be written in 
the form 

dsz = (xZ + yZ + zZ)-2(dx2 + dyZ + dzZ). (3) 

We now require that X, y, and z be "good coordinates" 
at infinity. That is, we attach to Va single point A, 
with coordinate values x = y = £ = 0, and define the 
topology and differentiable structure there by insisting 
that x, y, and £ define a coordinate neighborhood of 
A. The resulting manifold-consisting of V plus this 
point A at infinity-will be denoted by V. In this 
example, V is topologically a 3-dimensional sphere. 
The metric (3) on V does not carryover smoothly to 
a metric on V; i.e., hab becomes singular at A. This is 
not true, however, of the conformal metric. That is, 

(4) 

is smooth at A, where we have see 

!1 = (xl! + y2 + £2) = (xl! + y2 + Z2)-1. 

Note that, in order that Jiab be regular and nonzero at 
A, we had to choose the conformal factor in (4) to 
go to zero like,-2 at infinity. This asymptotic behavior 

may be characterized in the following way: we require 
that !1 and its derivative vanish at A, and that the 
second derivativeS of!1 be a multiple of Jiab at A. 

We now formulate a general definition of asymp
totic flatness for the curved case. Let V be a 3-dimen
sional manifold with positive-definite metric hab • We 
first require that there be a manifold V consisting of 
V plus one additional point A. We next require that 
there be a metric Jiab which is defined, smooth, and 
positive-definite everywhere on V. On V (considered 
as a subset of V), we further require that Jiab = !1zhab , 
where !1 is a conformal factor which is defined and 
CZ everywhere on V. 9 Our discussion of flat space now 
suggests the additional conditions to be imposed in 
!1. Firstly, asymptotic flatness of V should mean that 
"infinity is far away," i.e., that !1 is zero at A. 
Secondly, we should like to ensure that !1 goes to 
zero "like ,-2." We therefore require that Da!1 = ° 
and that DaDb!1 be a multiple of Jiab at A.9 

To summarize, V, hab is said to be asymptotically 
flat if there is a manifold V with Coo, positive-definite 
metric Jiab such that: 

(1) V consists of V plus one additional point A. 
(2) On V, Jiab = !12hab' where !1 is a C2 scalar field 

defined on V. 
(3) At A,!1 = 0, Da!1 = 0, and DaDb!1isamultiple 

of Ji9' ab 
The question now arises as to whether our defini

tion of asymptotic flatness is a reasonable one. Can 
we be sure that the class of spaces admitted by the 
definition consists precisely of those one would 
intuitively think of as being asymptotically flat? 
Firstly, we shall see shortly that the conditions listed 
above are just those needed to define multipole 
moments. While this argument is far from conclusive, 
one would certainly not expect to be able to define 
multi pole moments in a space which is not asymp
totically flat in some sense. Stronger evidence comes 
from the Weyl solutions. W.e shall show in Sec. 4 
that all Weyl solutions whose "source" lies in a 
compact region (spatially) are asymptotically flat by 
our definition. Here, then, is a very large class of 
exact solutions which satisfy the definition. Finally, 
from experience with solutions of elliptic equations, it 
is perhaps reasonable to suppose that a static solution 
of Einstein's equations will either be asymptotically 
flat as above or else will not even faintly resemble an 
asymptotically flat space.10 

As a second aspect of this question of suitability of 
the definition, one might ask whether V is unique 
(as a conformal space), given V. This is a very 
important question, for we should like to be sure that, 
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when speaking in terms of V, we are truly describing 
the space-time itself and not some aspect of freedom 
itl the construction of V.ll The differentiable structure 
of V, for example, serves to determine which sets of 
coordinates are "good" in a neighborhood of A and, 
therefore, which coordinates on V are to be considered 
as "asymptotically Euclidean." 12 The differentiable 
structure of Vat A thus represents an extremely impor
tant aspect of the asymptotic structure of V. But 
what if this differentiable structure were not unique? 
The asymptotic structure of V would not then have 
been properly incorporated into V. In fact, such 
problems will not arise, for, whenever V exists, it is 
unique: A proof is given in the Appendix. This 
appendix also contains a construction (although a 
rather impractical one) for obtaining V from V. 

3. MULTIPOLE MOMENTS AS TENSORS AT A 

As discussed in Sec. 1, a static, source-free solution 
of Einstein's equations can be represented as a 3-
dimensional manifold V with a positive-definite 
metric hab and a scalar field 1jJ (> -1), subject to the 
Eqs. (1). We may interpret the first Eq. (1) as repre
senting Laplace's equation for the "Newtonian" 
gravitational potential. Suppose now that V, hab is 
asymptotically fiat in the sense of Sec. 2. We might then 
expect that the multipole moments of our static 
space-time-if they can be defined at all-would 
appear in the asymptotic behavior of 1jJ, i.e., in the 
behavior of 1jJ in a neighborhood of A. The multipole 
moments will be introduced in this section: they will 
emerge as a collection of totally symmetric, trace-free 
tensors at A. 

The tensors P, Pa, Pab , ... are defined by Eq. (20). 
It is not immediately clear, however, why these 
tensors should be taken as representing multi pole 
moments in general relativity. We shall first show, 
therefore, how (20) arises naturally in the one case
fiat space-in which we already know what multipole 
moments mean. 

Let DaDa1jJ = ° in fiat 3-space.13 The multipole 
moments of 1jJ were interpreted in Ref. 3 as certain 
multilinear mappings on the conformal Killing 
vectors,l4 these mappings defined as follows. For 
each s (= 0, 1, ... ), set 

where ~a is a conformal Killing vector and K is a 
2-dimensional surface (topologically, a 2-sphere) 
which surrounds the sources. Note that, since the 
integrand in (5) is divergence-free, R. is independent 

of the choice of K. The quantity R, completely 
determines the 28 moment of 1jJ. 

The idea is to interpret the integral (5) as a tensor 
at A. This is done by rewriting the integrand in terms 
of quantities appropriate to V. The metric on V is 
hab = Q2hab · We choose for the conformal factor that 
introduced in Sec. 2, i.e., we set Q = r-2 , where r 
is the distance from an origin O. It then follows that15 

(6) 

[In particular, (6) implies that V, hab is also fiat.] The 
integral (5) may now be wtitten in the form 

S+i2-r(2s + 1) ... (2s - 2r + 3) 
Rs = (41T r 1( s + I)! 2 -'----'---'----'-------'~ 

r=O r! (s - r + I)! 

X r 1)[(Da)Q) ... (DarQ)(Dar+l ... Da.+,,p)] JK 
X $a) . .. $U'dSaH\ (7) 

where we have defined ,p = Q-!1jJ, and where 1) 

denotes the operation "symmetrize over all free 
indices and take the trace-free part." It is not difficult 
to evaluate (7) explicitly for the special case in which 
Da~b = 0, i.e., when $a is a translation on V.16 The 
result is 

R. = a.(Da, ... Da,,p)$a 1 
••• $a'IA' (8) 

where as is a certain (rather complicated) function of 
the integer s. 

To summarize, if $a is a conformal Killing vector 
on V which reduces to a translation on V, then, 
provided Q satisfies (6), the integral (5) reduces to (8). 

Why do we single out the translations on V? The 
answer lies in the relation between the datal7 at the 
origin 0 and the data at A for a fixed conformal 
Killing vector $a on V. The passage from 0 to A 
(with the accompanying conformal transformation) 
effectively reverses the roles of $a and ka. That is to 
say, a translation on V, i.e., with data at A of the form 
($a, 0, 0, 0), is a conformal Killing vector on Vwhose 
data at the origin is (0, 0, 0, ka)' But the 2' moment 
about the origin is defined3 by the property that, for 
the conformal Killing vector ~a whose data at 0 is 
(0, 0, 0, ka), 

R, = (12)"Qa l ••. a·ka, ... ka. . (9) 

We conclude that the multipole moments of 1jJ are 
completely described by the collection 

Pal ••. a, = Da, ... Da,,p, s = 0,1, ... , (10) 

of totally symmetric tensors at A.lS Furthermore, it 
follows, from the flatness of hab and from the invariance 
of Laplace's equation under our conformal trans
formation, that Pal ... a, is trace-free. 
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One can, of course, obtain the expressions (10) 
directly. In terms of a Cartesian coordinate system 
x", a = 1, 2, 3, a quadrupole field about the origin, 
for example, takes the form 

(11) 

where Qao is a symmetric, trace-free, 3 x 3 matrix 
and r2 = haoxaxb• An appropriate set of coordinates 
in a neighborhood of A is xa = ,-2xa [c.f. Eq. (2)]. 
Then, setting Q = ,-2, we have fJ = Q-tlp = QabXaXo, 
and so 

(12) 

That is to say, Pao represents the quadrupole moment 
about the origin. 

In the discussion above, we were concerned with 
the moments about a particular origin O. This 
choice of origin was reflected in V by our particular 
conformal factor Q. We now consider what happens 
to the moments when the origin is permitted to 
change. Let 0' by a new origin, and let the corre
sponding conformal factor be 

Q' = Qw. (13) 

It is convenient to consider first the case in which 
w - 1 is infinitesimal: arbitrary conformal trans
formations can then be built up by successive appli
cation of infinitesimal ones. This restriction amounts 
to letting 0' differ only infinitesimally from O. With 
the conformal factor Q', Eq. (l0) becomes 

P~l"'as = P a1 ",u, - 1s(2s - l)1)[Pal"'as-l 15a,w], (14) 

where we have used the fact [which follows from (6)] 
that w = 1 at A. That is to say, under an infinitesimal 
conformal transformation, the 28 moment is altered 
by an amount depending only on the 28-1 moment. 
This, of course, corresponds precisely to the behavior 
of the usual multi pole moments in their dependence 
on the origin. The values of the quadrupole moment 
about two nearby origins, for example, differ by an 
amount depending only on the dipole moment. 
(See Ref. 3.) 

To summarize, the multipole moments of a solution 
of Laplace's equation in flat 3-space are characterized 
by a collection (10) of totally symmetric, trace-free 
tensors at A. The dependence of the usual moments 
on the choice of origin is reflected, in the present 
formalism, by the conformal behavior (14) of the 
P's. 

We proceed to generalize these considerations to 
curved space. Assume we are given a solution 11' OP9 

(15) 

such that 11' vanishes at infinity. [Note, in particular, 
that (1) implies (15).] In flat space, we could think of 
the multipole moments of 11' as multilinear mappings 
on conformal Killing vectors. In a general curved 
space, on the other hand, we would not expect there 
to exist any conformal Killing vectors at all. We might 
hope, however, that the multipole moments could be 
interpreted as mappings on "asymptotic" conformal 
Killing vectors of some sort. How would one define 
an asymptotic conformal Killing vector? One possible 
definition would be as a set of data17 at A, that is, as 
a 4-tuple (~a, FaD' qJ, ka) consisting of a vector, a 
skew tensor, a scalar, and a vector at A. (In flat space, 
there is a one-to-point correspondence between such 
4-tuples at a point and conformal Killing vectors on 
the space. 3) But the multilinear mappings on sets of 
data at A can always be represented as tensors at A: 
in flat space, these tensors are precisely the Pac'a' 

of (10). Thus, even in curved space, we might expect 
to be able to define muItipole moments by some 
formula analogous to (10). 

In flat space, we were able to severely restrict our 
choice of conformal factor by requiring that liab be 
flat in a neighborhood of A, i.e., by imposing (6). 
While we shall continue to impose this condition at 
A (in order to normalize Q), it will no longer be 
possible to have (6) hold in a neighborhood of A. 
Thus, we cannot simply take (10) as the multipole 
moments in curved space, for these tensors will, in 
general, be neither totally symmetric nor trace-free. 
Furthermore, even the totally symmetric and trace
free part of (10) will not do, for these will not have 
the behavior (14) under conformal transformations. 
It is crucial for their interpretation that the moments 
of different rank be properly related to each other 
under infinitesimal conformal transformations. 

Let us suppose for the moment that we have solved 
our problem up to and including order r. That is, 
assume we have obtained a collection P, Pa , Pab , ••• , 

Pa1"'ar of tensors which are totally symmetric, trace
free, and which satisfy 

p~ca. = W-iPal'''as - !s(2s - l)w-!'b[Pal···a._hDa.roJ 

(16) 

under the infinitesimal conformal transformation (13). 
[Note that (16) reduces to (14) at A.J Our preliminary 
candidate for P"l'''ar+l is 

But Tal' .. aHl does not have the correct behavior (16) 
under the conformal transformation (13). Instead, 
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we have 

T~ '''a 1 = £O-iTal"'ar+l 
1 r+ .3._ 

- t(4r + 1)£O-2b[Pal"'arDar+l£O] 
! - P )D ] - !r(2r - 1)£0- b[(Dal a.·"ar u'+l£O 
t - - ] - !r(2r - 1)£0- b[Pul'''a._lDa.Dar+l£O . 

(18) 

The idea is to introduce into (17) additional terms 
involving the Ricci tensor in order to cancel out terms 
involving the second derivatives of £0 in (18). We 
have for the Ricci tensor, under (13), 

i~b = :Rab - £O-1DJjb £O - £O-1hab(DmDm£O) (19) 

to first order, From (18) and (19), we see that 
PaeaNl will satisfy (16) provided 

Pal"'aHl = b[DalPa.".aB+l - !s(2s - 1):Rala2Paa".aB+l] 
(20) 

for both s = rand s = r - 1. Note that we should 
not have been able to achieve this result were the 
coefficients in (I8) changed. It is precisely the coeffi
cients which appear there which allow us to collect 
terms of the type (20) to obtain (16). 

We now define our multipole tensors by induction. 
Set P = if (== a-i'l{'), and define PUl"'aB+l from 
Pal".a by (20). The resulting sequence of tensors, 
evalu~ted at A, defines the multipole moments of 
the solution 'I{' of (15).20 Under infinitesimal conformal 
transformations, these tensors satisfy (14). 

Finally, we remark that the operation of "going to 
the center of mass" has an analog in the present 
formulation. If the monopole P is nonzero, we may 
define 

~al"·a. == Pac.us 
.-1 , 

+ b .2 s. (2s - 1)(2s - 3) ... 
r=or! (s - r) 

X (2r + 1)( -PY-'PacarPar+l ... Pa., (21) 

It follows immediately from (16) that the ~ac.a. are 
conformally invariant tensors at A. [We have, 
effectively, used the dipole moment to cancel out the 
first derivative of £0 in (16). Compare, Ref. 3.] In 
particular, ~a == 0, i.e., the dipole moment about the 
center of mass vanishes. 

4. MULTIPOLE MOMENTS OF THE WEYL 
SOLUTIONS 

In this section we shall apply the techniques 
developed in Secs. 2 and 3 to the class of asymptoti
cally flat, static, axially symmetric solutions of 
Einstein's equations. These solutions may be described 
as follows. 1.2 Let 0( be any axially symmetric solution 

of Laplace's eq~ation in Euclidean 3-space such th~t 
0( vanishes at infinity.21 That is, in cylindrical coordI
nates Z, r, 0, we have 

0rorO( + r-10,a + o.o.a == 0, 

ooa = O. (22) 
The next step is to solve 

or{3 = r[(ora)2 - (oza)2], 

0.{3 == 2r(ora)(0.a), (23) 

oo{3 = 0 

for {3, subject to (3 -->- 0 at infinity. [The integrability 
conditions for (23) are (22).] Then the spatial metric 
for a Weyl solution is 

ds2 == e2(p-al(dr2 + dz2
) + r2e-2a d02 (24) 

with potential 'I{' == ea - 1. Note that each Weyl 
solution is completely and uniquely determined by 
some solution (a) of Laplace's equation in flat space. 
The problem of describing the multipole moments 
reduces, therefore, to the following: Given the multi
pole moments of a (in flat space), determine those of 
the corresponding Weyl solution. It is to be expected 
that the two sets of moments will not be identical. 

We shall first show that the Wey I solutions described 
above are all asymptotically flat in the sense of Sec. 2. 
We then set up the equations giving the multipole 
moments of a Weyl solution in terms of those of its a. 
Finally, we evaluate the first few moments explicitly. 

We must first re-express the Weyl solutions in terms 
of a set of coordinates which are applicable in a 
neighborhood of A. Set 

p2 = r2 + Z2, , == p-2r, 

p2 = p-2, Z = p-2Z• (25) 

Then, defining <i == p-la, we see that (22) becomes 

0iOi& + ,-10i& + oiJll. == O. (26) 

The multipole moments of a are, as described in 
Sec. 3, the derivatives of & at A. (These tensors, which 
will be written p(al, p!al,"', are automatically 
totally symmetric and trace free.) Expressed in terms 
of the coordinates (25), Eq. (23) for {3 takes the form 

ortl = -i'[(& + i'or& + zOzOC)2 - (i'Oz& - ZO,OC)2], 

oil == -2i'[(oc + i'O,& + zOzoc)(i'ozoc - 20,OC)]. (27) 

Finally, choosing for the conformal factor a == 
p-2ea-p, we see that the metric in a neighborhood of 
A is 

ds2 = di'2 + dz2 + ,2e-2P d()2, (28) 
and 

(29) 
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The situation may now be summarized as follows. 
Choose any solution Ci of (26) which vanishes at A 
(f = z = 0). This Ci is completely determined by its 
derivatives, p(a), P!a), ... , at A. Solve (27) for {J, 
subject to {J = 0 at A. Then we get the multipole 
moments of the Weyl solution from Eq. (20), using the 
ip of (29) and the metric of (28). We thus obtain 
expressions for the Pal ... a, in terms of the P!~!"a.· 

It is now clear that the Weyl solutions are asymp
totically flat. The differentiable structure of V in a 
neighborhood of A is defined by the coordinates 
f, Z, and (). Since Ci satisfies Laplace's equation, Ci is 
COO in a neighborhood of A. The smoothness of the 
metric hab and of ip then follow (this despite the factor 
p-l in the latter). Note, however, that the conformal 
factor n is in general only C2. 

Using the prescription above, we may calculate any 
multipole moment of any Weyl solution.22 For 
example, the first three moments of the general 
solution are 

p=p(a), 

Pa = p~a), (30) 

Pab = p~~) + HP(a»3(~u~b - thab), 

where ~a denotes the unit vector, at A, directed 
along the symmetry axis. We see that the monopole 
and dipole moments of the Weyl solutions are the same 
as those of oc: The first correction terms appear in the 
quadrupole moment. This situation continues into 
the higher moments: The multipole moment Pal ••. a , 

depends only on the pIa) of lower rank. 
For which Weyl solution do all the moments 

higher than the monopole vanish? We see already 
from (30) that we cannot simply choose a monopole 
oc, for the corresponding Weyl solution has a non
vanishing quadrupole moment. In fact, the oc which 
results in the Schwarzschild solution is well known: 
We must choose for oc the potential of a uniform rod 
whose length is related in a certain way to its mass 
density. With this choice, all the multipole moments
with the exception of the monopole-must vanish. 
(It appears, unfortunately, that it would have been 
difficult to discover this particular oc through multipole 
moments.) 

5. CONCLUSIONS 

In this section we discuss a number of open ques
tions and possible further developments concerning 
multipole moments in general relativity. 

To what extent are the static space-times character
ized by their multipole moments? In Newtonian 
gravitation, for example, the exterior field is uniquely 
determined by its moments. We might expect a similar 

situation in general relativity. More precisely, we may 
formulate 

Conjecture 1,' Two static solutions of Einstein's 
equations having identical multipole moments coin
cide, at least in some neighborhood of A. 

We might also ask whether or not there are any 
special restrictions on the multipole moments in 
general relativity. Of course, the moments are not 
completely arbitrary, for, even in Newtonian gravita
tion, the 28 moment cannot grow too fast with s 
without destr~ying the convergence of the multipole 
expansion.23 However, this very weak condition is 
the only one required in Newtonian gravitation. We 
might expect, therefore, 

Conjecture 2: Given any set of multipole moments, 
subject to the appropriate convergence condition, 
there exists a static solution of Einstein's equations 
having precisely those moments.24 

One possible source of evidence on these conjectures 
is the Weyl solutions discussed in Sec. 4. Unfortu
nately, although we gave in that section the prescrip
tion for obtaining any multipole moment of any Weyl 
solution, we were unable to display an explicit 
formula for the general moment. Such a formula 
(which could, perhaps, be guessed after working out 
the first five or six moments explicitly) would be of 
great value. It could be expected not only to provide 
new insight into the Weyl solutions, but also to in
crease our confidence in (or else disprove) the 
conjectures above. 

Can our definition of moments in the static case be 
extended to more general situations, for example, 
to stationary space-times? We would expect in this 
case to obtain two sets of moments: one to represent 
the "mass distribution" (analogous to the moments 
in the static case) and another to represent the 
"angular-momentum distribution." One would thus 
look for two solutions of (l5)-but on what manifold? 
We require some 3-dimensional manifold to replace 
the surface (V) orthogonal to the timelike Killing 
vector in the static case. Fortunately, there is such an 
object: the 3-manifold of all trajectories of the 
Killing vector.25 The equations of a stationary solu
tion then take the form 

5tab = 2(1 + 1J!)-4[(Daw)(Dbw) - hab(Dmw)(Dmw)] 

+ (1 + 1J!)-lDuDb1J!, 

Dm Dm1J! = -2(1 + 1J!)-3(Dmw)(Dmw), (31) 

Dm Dmw = 3(1 + 1J!)-l(Dmw)(Dm1J!), 
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where w represents the twist of the timelike Killing 
vector. One would now like to describe the moments 
of "P and w separately. Unfortunately, neither of 
these fields satisfy the conformally invariant Laplace 
equation (15). There may, nontheless, be some hope 
of obtaining multipole moments in the stationary 
case. The only point at which we used (15) in the 
static case was to ensure that, when "P is assigned 
conformal weight -t, ip will be smooth at A. Perhaps 
there is some way to establish the necessary smooth
ness, in the stationary case, from (31). [Note added in 
proof' For the case of the Kerr metric, although hab is 
smooth at A, neither ip nor w (= n-iw) is smooth 
there.] 

One might be still more ambitious and attempt to 
define the multipole moments in space-times having 
no Killing vectors. The moments could perhaps be 
defined in terms of the asymptotic behavior of a set of 
initial data (on a spacelike 3-surface) for the solution. 26 

We would certainly demand that the moments be 
independent of the choice of surface-in particular, 
that they be constant under the time-evolution of 
the system. (Multipole radiation would be registered 
on each successive 3-surface-i.e., it could not escape 
between different surfaces-and so would not be 
expected to produce changes in the moments.) On the 
other hand, if one wanted to define multi poles which 
would change with time, the appropriate definition 
might involve the asymptotic field at null infinity. A 
definition of this type has been discussed by Janis and 
Newman.24 It would be interesting, in particular, to 
know whether their definition coincides with ours in 
the static case. 

In Newtonian gravitation, there is a relation 
between the multi pole moments of the field and the 
matter distribution which is responsible for the 
field: there are formulas for the moments as integrals 
over the matter. Do analogous formulas exist also in 
general relativity? (These might involve, for example, 
the mass integrals discussed by Dixon. 27

) This question 
appears to be very difficult. The moments are described 
at infinity-as far from the matter as possible. It is 
hard to see how this information could be faithfully 
brought in from infinity over the curved space in order 
to compare it locally with the matter distribution. 

APPENDIX: THE UNIQUENESS OF V 

Let V, hab be an asymptotically flat 3-space. Is the 
corresponding "conformally completed space" V, 
hab unique? It is crucial for our treatment of asymp
totic flatness that the answer be yes. Otherwise, the 
description of asymptotic structure in terms of V, 
Jiab might well represent merely a description of our 

particular choice of V rather than some aspect of the 

"" "" space V itself. We shall show that, if V, hab and V, hab 
both satisfy the conditions of Sec. 2, then there is a 

"" smooth mapping (with smooth inverse) from V to V 
which (i) reduces to the identity on V, and (ii) maps 
- "" 
hab to hab' up to a (strictly positive) conformal factor. 
The idea of the proof is to construct V, hab explicitly 
from V,hab • 

The construction of V as a point set is easy: 
V = V u A, where A is an abstract point. Further
more, there is no difficulty in assigning a topology to 
V: The topology on V is the usual manifold topology, 
while a neighborhood of A is to consist of A along 
with an open subset of V whose boundary is compact.28 

It is a more difficult problem to define the differenti
able structure of V. Just as topological structure on a 
manifold can be specified by the selection of the func
tions to be called "continuous" from among all 
functions on the point set, so the differentiable 
structure can be specified by the selection of the 
functions to be called "smooth" from among all 
continuous functions. 29 We must find these smooth 
functions. The first step in this program is to identify 
a suitable candidate for n. A conformal factor can 
be obtained as follows. We have seen in Sec. 3 that, if 

(Dm Dm - t:R)cp = 0, 

then if = n-tcp satisfies 

(jjm jjm - t:R)if = O. 

(AI) 

(A2) 

Let us suppose for the moment that we had found a 
suitable n. Let cp be any solution of (AI) which 
vanishes at A and which has a nonzero monopole 
moment. Then if satisfies (A2) and is therefore 
smooth on V. Furthermore, if does not vanish at A. 
That is to say, nand cp2 differ by a factor which is 
smooth and nonzero in a neighborhood of A. We 
now have an intrinsic way of selecting a conformal 
factor: Set n = cp2 in a neighborhood of A, where cp 
is a solution of (AI) which vanishes at A and has 
nonzero monopole.30 

Using our n, we are able to write down a large 
class of functions which are smooth at A: If"P satisfies 
(AI) and vanishes at A, then ip = n-i"P satisfies (A2) 
and is finite at A and, therefore, regular at A. 
Observe, furthermore, that any smooth function on 
V has the properties: (i) It is smooth on V, and (ii) it 
can be written, in some neighborhood of A, as a 
COO function of functions in the above class. We have 
thus identified the collection of all smooth functions 
on V, and so have defined the differentiable structure 
of V. 
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Finally, since the tensor field hab is smooth on V, 
it can be extended to fl (i.e., defined at A so that the 
result is smooth everywhere on fl) in at most one way. 

Having constructed from V, hab the point set fl, 
along with its topology, differentiable structure, and 
conformal metric, we conclude that fl, hab are unique 
whenever they exist. 
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The theory of local electrodynamics of media in given noninertial frames, within the Maxwell-Ein
stein theory, is constructed in terms of local observable EM fields and physical media parameters of its 
comoving frame. Localization of tensors to observables for and their relations among observers in 
different frames are introduced; local and global constitutive tensors and local Maxwell equations are 
obtained and interpreted. Also, a Lagrangian formulation for both lossless and lossy media is con
structed, and boundary conditions, local conservation laws, and energy tensors are obtained. The 
applications concern linear accelerational and rotational media in flat space-time for which local 
Maxwell equations in comoving frames are obtained. Then an EM wave propagating in the direction of 
acceleration is studied in the accelerating frame. The first-order propagation shows a frequency shift and 
amplitude change which have very simple physical significances of instantaneous Doppler shift and 
photon density in media and which agree with familiar results in the vacuum limit. A particle model for 
this wave shows that the "mass-dressed" photon is dragged by the medium and does not follow a geodesic 
path. In the case of a rotating medium, a plane wave scattered by a rotating sphere is solved by an integral 
iteration method in the laboratory frame. The scattered field which is associated only with the rotation of 
the medium is separated from the Mie scattering. Its first-order amplitudes are found for incidences per
pendicular and parallel to the rotation axis. Particular symmetry and shapes of scattering amplitude in 
the results agree with intuition and resemble radiation patterns of appropriately induced traveling 
electric and magnetic dipole sheaths. 

1. INTRODUCTION 

The theory and application of the electrodynamics 
of media in inertial and noninertial motions have been 
the subject of the recent interest of many authors,1-B 
but a complete theory has "not been formulated. The 
purpose of this work is to construct directly a local 
electrodynamics, within the Maxwell-Einstein classi
cal field theory, 9-12 in terms of the observable EM 
fields and the rest-frame physical constitutive prop
erties of a medium in a noninertial frame. This 
noninertialness may be produced either by noninertial 
motion in flat space-time or by the presence of tidal 
gravitation. Then application to simple problems in 
flat space-time is examined. 

For a simple medium moving with uniform velocity, 
Lee and Papas!.4 recently found the time-harmonic 
Green's function and showed that dipole radiation in it 
has a forward-tilted far-zone Poynting vector. The 
time-dependent Green's functions have been obtained 
by other workers. 2.3 More studies5 •13 deal with different 
theoretical approaches and applications. The theory 
used is Maxwell's theory together with special rela
tivity. 

For media in noninertial frames, less work has been 
done.5- 9 Since macroscopic "photons" do not follow 
null paths nor geodesics in this case, in order to get 
any information concerning EM phenomena, we 

must start from Maxwell's equations. Two problems 
then arise which were not encountered in the previous 
study of inertial motions. The first concerns the 
EM fields, which are physically observable to ob
servers in a noninertial frame and how it enters into 
the postulated covariant equations which govern the 
EM field space-time evolution. The second concerns 
a covariant formalism of the constitutive relations of 
the macroscopic media, which can only be determined 
locally in the medium comoving frame and which 
should be built into the field equations. 

In the first case, Einstein's tetrad physics and the 
covariance principle in GRT are used to obtain a 
relation 

which reduces the tensor transform a:J1/axY to the 
instantaneous Lorentz transform AI).)(.!), for those 
observables whose observers are in different frames 
{xl'} and {xli}, by the localization transforms [l]e(<</ 
and [2]e(iit Equation (1.1) explicitly states the form in 
which physical observables, whose measurements 
locally in GRT are identical with those of SRT, com
bine with the noninertialness of the frame and/or 
space-time to put the laws of physics in a covariant 
form. This relation and the localization transform are 

2S89 
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useful, especially when one is interested in local 
physics, e.g., electrodynamics in media. The general 
local Maxwell equations are obtained later; these 
equations also show the extent of the approximation 
in using the usual 3-vector Maxwell equations for a 
neighborhood of noninertial space-time. 

In the second case, based on a covariance assump
tion for EM equations in media, a constitutive tensor 
expressed by the 4-velocity v and the rest-frame local 
properties E(i)W' K(i)w of a linear medium is con
structed for the first time: 

CP'~P = tKY6(·V)P'Y(·V)~P6 + UV~(E'PVP - EPPV') 

- VP(E'~VP - EP~V')], (1.2) 

such that GP' = CP'~P F~p. Previous confusion5- 7 in 
not distinguishing physical observables from their 
tensors, which also led to a misinterpretation of 
the Cp,~p as physical properties of media, are all 
cleared up. With this covariant formalism to build 
the constitutive parameters of media into EM 
theory, we also find the Lagrangian formulations for 
the lossless and lossy media, local boundary condi
tions, local conservation laws, and energy-momen
tum tensor. 

In the latter part of this work (Secs. 5 and 6), 
applications to motions of media in flat space-time, 
such as uniform linear (hyperbolic) acceleration and 
steady rotation, are considered. For both cases, exact 
local Maxwell equations in comoving frames are 
found. In the rotational case, the error in a previous 
works is corrected. Special problems are then solved 
in detail. 

In a uniform linearly accelerated simple medium, 
the EM wave propagating along the direction of 
acceleration is studied by comoving observers. The 
first-order solution gives two terms that correspond to 
traveling against and traveling with the apparent 
gravitation in that frame. A frequency shift and ampli
tude decrease (or increase) result for this first-order 
propagation and have the simple meanings of equiv
alent gravitational red (or blue) shift and instantan
eous "photon" density. The coordinate phase velocity 
is time dependent. If we identify the instantaneous 
frequency and phase velocity of the wave as energy 
and velocity of the corresponding "mass-dressed" 
photon,14 then the photon has a time-dependent mass 
and does not follow a geodesic. Physically, this means 
photons are dragged by the noninertial motion of the 
medium. 

In the rotational case, a plane wave scattered 
by a rotating simple sphere is studied by using 
integral iteration method in the laboratory frame. 

The scattered field purely due to the rotation of 
the medium is separated from the Mie scattering.15 

This is the only scattering, provided that the rotat
ing medium is the same as its surrounding med
ium. The first-order amplitude of this rotational 
scattered field is evaluated and plotted for incidences 
perpendicular and parallel to the axis of rotation. 
Particular symmetry and the shapes of scattering 
amplitude result; they agree with intuition and 
resemble the radiation patterns of appropriately 
induced traveling electric and magnetic dipole 
sheaths. 

In the following section, Eq. (1.1) for frame co
moving observers introduces localization. In Sec. 3, 
we give the constitutive tensor. In Sec. 4, we derive 
the general local Maxwell equations, least-action 
formalism, and boundary conditions, and we in
vestigate local conservation laws and the energy
momentum tensor. In Sec. 5, there is the application to 
linear accelerated media, whereas in Sec. 6, there is 
the application to steady rotating media. Appendices 
contain remarks and some derivations; also, geo
metrized units c = 1, k = I, and G = 1 are used for 
convenience. 16 

2. LOCAL PHYSIcAL TENSOR OF FRAME 
COMOVING OBSERVERS AND THEIR 

TRANSFORMS 

A. Reviews and Coordinate-Basis Vectors 

Consider a 4-dimensional differentiable manifold 
S, labeled with the permissible coordinate frame 
{x p } which represents a space-time continuum. An 
affine-connected geometry is constructed in the usual 
wayY We define the parallel transport of vectors by a 
set of affine numbers rp~fJ ' and then define the geodesic 
as a path generated by the parallel transport dxp. We 
define the geometrical scalar distance ds2 = gp. dxp dx' 
between neighboring points by a symmetric metric 
tensor gp. and define the path of extreme length by 
<5 S ds = O. Finally, we identify the path of extreme 
length with the geodesic. IS The geometry thus con
structed is identified with the space-time of physics by 
the postulate that free-falling neutral particles follow 
a geodesic. 

Now, at a space-time point P, the coordinate 
contravariant and covariant basis vectors {@p} and 
{@p} of {xp} are defined by19 

where the dxp are infinitesimal coordinate increments 
of xP at P and dxp == gl'. dx·. Then the scalar length 
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dx':1. == div . di implies that 

ell • e. = g"v, e"· e. = 15"., e" • eV = g".. (2.2) 

Thus, ell is a vector with length Igll)l, pointing in the 
tangent direction of Xll for {Xll} at P, and e" is a vector 
with length Igl'''ll, which is perpendicular to the con
stant xl' hypersurface. From (2.1), we have that 

A oxa " d AU OX" Aa e =-e an e~=-e 
I' OX" a oxa 

(2.3) 

relate the basis vectors for different {xl'} and {x"} at the 
same point P. 

Similarly to (2.1), any vector field" atP can now be 
expressed as 

" == Vl'el' == Vl'e". 

Then (2.2) implies that 

VI' = " . el', VI' = " . ell' 

and (2.3) implies that 

(2.4) 

(2.5) 

(2.6) 

Thus, contravariant and covariant vectors are actu
ally components of a vector on the respective coordi
nate basis. The above equations apply to tensors of 
higher rank, just with more indices written, e.g., 

T = T"·"e"e.e", T"·" = e"e·C" ... T, etc. (2.7) 

B. Localization of Tensors to Observables for Frame 
Comoving Observers 

Consider temporarily a flat space-time described by 
an inertial Minkowskian {X.u} and a noninertial {x"}. 
Consider one observer {O} in {x"} with world lines 
{r} == {Xi = fixed, XO varies} passing an inertial (j of 
{X.u} momentarily at P. From the equivalence prin
ciple, a vector di observed by (j as dX.u will be ob
served by 0 as 

where dXI" is the value of di observed by 0' who is 
comoving with 0 at P on his Minkowskian basis 
{el',p9 which is related to the {e.u} of (j by a Lorentz 
transform A"'a' Identifying locally the {el"} as the 
physical tetrad basis vectors {e(I')} of 0 such that 
di = dX(I')e(l') gives 

e . e = 'l'l il') • eA 
- J/I' e(l') • eA (.) - 'l'lI'V 

(1') (v) '/I'V> (v) - U yo -./ • 

(2.9) 

./' tensor trllns form -

.J 

r of '0 

FIG. 1. A sketch of (2.13). rand f are world lines of 0 and 0 which 
comove in {XI'} and {x.u}, respectively. 

Now we can rewrite (2.8) and define localization er) 
by 

(2.10) 

and, with (2.1) and (2.2), we have 

eli' = e(l') • e).. (2.11) 

Thus, we see that to physically observe a vector or 
tensor quantity by {O} in {xl'} is to observe its local 
components as (2.10) on a local Minkowskian basis 
{e(I')} of {O}. But this local result also applies to (j in 
{X.u}; thus, we do not require that {X.u} be an inertial 
frame, i.e., the space-time need not be flat. Thus, in 
general, (2.10) becomes 

dx(") - e(l') dx). 
- [2] ). , 

d ). - ).·d (1') 
x - [2]e (1') x , 

and 

(2.12a) 

(2.12b) 

c5Y - Y A(") (al oxfJ 
). - [l]e (1') (al [2]e fJ ax). (2.13) 

for arbitrary {xl'} and {x.u} frames for the co moving 
observers {O} and {O} with physical tetrad bases 
{[lle(l'l} and {[2]e(.u)}, respectively. Equations (2.12) 
and (2.13) explicitly state that measurements in general 
relativity are locally identical as in special relativity 
and localize tensor transforms among different frames 
to be instantaneous local Lorentz transforms for 
physically observable values of that tensor. These 
relations are graphically represented by Fig. 1. They 
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are especially useful when local physics is emphasized, 
e.g., electrodynamics in media, because with them we 
can avoid tensors and talk only about local observ
abIes which are the quantities of eventual physical 
interest. 

For observations by the {OJ on any "9' or higher
rank tensors, relations similar to (2.12) apply, as in 
(2.5) and (2.7) with ell replaced by e(ll) . 

C. Coordinate Transport of Comoving Basis 

To find the physical tetrad basis {e(Il)} and the 
appropriate way that they are carried along by {OJ 
co moving in {Xll} with velocity 0, we first set 

e(O) = (goo)-!eo == ii, (2.14) 

since the observer's proper-time lapse during dxo is 
dr = (goo)! dxo, i.e., the local proper-time direction 
for {O} is the coordinate-time direction there, only 
rescaled by a factor of (goo)-!. Since the local spatial 
basis vectors {e(;)} must be orthogonal to e(O) and are 
orthonormalized among themselves for convenience, 
they are only defined within a spatial rotation; thus, 
within (2.9),20 

few} = O.N. {di == ei - (goi/goO)eo}, (2.15) 

where the dl are just the time-orthogonalized coordi
nate triads. 

Now (2.14) specified elO)' but (2.15) left free the 
ways in which {OJ can carry {~w} along {r}. But, in 
order to have simple formalism for local physics, the 
medium-fixed observers should also keep their 
{ew}, as a whole, not rotating with respect to the 
medium. Thus, the simple Fermi transport of {ew}, 
which preserves the {e(lll} but fixes the few} directions 
with respect to distant stars, is not convenient. A 
study of the local geometry reveals that, for an {Xll} 
with 

(d; • di )2/(d;. d;)(di • aj) time independent, (2.16) 

neighboring frame-comoving observers will not see 
each other's rotation if {e{;)} is carried along {r} of 
{OJ by 
few} = O.N.{ai }, with time-independent 

coefficients and Eq. (2.11), (2.17) 

where the {ail are just the Frenet-Serret normals to 
{r}21 : 

Do/ Ds == a1fi1 , 

Dfi1/ Ds == alii + a2fi2 , (2.18) 

Dft2/ Ds == - a2fil + a303' fi i • fi; == -1, 

along r. Thus, the observers attached to the frame 
which is comoving with the medium should coordinate 

transport few} according to (2.17), so as to have a 
locally nonrotating spatial triad with respect to each 
other. By (2.13), the coefficients in (2.17) can be chosen 
to make {e(Il)} the instantaneous Lorentz transform of 
the {e(Ii)} of some frame {xli} which has a particularly 
simple geometry although it may not comove with the 
medium. 

If (2.16) does not hold in {xll}, then this frame {Xll} 
is not "locally rigid," e.g., ui/uO is position dependent 
for an {Xll} moving in an inertial {Xfl}. Then it is im
possible to have any orthogonal few} for {oJ in {Xll} 
which also hold unrotated with respect to their 
neighbors in {x ll }. In this case, we still coordinate 
transport few} according to (2.17) to keep it ortho
normal and the least locally rotated. 

3. ELECTROMAGNETIC CONSTITUTIVE 
TENSORS OF MEDIA 

From the covariance postulate of macroscopic 
Maxwell equations in media, we found22 that the 
constitutive tensor for a linear medium with 4-
velocity v was 

GIlV = CIlV«P F «P , 

CllyaP = tKyo(*V)IlYY(*V)"p" + Uv"(eVPvll - ellPvV) 

- vP(eY"vll - ell"vV
)], (3.1) 

whose physical meaning is revealed by its local form 

(3.2) 

Here, the local components of i and E on a coordi
nate-transported physical tetrad {e(p)} in the frame 
comoving with the medium have the values 

W - 0 (0) - 0 K W - 0 K(O) - 0 £ (0) = , e (i) =, (0) =, Ii) = , 
3 3 

£(0) (0) = t Z e(;)w, K(O) (0) == 1 Z K(i)w . (3.3) 
i=l i=l 

e(i) (i) and K(i) (i) with respect to {O} in that frame have 
the physical meaning 

n(i) - e(i) E<i) H W - K W B(i) 
- (j), - (i) • (3.4) 

With (3.1)-(3.4), the intrinsic physical properties of 
the linear medium enter covariantly into the EM 
formalism. For a vacuum, C reduces to CIl' "P = 
t~IlV "P , so that GIlY = FIlV in any frame and D = E and 
B = H for any observer. 

4. GENERAL LOCAL ELECTRODYNAMICS 
IN MEDIA 

A. Local Maxwell Equations and Wave Equations 

In a general {Xll} , the Einstein-Maxwell theory 
postulates the field equations in vacuum FIlY;y = -Jp 
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and (*F)IIY;y = 0.23 Now, postulating the similar co
variant form for macroscopic Maxwell equations in 
media gives 

GIIY;y = -JII, (4.1a) 

(*F)IlY;y = 0 ~ 3 All 3 F llv = Av •1I - All." (4.1b) 

and the constitutive tensor relations (3.1). Here the 
";" denotes the covariant derivative and the "*,, 
denotes the dual; these are defined by 

VII.;. == VII;. + rll;."v", 
J , 

TIIY;;. == TIIY ... + rll .. "T"v + p .. "TII", etc., (4.2) 

(*F)II" == H _g)-l17I!V"PFcxp • 

The Christoffel symbols are 

r ll
;." == gIlPr pi .. " , 

rpl .... == t(gP"'cx + gp .. , .. - g .... ,p), (4.3) 

Finally, ( ) .. == a/ax", g == det (g"v), and 17"vaP = 1, 
-1, or 0 if :"(flPC1,f3) = even 17(0123), odd 17(0123), or 
otherwise, respectively. 

But now the EM field F(I!)(v), G(")(v), and current 
J(I!), which are physically observable to the observers 

{OJ in {XII}, are the local components of F, G, and j on 
the {e(II)} of {OJ: 

F(O)(;) = -E(i), (*F)(O)(i) = ....,B(i) , 

G(O)(i) = -D(i), (*F)(O)(;) = -H(;), (4.4) 

P,,) = (p, JW, J(2), J(3». 

The tensors as mathematical symbols, in whose forms 
these physical quantities combine the curvatures of 
both the coordinate frame and space-time in order to 
enter the postulated simple covariant equations, have 
no direct physical significance. We wish to avoid un
necessary divergence, which may occur to the tensor 
quantities. Furthermore, we wish to have the local 
physics of eventual interest under direct consideration 
such that we have a physical feeling about the quan
tities being handled and such that we are able to 
simplify equations with intuitive symmetry arguments 
when such physical symmetry happens locally. 
Accordingly, we prefer dealing with local equations. 
To get such equations for {O}, first from (2.14) and 
(2.15), the observer's {e(,,)} satisfies 

e(;)O = O. 

(4.5) 

Then, substituting quantities of (4.4) into Eqs. (4.1) 
by use of the localization (2.12) on the above {e(II)}' we 
obtain the local Maxwell equations in a medium for 

observers {OJ in {xl!} as 

[( )1 i DU>( )-lJ + [( )1 Oi1k 0 IH ] - g ew goo ,i - g 17 ew e(j) (k) ,I 

= (-g)l(p(goo)-l + J(i)e(j)°), (4.6a) 

[( )1 Oikl i VB] - g 'YJ e(;) elk) (I) •• 

= [( - g)le(;)1 D(j)(goor1J,0 + (- g)l J(;)ew', (4.6b) 

[( )1 i B(;)( )-1] -g e W goo ,1 

[( )1 Oiik 0 !E ] - 0 (6) - - g 'YJ e(;) e(i) (k) ,I - , 4. c 

[( )1 Oik! j v E ] 
- g 17 e{i) elk) (I) " 

- [( )1 i B(;)( )-11 (4.6d) - - -g eli) goo ,0, 

and the local constitutive relations (3.2), which simply 
reduce to (3.4) if {XII} is the frame which is co moving 
with the medium. 

Physically, in (4. 6a), the mix of local current density 
J into charge density p and the presence of the curl
like term of H compensate for the fact that the coordi
nate divergence of D is not taken purely spatially; 
similar remarks apply to (4.6b)-(4.6d). In fact, if we 
express the coordinate differential operators by local 
differential operators through di = dXl!ell = dx(a)e(a) ' 
then (4.6a) and (4.6b) become, respectively, 

1 -1 [OD(;) ] 
( - g) (goo) OX(i) - P 

+ (_g)leo . ['YIOiikOB(k) _ oD(j) _ J(i)] 
(J)'J oxw oxo 

+ [( )l i ( )-1] D(;) - g e (;) goo ,i 

)1 Ojik 0 I + [(-g 'YJ e (j)e({}],!H(k) = 0 (4.7a) 
and 

(4.7b) 

from which the vanishing of the large square brackets 
will give the flat space-time EM equations 

oD(t) an 
ox(i) = p and V x H = J + at' 

approximately, in a small enough neighborhood if 
the change of gl!v in there is neglected. Similar remarks 
apply for (4.6c) and (4.6d). Although coordinate 
conditions can be imposed on {xl!} to simplify (4.6), 
such a frame is, in general, not medium comoving; 
then the mixed constitutive relations make it difficult 
to decouple the equations, and the motion of such 
frames relative to the medium obscure the local 
physics. 
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When the {XII} has synchronous metric, i.e., got == 
0, all e(O)i, e(a);. e(O\, and e(O)i vanish; we can rescale 
time so that goo == 1 and define the operators V x and 
V • in 3-space according to (4.6) such that 

V • D = p, V x H = J + .?. D + a • D, ot 
V·B = 0, 

oB 
VxE=---a·B at ' (4.8) 

h (i) - (j) [( )! k) If' dd" h were IX (i) = e k -g e W ,0' ,In a Itlon, t e 
gllv are not functions of time, (4.8) will just reduce to 
the ordinary 3-vector equations in curvilinear coordi
nates. 

In a linear medium expressed by C"vrzP as (3.1), the 
general wave equations in it are 

(4.9) 

in which a divergence gauge freedom exists for A. 
For the special case of local-isotropic medium in 
which e(lI) = ebll K(II) = Kbll 24 and a frame in 

(v) v' (v) v' 

which DVII/DxA == 0, Eq. (4.9) then becomes 

[-,a-lAI';V + (,a-l - e)t'pvvA";PJ;v 

+ [,a-IRAII + (/r1 - e)RPAIIVvpvv]A;. 

= -[)II + (,a-l - e)v"vpJP), (4. lOa) 

where an invariant gauge condition of the form 

has been used and R"vap and RllV are the Riemann and 
Ricci curvature tensors, respectively.2s Equations 
(4.10) and (4.11) in the inertial Minkowskian limit 
reduce to the familiar results in a linear medium.26 

B. Lagrangian Formulation 

For a lossless linear medium with C"vaP = CaPllv, 
the Maxwell equation (4.1 a) can be obtained from 

b f L( -g)!d4x = 0, (4. 11 a) 

L = -!G!'vPjlV - JIIAjl == LEM + Lint (4. 11 b) 

by varying Ajl which is defined by (4.1b). But in a 
lossy medium the e(i) (j) and the K(i) (j) in the medium
comoving frame are not symmetrical; thus Cw·rzp in 
any frame is not symmetric27 in (,a'JI)~ (lXfJ) and can 
be decomposed into a symmetric and an anti symmetric 
part, 

c"vaP == t(C"VOtP + caPllv) + HCIIVOtP _ C«PIIV) 

(4.12) 

such that aCIiVOtP = -aC«Pllv and aClivaP = CaPliv. In 
this lossy medium, the above LEM = -iGIIVPl'v only 
picks up that part of G"V corresponding to the sym
metric part of e(lI) andK(II) . i e Gil' = CllwzPF • 

(v) (v» • "8 8 "P' 
thus (4.1 a) cannot be obtained simply from (4.11a). 

However, a local consideration of the losses on a 
closed path of field states in the B-H and E-D spaces 
for a linear lossy medium reveals27 that all the losses 
in unit 4-volume for a bB and bE change of field 
strength are due to the "antisymmetric" part aGIiV == 
aCllvaPF«p as 

(JW)088 = aH · (JB - aD· (JE = laG(II)(V)bP(II)(V) 

= taG"vbF/l'" (4.13) 

Then an action principle in a lossy medium can be 
stated for the difference of the field Lagrangian and 
the energy loss as 

M == b f d4x( - g)!(L - Jt)oss) = ° (4.14) 

by varying AI" where L is given by (4.11 b) and ~OS8 
enters in the sense of (4.13). Performing the variation, 
we see that (4.14) gives 

from which immediately follows 

_JII - (-g)-![(_g)iaGIiV + (-g)! sGllvl.v = O. 

(4.15) 

We see the aG/lV in the lossy part and the gG IIV in the 
LEM combine back to give the total GI'V as required in 
(4.1a). In the above, All == ° at spatial infinity and 
Gauss' theorem has been used. 

C. Boundary Conditions, Local Conservative 
Quantities, and Energy Tensor 

The boundary conditions at the interface of two 
different media are obtained by integrating Maxwell 
equations over appropriate infinitesimal 3-hyper
surfaces and by making use of Gauss' theorem: 

(4.16) 

In a time-orthogonal frame {XII}, the immediate 
results can be expressed by local physical quantities 
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for observers {O} in that frame as the usual forms27 

no (uD - ID) = (1, n 0 (uB - rB) = 0, 

n x (uE - IE) = 0, n x (nH - IH) = k, (4.17) 

where n is unit normal of the intersurface pointing 
from medium II to medium I and (1 and k are the 
physical surface charge and current densities on that 
surface to {O}. But (4.17) as a local result then holds 
for any observer. Thus, the boundary conditions of 
the observable EM field for observers in any frame are 
given by (4.17), which is anticipated, since the geom
etry gllv is continuous without abrupt changes and 
thus contributes nothing to local limiting processes. 

Now the conservation of physical charge for {O} is 
just implied by (4.1a), i.e., 

~[(_g)l(_P_ + gOie, ,JW )] = _(ei ,J<i) , a l ,<.) (,)." 
t (goo) 

(4.18) 

or as an integral over an XO = const spacelike 3-
hypersurface S: 

total conserved charge 

-l( g)id3
X(-P- + gOie J<il) - - ()1 (Oi 

S goo 

= Is [-det (gii)]id3Xp , if {x"} is synchronous. 

(4.18') 

So, in general, the total conserved charge is not the 
physically observable charge alone but, in addition, 
the current J. 

Concerning the energy tensor, such a quantity with 
field-equation-implied physical meaning and generating 
conservative law by its divergence cannot be found for 
macroscopic EM fields in media because it includes 
the averaged interaction with the medium and forms a 
nonclosed system.2S 

However, a tensor which partially fulfills these 
purposes with limited physical meaning can be found 
as the generalization of the vacuum case. First, in the 
frame comoving with the medium, extrapolating the 
meaning of HE 0 D + B 0 H) in the static case to be 
local energy density T(O)(O) and interpreting the re
written special-relativity local field energy balance 

~ TCO)(O) 

oT 
= -E 0 J - V 0 (E x H) + - B' B ' - KwcJ) 1( (') (') 0 

2 oT 
Ii) (i) 0 ) - E E - E'(;)(j) (4.19) aT 

lead us to identify mechanically E x H as field mo
mentum density TCO)(i) and the last term as power 
stored in the medium to keep field strength constant 
during a change of media properties. Now the force 
acted on a medium by EM field can be found from an 
infinitesimal displacement of it by 

dJd3Xi(HoB + EoD) = - Jd3Xf o dX 

:::> f = pE + J x B + H B(i)BC;)VKwli> 

- Eli)ElilVE'(i)(;)) + ~ (D x B). (4.20) oT 
The above defined TCO)(O) and TCo)( i) can then be used to 
construct a local tensor TCII)(v) , of which they are 
(O)(,u) components, 

T(II)(v) == -FCII)().)G(V)w + t'i)cII)(V)FCa)(P)GCa)(P)' (4.21) 

Also, this TW(i),/i) gives exactly the f obtained in (4.20) 
such that T(i)(j) has the meaning of stress; moreover, 
this TCII)(v) reduces to the familiar form in the vacuum 
limit. Thus, we can just define it to be the local energy 
tensor of the EM field in media whose only physical 
meaning is TCO)(O) as energy density, T(O)(;) as mo
mentum density, and T(;)lil as stress of local EM field. 
Its non symmetry just results from the nonclosedness 
of the field and is completely irrelevant. In general 
relativity, a delocalization (2.12b) immediately gives 

(4.22) 

as the energy tensor. Computing the divergence TIIv;., 
we see that the energy momentum conservation takes 
the form 

Til' = -F"vJ + 19l1' caP1~ F F ;v v 4' S ;. ap 1~ 

+ 1 IIV caP1~F F 2g a ap y~;v (4.23) 
or 

(T"V + t~harge.L + .F" + aF" = 0, (4.23') 

which means that, in addition to a Lorentz force 
acted on the explicit charges, the EM field supplies an 
averaged conservative power force to alter the stored 
energy during a change of media properties and a power 
force to provide the medium losses. In other words, 
what is conserved is the total energy-momentum 
T"V + t~harges of the EM field and the explicit charges, 
plus the energy-momentum stored in and dissipated 
to the medium, such as (4.24). 

Do Discussions 

For media in inertial frames, the assumption of 
covariance ofD and H equations and their GI" tensor, 
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and thus the whole formalism actually does not assume 
any new law of macroscopic EM physics, even if 
observed in an accelerated frame. The formalism is 
just a convenient way to present the well-accepted 
rest-frame physics of (3.4) and the usual Maxwell 
equations to other frames by using GIlV as an intctr
mediate concept. But, for a medium in a noninertial 
frame, (4.1) is an additional assumption on the be
havior of the averaged medium-EM interactions even 
in the medium comoving frame. One reason for us to 
make this assumption is that the theory so formulated 
surely holds for noninertial observers moving with 
respect to a medium at an inertial frame; the principle 
of relativity then suggests its applicability the other 
way around and, thus, in general frames. 

Also, the physical constitutive properties must be 
discussed locally only. Mistaken results, such as D 
depends constitutively on B even for vacuum,29 will 
occur if one does not treat the constitutive physics and 
constitutive tensor properly, as in Sec. 3. 

5. APPLICATION TO LINEAR ACCELERATED 
MEDIUM 

A. Formulation 

Let {X,U} == {Xii, Xi, X2, Xii} == {T, X, Y, Z} be a 
laboratory inertial Minkowskian frame. If a medium 
is uniformly linear accelerated, its comoving frame30 

can be described by an {XIl} that 

T = a-I sinh aI, Y = y, 

X = a-1(cosh al - 1) + x, Z = z, (5.1) 

as in Fig. 2 where origins have been adjusted so that at 
1 = 0 = Ttheir relative velocity is zero. {XIl} is medium 
co accelerating in the sense that each point of fixed 

o 

Fllv = 

and, similarly, 

-E("') 

cosh at 

0 
_B(Z) 

cosh at 

0 

GIlV = [E __ D, B -- H in (5.6b)] 

(Xi) has X-uniform acceleration 

V = tanh aI, 

with respect to {X,U}, and has metric 

-sinh al 

-1 

o 
o 

(5.2) 

(5.3) 

This {XIl} is just a convenient frame describing the 
medium motion and is neither synchronous nor static. 
However, 1 is the proper time of medium comoving 
observers {O}. 

Now observable values of a tensor to {O} are its 
physical components on a conveniently coordinate
transported local tetrad basis {e(lll} which, because of 
(2.13) and as explained at the end of Sec. 2, can be 
chosen as the instantaneous Lorentz transform of the 
e(ii) of {X,U}: 

A 1 (A + . h A ) A A e(1) = --- e1 sm at eo, e(3) = e3 , 
cosh at 

(5.4) 

where the {ell} are the coordinate bases of {XIl} and the 
instantaneous Lorentz transform from {e(lll} to {e(,U)} 
is 

{

cosh at 

A'\).) = sinh at 0 

sinh at } 

cosh at ~. (5.5) 

Then, by (2.12) and (2.13),31 

(5.6a) 

- E(z) + tanh atB(u) 

B(z) 

cosh at 
(5.6b) 

-B("') 

0 

(S.6c) 
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y 

x 

------~--------------------~x v=tanhat 

(a) 

--.+00 

Flo. 2. (a) Linear accelerated medium. (b) EM wave propagation in an accelerated simple medium; at t = 0 it begins to accelerate, 
whence the propagation obeys a new law. 
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T 

VXH+axH+Vx'£'H at 
a 

= J + at D - V x (a x D), (S.7b) 

where the conventions32 are 

( 
1 a a a) 

v == cosh at ax • oy • oz ; 
a/at does not act on e(i). and 3-vectors are com-

1-:-~~~~~t;j~~~t==1-----x ponented on e(i) so that D == (D(1), D(2), D(S», etc., 
and V == tanh ate(",), a == ae(",) . 

FIG. 3. Space-time diagram of observer in accelerated medium and 
wave propagation in it (wavy lines). 

express that local observables of {O} combine with 
geometry of {XII} into tensors. The physical meaning 
is as in Sec. 2B and is now caused by the local non
time-orthogonality and nonnormalization of e", and 
can be seen in Fig. 3. 

Now in {XII}, with (5.6) and the only nonzero 
Christoffel symbols rgo = a tanh at, qo = a sech at, 
and r 1100 = -a cosh at, the local Maxwell equations 
(4.6a) and (4.6b) in this accelerated frame are 

V • D + V • (V x H) = p + V • J, (S.7a) 

Similarly, (4.6c) and (4.6d) become 

V • B = V • V x E, (S.8a) 

VxE+axE+Vx'£'E at 
a 

= - at B + V x (a x B). (S.8b) 

Also, (S.7) implies the local continuity equation 

a a 
-V· J - a· J = - p + V· - J + pa· V. (5.9) at at 

Now, in addition to (5.7) and (5.8), since this {x"} is 
medium comoving, the constitutive relations are just 

D
w - ~w E(j) Hlil - K(i) B(j) 

- ~ (i)' - (i) , (S.10) 

where £lil (i) and K(i) (j) are the comoving local medium 
parameters which, if changes due to accelerated strain 
are neglected, are simply equal to their values when 
this medium is in an inertial frame. 

For a tensor description of (5.10), first the £'" and 
the K'" in {x"} are just 

sech at tanh at £(I)(I) tanh at £(1)(2) tanh at £(1)(3») 

sech at £(1)(3) sech2 at £(1)(1) 

sech at £(2)(1) 

sech at £(3)(1) 

sech at £(1)(2) 

£(2)(2) 

£(3)(2) 

£(2)(3) , 

£(3)(S) 

(5. 11 a) 

(5. 11 b) 

Then C"'«P in this {x"} is constructed on the above £'" and K'" and 4-velocity of the medium '9" according 
to (3.1); thus, the CIIV«P in any {xP} is obtained by a tensor transform. In particular, evaluating 
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as the constitutive relations for the accelerating 
medium in the laboratory frame. 

The boundary conditions (4.17) directly apply to 
observable EM fields in the accelerated frame. If 
there are no local surface charge and current, then the 
quantities 

ooD, ooB, 0 x E, 0 x H (S.13) 

are continuous across the boundary of different 
media. In particular, if the boundary is perpendicular 
to the x direction (0 II e(",), then DI"'), BI"'), E(1/), Elz), 

H(II), and H(') are continuous; if the boundary has its 
normal in they direction (0 II e(I/)' then D(Y), BIIII, E("') , 
E(z), H("'), and HCz) are continuous. 

Bo Wave Propagation along Acceleration in a Simple 
Medium 

For a simple accelerated medium in {x"}, Eq. (S.10) 
reduces to D = eE, H = ,u-lB. Then, in a sourceless 
region, (5.7) becomes 

v 0 E + (,ue)-lV. (V x B) = 0, 

a 
vxB+axB+Vx-B ot 

(5.14a) 

= ,u€(:t E - V x (a x E»). (S.14b) 

Consider now a planelike wave propagating along the 
x direction; the medium homogeneity leads to the 
assumption that nothing is y and z dependent. Then 
(S.8a) and (5.14a) give 

~ B("') = 0 ~ E("') = 0 (S.15) 
ox ' ox ' 

so that E("') and BI"') are spatial constants. But no 
source can produce a time varying field which is 
spatially uniform; thus they are space-time constants, 
and we can put them equal to O. Then the other Max
well equations of this transverse TEM wave are 

ell x E = -lpB, 

ell x B = +,uelpE, (5.16) 

where, for abbreviation, the operators are defined as 

ell == <l>e(",) == e(",) (sech at ~ + a + tanh at~) ox at 

(
a ' 

11' == at + a tanh at) (5.17) 

[<I>,lpJ = a sech2at(sinhat~ - coshati __ 1_). ox ot cosh at 

(S.18) 

We see that ~ and 11' are the natural corresponding 
operators of V and ojoTin an inertial frame. We thus 
solve the problem with approximation to these oper
ators. From (5.16), 

(<1>2 - {.te1p2)E = [<I>,lp]e(",) x B, 

(<1>2 - ,Lt€1p2)B = -,ud<l>,lp]e(",) x E, (5.19) 

from which (<I> + pJlp) will give the +x traveling 
wave and (<I> - ,u!1p) will give the -x traveling wave. 
We solve (5.19) in the following way: First we neglect 
the mixed effect [<I>, 11'] corresponding to interaction 
of opposite traveling waves on the right side which is of 
order (a) and approaches to zero for large (at) as 
sech2 at; obtaining this E, B as the first approximation, 
we then put it back into the right side of (5.19) and 
proceed to solve for the next approximation, and so on. 
Now assume that, when the medium is at rest with 
respect to the laboratory at t = 0, a plane wave is 
propagating in the +x direction, i.e., E, B "-' ei(k",-rut) 

at t I"'oo.J O. Now we rewrite (5.19) as 

[<1> - (,u€)!1p][<1> + (,u€)!'IjJ]E 

== [<1>, lp][-(,ue)!E + e(x) x B], (S.20a) 

[<1> - (,ue)!'IjJ](<1> + (,ue)!'IjJ]B 

= -(,ue)![<1>, 'IjJ)[B + (ue)!e(x) x E). (S.20b) 
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Then we neglect [<P,1f], solve E(Y) and E(z) by sub
stituting the Fourier transform of E into (S.20a) and 
breaking it into two first order d.e.'s. Thus, 

(<P - p.!1f)F(k, t) = 0, (S.21a) 

and 

(<P + p.i1f)E(k, t) = F(k, t), (S.21b) 

where o(ox is replaced by ik in <P. Then their solutions 
are 

F(k, t) 

( it a [cosh at - (wi sinh at] + ik ) 
= a exp - ! dt , 

o sinh at - (p.€) cosh at 
(S.22a) 

E(k, t) 

( i t a [cosh at + (p.€)! sinh at] + ik d ) 
= exp - t 

o sinh at + (p.€)! cosh at . 

[~ + t F(k,n) 
X Jo (p.€)! + tanh an 

(i" ik + a [cosh a~ + (p.€)! sinh a~]) ] 
X exp d~ ! dn . 

o sinh a; + (p.€) cosh a; 
(S.22b) 

Examining the behavior near t f"oo.J 0 reveals that the 
F term of E in (S.22) represents a -x traveling wave 
with increasing amplitude as t ;;;:, O. Since, initially, we 
have only +x traveling wave and the boundary con
ditions (S.l4) eliminate reflected waves for propaga
tion along the direction of acceleration in a simple 
medium, then a = 0 and we can orient the yz axis to 
have the solution 

E(I/) =f dk eikllJ{3(k) 
217 

( i t a [cosh at + (,u€)! sinh at] + ik ) 
X exp - dt 

o (sinh at + (,u€)! cosh at) 

(S.23a) 

as the first approximation; the corresponding B is 
then obtained by (S.20) with an initial B(') == (,u€)!e ikiIJ 

and no (y, x) components: 

A higher Nth-order solution is obtained by substi-

tuting (S.23) into the right side of (S.20) and solving 
the two first order d.e.'s as (5.21) but with source in 
(S.21a). 

If near t f"oo.J 0 the propagation has a single wave
length 217(ko, then we have (3(k) = 27Tf5(k - ko) and 
E('/I) is 

. (it dt ) E(II) = e,kO"'exp -iko 
o sinh at + (,u€)! cosh at 

( i t 1 + (p.€)1- tanh at d ) 
X exp -a 1.. t, t > O. 

o (p.€Y + tanh at 

(S.24) 

This is the first-order (neglecting [<P, 1fJ) steady-state 
wave propagation in an accelerated simple medium 
with its phase and amplitude chosen with respect to an 
arbitrary origin of coordinate time t, namely, t == 0 at 
which time the physical wavelength to all {O} is 
217(ko• Physically, we can interpret that, for t < 0, 
a Wo == ko/(,u€)! plane wave has already been prop
agating in the inertial simple medium; then at t == 0 
the medium is a-accelerated and the wave begins to 
obey the new law (S.19), as in Fig. 2. Since no reflec
tion exists, whether there is acceleration or not, it 
propagates according to (S.24) in first order; also for 
region x > xs ' in which the wave has not reached at 
t = 0, a step function S[x - Xs - wet)] is multiplied 
to solution (S.24). Here 

wet) == [(p.€)! cosh at + sinh at]-l (S.2S) 

is the new coordinate phase velocity, but its proper 
physical value to {O} is, by using (2.8), 

(S.26) 

which shows to local observers in {xl'} that accelera
tion does not affect the phase velocity. Since, if the 
wave is once eikorl! x-dependent, it is always so; the 
acceleration can begin at any time t < 0 and (5.24) 
still holds with normalization fixed with respect to that 
t = 0 arbitrarily. The instantaneous red-shifted proper 
frequency to {O} is 

ko at .... large 
W= ) 

(,ue)t cosh at + sinh at 

2ko -at 
t e , 

1 + (,u€) 

(5.27) 

which results as propagating in the simple medium 
against an equivalent gravity. The constant-phase 
wavefront can propagate a maximum coordinate 
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distance 

~(x)max = L'" wet) dt 

= 

~ tan- l {C,ue - l)!j[(,ue)! + 1n 
a (,ue - 1)t 

if ,ue> 1, 

2 tanh-l {(I - flE)tf[1 + (,ue)tJ) 

~ (1 - ,ue)t 

if ,ue < 1 

" .... 1 1 
~- (5.28) 

a 

which shows in the equivalent gravitation that an 
EM wave can propagate arbitrarily far into a medium 
iff ,ue --+ 0 which is the case of infinite phase velocity in 
the rest frame of the medium. See Fig. 3. 

The third term in (5.24), 

( it 1 + (,uei tanh at d ) exp -a t 
o (,ue)t + tanh at 

1 = t (5.29) 
cosh at + (,uet sinh at ' 

shows amplitude decreasing. This can be interpreted 
as the slowing down of the coordinate phase velocity 
which reduces the number of waves in unit time pass
ing some {O} or as the decrease of the "dressed 
photons" density with respect to the initial value by 
applying instantaneous Lorentz transform (5.5) to 
velocity (5.26).34 Also, (5.24) reveals that polarization 
of this propagation is not affected by the apparent 
gravity. 

Finally, if we want to make a particlelike photon 
model for this wave, then with 

ill = proper energy of photon = :P . u = Po, 

pl WI dx l 

- = - = - = wet) 
pO WO dxo ' 

where w is the photon 4-velocity, we get a dressed 
mass 

and Wl or PI' 

- [cosh at + (,ue)! sinh at] 
WI = (,ue _ 1)! ' 

P
l 

= -ko[cosh at + C,ue)! sinh at], (5.30b) 
(,uEi[(,ue)! cosh at + sinh at] 

which shows, since g". independent of Xl implies 
WI = const for a massy particle and PI = const for a 
massless particle along their geodesics ,35 that this 
"photon in accelerated media" does not propagate 
along a geodesic nor is it massless and path null. This 
just demonstrates again that a wave in a noninertial 
moving medium is dragged along by it. (See Fig. 3.) 

All these results are caused partly by the particular 
behavior of the accelerated coordinate and partly by 
the presence of the medium. If we instantaneously 
Lorentz transform (5.24) to the lab. {Xli}, then 

E Y = (,ue)![l + (,ue)t tanh at] 

(,ue)f + tanh at 

X exp iko(X - a-l(l + a2T2)!)e-ikoA(Tl, 

(5.31) 

where 

A(t) == 

(5.32) 

and A(t) approaches T/(.ue)! for small at such that 

(5.33) 

So, as it should be, (5.24) in the vacuum limit is 
nothing but a simple plane wave in {Xli} seen by 
accelerated observers {O}, and in the a --+ 0 limit is 
just a plane wave in ordinary simple media. The 
instantaneous phase velocity in {Xli} from (5.31) is 

~~ Ln"tant phase 

= 1 f(aT + 2[(1 + a2T2)f - aT1 
(1 + a2T2) 

X [1 + (,ue)f1 + [(,ue)f _11][(1 + a2T2)f _ aT12) 

(5.34) 
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which, as it approaches 1 in the vacuum limit, is 
dragged along by the medium accordingly increasing 
(or decreasing) from (,tu)-l to 1 from T = 0 to T = 
00, when the medium velocity approaches + 1 as it 
should be that any velocity in its rest frame approaches 
1 in K. The instantaneous frequency in in {XIl} is just 
(S.34) multiplied by ko and changes from Wo [E ko! 
(,uE)l] to wo(,uE)l as the medium accelerates fast. The 
amplitude of EY is dragged from the initial 1 to 
(,uE)* as T ---+ 00. 

The above dragging effects in {XIl} manifest them
selves for small V = tanh at -' aT since 

- V 
~ = 1 + V(IlE)l - -1 + O(V2) 
Wo (IlE) 

and 

(S.35) 

But, in {Xil} , the corresponding observations of a 
steady EM plane wave, which x-propagates with fre
quency Wo and amplitude 1 in a simple medium having 
a small velocity {J in the +X direction relative to {XIl}, 
are 

in/Wo = 1 + (J(IlE)l + O({J2), 

IEYI = 1 + (J{flE)l + O({J2). (S.36) 

Comparing (S.3S) with (5.36), we see that, the "den
ser" (IlE» 1) the medium is, the more obvious the 
dragging manifests itself. 

6. APPLICATION TO STEADY ROTATING 
MEDIA 

A. Formulation 

Consider a lab. cylindrical inertial frame {Xii} E 

{T, R, CP, Z}; then 

T = t, R = r, cP = 4> + O(r)l, Z:::::: z (6.1) 

carry {Xii} to a steady medium-corotating frame 
{x"} == {t, r, 4>, z} so that a fixed point (Xi) rotates 
with 0 == O(r) about the Z axis in the lab. K. Since 0 
must satisfy rO < 1, it is impossible to have 0 = 
const rotation for large media, and the most possible 

"rightIike" continuous rotation O(r) should be 

O(r) ---+,-1, as r ---+ 00, (6.2) 

if 

For example, if the proper centrifugal acceleration of a 
rotating observer is to be proportional to r with pro
portionality constant 0 0

2 , then 

which satisfies (6.2) and can be taken as the relativistic 
analog to "rigid" rotation. 

Now, in the {Xll} of (6.1), we have metric 

(- ,'0' 
-r2tOO' -r2O 

~) -r2tnD: - (1 + .o.'2r 2(2) -r2tO' 
g". = 2.0. -r2tO' -r2 -r 

0 0 0 -1 

(6.3) 

and a use of (2.13) and (2.15) gives a convenient local 
tetrad {c(,,)} for the corotating observers {OJ as 

A (1 2£'\2\-*" e(t) = - r u) ej , 

c(r) = cr - O'te,p, 

" (1 - r
2
02)1(", r

2a A ) 

e(,p) = e,p + 1 2£'\2 et • r - r;\,,t, 

(6.4) 

so that they are instantaneous Lorentz transforms of 
{C(Il)} of K. Then, similarly to (5.6), in {x''}, 

Jll = (l(p + rOJ(,p», J(r), (J(,p)!lr) - O'tJ(r), J Iz», 

(6.Sa) 

FOi = (/( _E(r) + rOB(z», (-E(,p)/r) 

+ 10ft(E(T) - rOB(z», -l(E(~) + rOBlr»), 

F12 = _B(rijr, F13 = BI,p), 

F23 = (_BCrJ/lr) _ O'tB(q,), (6.5b) 

G"V = [replacing (E, B) ---+ (D, H) in (6.5b)1 (6.5c) 

express the tensor current and EM field in terms of 
their local physical values to {O}, where 1== (l -
r202)-1. Also, since {O} is fixed to the medium, this 
physical constitutive relation is simply (5.10). Now, 
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with (6.4), for {O} in {XII}, we obtain the local Maxwell 
equations 

l 

(1. .E.. (Ir D(r» + 1. ~ D(.p) + ~ D('») 
Ir ar Ir ar/> az 

+ n't ~ (rnH(') - D(r» 
ar/> 

= p + rni.p) - rn.E.. H(r) + 1. i (Ir2nH('», 
az lr ar 

(1. ~ H(') - .E.. H(.p») + Irn.E.. H(') 
~ar/> az ~ 

= ir) + I.E.. D(r) 
at ' 

(6.6) 

( .E.. H(r) _ .E.. H('») + 12rn2H(') + n't ~ H(') 
az ar ar/> 

= J(.p) + I.E.. D(.p) - 12rn'D(r), 
at 

(! .E.. (rH(.p» _ 1. ~ H(r») 
r ar lr ar/> 

_ Irn.E.. H(r) _ n't aH(.p) 
at ar/> 

= i') + I .E.. D(') 
at ' 

[replacing D -4- B, H -4- -E, J -4- 0 in (6.6)] (6.7) 

and, from (6.6), the continuity equations 

(! .E.. rir) + ! ~ i.p) + .E.. J('») - n't ~ if) 
r ar lr ar/> az ar/> 

= -I.E.. (p + rni.p,). (6.8) 
at 

The boundary conditions for {O} at the media discon
tinuity are again just (4.17). The behavior of the 
rotating local {e(II)} and coordinate {ell} in the inertial 
K is easily seen in Fig. 4 which explains the mixing 
and scaling in (6.5). 

The E and K have components in this {XII}, expressed 
by their local physical values €(II)(V) and K(II)(v) to {O}: 

EIIV = 

1'(.,10110) + ,202.,(2}(')) 

I,O.,(1}(21 

[,O.,(2)(I) 

.,(I}(II 

which then construct an observer-independent con
stitutive tensor CIIWlP according to (3.1). 

Finally, consider the special case of a rotating 
medium, with rQ« 1 throughout, which rotates 
rigidly. Then 0.' = 0 and the local equations (6.6)
(6.8) for {O} can be written in 3-vector forms, respec
tively, as 

v x H + I.E.. [en x r) x H] + 12n x [n x (r x H)] 
at 

a 
= J + 1 at D, (6.11) 

v . D - 12D • n x (n x r) 

= p + (1 + 12)n • H + n x r . (J - V x H), 

V x E + I E. [en x r) x E] + 12n x [n x (r x E)] 
at 

a 
= -1- B (6.12) 

at ' 
v . B - 12B • n x (n x r) 

= -(1 + 12)n • E + n x r • V x E, 

a v . J = -I at (p + J . n x r) (6.13) 

in the above r == re(r) and [-la/ar/> replaces alar/> in 
V; also, it corrects the previous mistake36 in trying to 
get the V x equations. 

B. Plane-Wave Scattering by a Simple Rotating 
Sphere 

Consider a rigidly rotating simple sphere of radius 
a surrounded by an €o, Ito simple medium in the in
ertial laboratory frame K. This sphere then scatters 
plane waves as shown in Fig. 5. If we neglect medium 
internal strain changes due to rotation, the constitutive 
relations are just D = €E and H = It-IB to co rotating 
{O}. But now the local Maxwell equations are most 
naturally expressed in the spherical co rotating frame 
{XII} == {t, r, 0, r/>} related to the laboratory K{x"} == 
{T, R, 0, <I>} by37 

T = t, R = r, 0 = 0, <I> = r/> + nt, 
0. = const (6.14) 

_[,OO't.,(2)fl) + 0.,(2)(2) 

_O't.,(I)(l) + ([,)-1.,(11(2) 

/,0.,(2)(31 

.,(1)(31 

KIlV = [replacing €(IIHv) -4- K(IIHv) in (6.9)], 

(6.9) 

(6.10) 
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FIG. 4. Space-time diagram and 
physical picture showing relations 
among {@(Il)}' {@Il}' and {@~}. 

T 

~ = !:.r + n~ 

\~=~=r~(<I» 

to fit the boundary and thus simplify the mathematics. 
But the spherical {O} in this {XII} of (6.14) only differs 
from those {OJ in {XII} of (6.1) by their spatial triad 
orientations. So, for the spherical rotating observers, 
choosing the local basis 

(6.15) 

we see that the local Maxwell equations are just the 
3-vector interpretation of (6.11) and (6.12) in spherical 
coordinate convention; here, 1== (1 - r2Q2 sin2 O)-t. 

. Lorentz 
locali zatlon t f scaling 

~ rans o~m 
{ '\ I "\ 

L L f~ 
~(rl ~(R) ~ 

----tensor tranSf~ 
at some 

t > 0 

e = e + n't e -r""" -"-4> 

e = e -z .::JZ 

R 

Now, substitutingD = EEandH = ,u-IBinto (6.11) 
gives 

V x B + I.E.. [en x r) x B] + 12n x [n x (r x B)] at 
a = l,uE at E + ,uJ, (6.16) 

V • E - I2E· n x (n x r) - piE 

= (,uErI(1 + 12)n • B - (,uEr1n x r • V x B, 

which, with (6.12) and suitable boundary conditions, 
gives the whole local electrodynamics in rotating frame. 
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E!:: e 
i (k Z - wT) 

0 

hk ~ 
BY 

z 

~------------__ r-------~Y 

x 

Z 

FIG. 5. (a) Perpendicular 
incidence of rotational scat
tering; (b) parallel incidence 
of rotational scattering. 

But now, instead of solving EM scattering for rotating observers, we are interested in the scattered field in 
K. Thus, we must find the transformed local equations (6.12) and (6.16) in K by substituting tensor transforms 
%xll. = (oXx/oxlI.)(%Xx) from (6.14) and instantaneous Lorentz transforms. Then (6.16) gives 
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and (6.12) just gives the ordinary equations 

-E O--fi V x = - - B, V· D = 0, all R, (6.18) aT 
as it should; in the above, the source term is zero in the 
present scattering problem and bar denotes quantities 
in K. 

Since no coefficients in (6.17) and (6.18) are time 
dependent, we can simplify equations by assuming 
e-iroT time dependence to E, B and obtain wave 
equation for E inside the region of rotating medium 

v x V x E - k2E = iwS, E, R < a, (6.19) 

where 

S == [VV + CUE - 1)0 O~ uJ 
+ (fiE - 1)( -iw + 0 O~) 

X [(12 - 1)( U - :~) + l:~ A] (6.20) 

and k 2 == W 2f-lE, U == unit dyadic bij , and 

-a 0 . e a sm" -
0<1> oR 

A== 0 -a 1...- (sin e) (6.21) 

0<1> oe 
0 0 0 

Compared with the wave equation in a simple medium 
at rest, the wave equation for outside the sphere now 
takes the form 

(6.22) 

We see that the S in (6.19) is zero either when the sphere 
is not rotating 0 = 0 or when there is nothing but 
f-l = 1 = E vacuum being rotated. Thus, S is purely 
medium rotating effect. 

Now (6.19) and (6.22), with outward going radiation 
condition on the scattered field at R = 00 and BC's 

-lB(<!») -lB(<!») f-lo R=a+ = f-l R=a- , 
-lB(e» 

f-lo R=a+ 

= 12[B(e)(f-l-i - Ey2) + E(R)V(e- - ,u-i)]R=a-, 

EoE(R» R=a+ 

= 12[E(R)(e- - V2j,u) - B(e)V(E - ,u-i)]R=a-' 

(6.23) 

and B(R), E(0), and E(I1» continuous across R = a, 
form BVP of scattering. But it is difficult to solve it in 
closed form, because the inside waves are coupled in 
modes and cannot be expanded as simple sums of 
familiar spherical partial waves with arbitrary con
stants. It can be solved by using an integral iteration 
method. 

First, we combine (6.19) and (6.22) to give us 

V x V x E - k~E = p(R)[(k2 - k~)U + iwS(R)] • E, 

(6.24) 

where peR) == 1 or 0 for R < a or R > a, respectively. 
Now, making use of the familiar Green's function of 
(6.24),38 

F(R, R') = U + - VV e , (6.25) ( 
1 ) iklR-R'1 

k0
2 47T IR - R'I 

we can change (6.24) into an integral equation 

E(R) = Ehomo(R) + r d3RT(R, R') 
JR'<a 

• [(k 2 
- k0

2)U + iwS(R')] • E(R'), all R. 

(6.26) 

The Ehomo is the solution without the rotating and 
different medium, so Ehomo = Einc. Thus, (6.26) is 
an integral equation for R < a, whose solution then 
serves as a source of current density 

jequivalent (R) = (iW,uO)-l 

x [(k2 
- k~)U + iwS(R)] • E(R), 

R < a. (6.27) 

The iteration approximation is as follows: first we 
roughly approximate the integrand ECR') of (6.26) by 
incident wave and get the first-order total solution; 
then we put it inside the integration to get the next
order solution, and so on, assuming the iterating series 
converges. This gives 

E(R) = Einc(R) + E;~ie + E:ixed + E:~tatingmedium' 
(6.28) 

where scatterings due to different effects were separ
ated as 

E~ie = (k 2 
- ko

2
) r d3R'r(R, R') 
JR'<a 

• E inc(R') + (k2 _ ko 2)2 

X II d3R'd3R'T(R, R') 

R',R"<a 

• F(R', R"). Elnc(R") + .. " (6.29a) 
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Esc - iw(k2 - k 2) If d3R'd3R"r(R R') mixed - 0 , 

R',R"<a 

• [r(R', R") • S(R") + S(R') 

• r(R', R")] • EinC(R") + ... , (6.29b) 

Esc . =' i d3RT(R R'). S(R')· Eino(R') rotatIOn IW , 
R'<a 

R',R"<a 

• S(R') . r(R', R") • S(R") • EiIlC(R") + .... 
(6.29c) 

The E~le is the well-known Mie39 scattering of a plane 
wave by a sphere expressed in different form from the 
Mie's spherical partial Hertz wave expansion. The 
E;gtating is the scattering caused purely by the "some
thing rotating" which occurs even when the rotating 
sphere is made of the same flo and €o medium as its 
surroundings and when the Mie scatter vanishes. 
E~ixed is the scattered field caused by the mixed 
effects of both the "medium rotation" and the "me
dium difference," which is a second-order effect. 

The physical meaning of (6.28) and (6.29) can be 
clearly seen graphically. We draw J\III+ for r(R, R') as 
a propagator for waves going from R' to R, x for 
(k2 - k~)U as a Mie scatterer at R', 0 for iwS(R') as a 
rotating-medium scatterer at R', and --+ as a prop
agator for direct propagation. Then (6.28) and (6.29) 
can be represented as 

(6.30) 

where only double propagator can propagate to all R 
and integrations are understood. Now, obviously, we 
can interpret the total field as the sum of these incident 
waves which directly go through and hit nothing, 
which are Mie-scattered in the sphere once and 
propagate out, which are rotationally scattered, prop
agated to other points in the sphere, Mie-scattered 
and then propagated out, etc. 

From (6.20) and (6.24), the ratio 

I 
E~ot I ,-....., (fl€ - 1 )(flo€o)l a 12 

E~ie (fl€ - flo€o) 
(6.31) 

is small if an « 1, unless p€ '" Po€o' In either case, 
the second-order mix-scattering can be neglected and 
the first-order E;gt will give a good description of the 
rotational scattering. 

Now consider two kinds of incidences, as in Fig. 5: 
For Fig. 5(a), we have from (6.29c) 

Einc = ezei(koY-wTl, 

ERot.lstorder = iw r d3RT(R, R') 
JR'<a 

• S(R') . ezei(koY'-wTl. (6.32) 

Then, at far zone R » R', koR » 1, we get 

ESC 
Rot.lst.Farzone 

e

ikoR i = - iw(p€ - 1)(U - eReR ) • ez daR' 
417'R R'<a 

X {-iW(l2 - 1) + 12ikoV'[2 cos <1>' 

+ L (12 sin <1>' - ikoV' cos2 <I>')]}eikO(Y'-eR.R'l, 

(6.33) 
which integrates to the first order of 12: 

eiCkOR-wTl 

E~~t., tarzone,lst = i817' 417'R (fl€ - 1) 

na2 

X --li(0, <I»e(Ell + 0(122), 
(flo€o) 

(6.34a) 

i(
0 <1» = (koa)3 sin2 0 cos <1>[(3 - 152

) sin 15 - 315 cos 15] 
, 155 ' 

15 == koavi2(l - sin 0 sin <1» • (6.34b) 

The antisymmetry of this first-order rotational scatter
ing with respect to the (Y, Z) plane is a result of 
opposite rotational motion of the sphere as seen at the 
- Y axis of incidence; its symmetry about the () = !17' 
plane results from the fact that the upper and lower 
halves of the sphere are in identical motion with 
respect to the incident wave [Fig. 6(a-l)]. Plots of 
(6.34b) show that, on the 0 = ~17'plane [Figs. 6(a-2, 3)] 
it has a resemblance to quadrupole radiation such that 
it can be simply interpreted as radiation from successive 
electric quadrupole sheaths at Iyl = const caused by 
induced V X Bine electric polarization at the sphere, 
however, with forward bending lobes as the effect 
from traveling wave antennas. This is caused by the 
traveling of the inducing incident wave, there is no 
scattering at backward <I> = - t17' and forward <I> = 
i17'; but the main lobes bend from side ends toward for
ward direction more as koa becomes larger. Equation 
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z 

(3) 

(6.34) has only a () component as the first-order 
Mie scattering, although the latter has a dipole pattern 
for scatter amplitude. Also, there is no Doppler fre
quency shift since the motion of the scatterer is tan
gential to its boundary and the scattered wave is in 
the same medium as the incident wave. 

For Fig. 5b, we have 
Eine = exei(koZ-roT); 

then by similar integration, we obtain 
ei(koR-roT) 

E:~t, far zone, 1st = 41TR 41Ta
3
(,uE - l)iwO 

• f(e, <1» + 0(02
), (6.35a) 

fee, <1» = -e(@)· sm <I> cos e 1 
. ( sin 151 - 15 cos 151 

b~ 

(k )2 • 2 e (3 - 15:) sin 152 - 3152 cos 152 ) + oa sm """----"'----=--=----= 6: 
ffi sin 151 - 151 cos 151 

- e(lb) cos 'V 3 
151 

(6.35b) 

(2) 

x 

FIG.6(a). Plots of(0,<l» of(6.34): (I) koQ = 0.1 on 
(X, Z) plane, scale X 10-6 ; (2) koQ = I on (X, Y) 
plane, scale X 10-3 ; (3) koQ = 20 on (X, Y) plane, 
scale X 1. 

where 151 == 2koa sin!e and 152 == koa[2(1 - cos e)]l. 
The E(8) I'.J sin <l> and E(ib) I'.J cos <l> <l> dependences 
which are just opposite to those of the corresponding 
Mie scattering40 change the polarization of the total 
scattering. Unlike the previous case, where we had the 
induced V x M I'.J V X (V x E) I'.J 0, this scattering 
has contributions from both the P-like and M-like 
induced polarization sheaths at I YI = const as P I'.J 

VB sin <l>ez and V x M,...., OEey ; accordingly, one 
can interpret that on the e = t1T plane an £(8) ,...., sin <l> 
from P and an £(Ib) ,...., cos <l> from M. Plots of (6.35b) 
show on the (X, Z) plane only an £(ib) ,...., const from 
M [Fig. 6(b-l, 2)], on the (Y, Z) plane an E(8) I'.J sin e 
from P and an £(8) I'.J cos e from M [Fig. 6(b-3, 4)]; 
all are forward drifted or bent from the traveling wave 
effect as before. The forward and backward rotational 
scattering which is 900 rotated with respect to the Eine 

and in the Y direction are perpendicular to the X
polarized Mie scattering and elliptically polarize the 
total scattered field. 
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(I) 

z 

~ " \ , \ (3) / 
(4) 

\ 
y 

\ 
FIG. 6(b). Plots of [(8,(1» of (6.35): (I) koa = 0.1,1, [(8) on (X,Z) plane, scl!iex.10-2; (2) koa == 0.1, I, [(IJ:J) on (Y,Z) plane, 

scale X 10-2; (3) koa == 20,[(8) on (X,Z) plane, scale X 10-3 ; (4) koa = 20,f(1J:J) on (Y, Z) plane, scale X 10-2• 

C. Summary of Applications 

Applying the theory of Sees. 2-4 to media in linear 
acceleration and rotation, we find electrodynamic 
equations for local observable EM fields and sources 
with physical constitutive relations in these comoving 
noninertial frames. Studying in detail wave propaga
tion in a simple accelerated medium reveals that EM 
wave is dragged by the medium with its amplitude 
changed, frequency shifted and phase velocity dragged 
along reasonably; its path is neither null nor a geo
desic. Scattering of a plane EM wave by a rotating 
sphere is solved by an integral iteration in the labora
tory frame. The rotational scattering is separated from 
the Mie scattering, and its first-order amplitude for 
incidences parallel and perpendicular to the rotation 
axis are evaluated and plotted which agree with in
tuition and can be interpreted simply as radiation 

from properly induced traveling electric and magnetic 
polarization sheaths. 

Also, as the simplest cases of coordinate transport 
(2.17), it turns out that the local physical tetrads for 
co accelerating and corotating observers, chosen respec
tively as the instantaneous Lorentz transforms of the 
basis of the naturallaborat~ry Cartesian and cylindri
cal coordinates, are just the unit tangents and Frenet 
normals of the world lines of these observers. One can 
easily show that, for {e~i)} of the accelerational (5.4), 

ax = a, a11 = 0, a. = 0, (6.36a) 

and that, for {e(i)} of the cylindrical rotational (6.4), 

-rcQ2 Q 
ar, = 1 _ r~Q2' a", = 1 _ r2Q2' a z = 0, (6.36b) 

where the ai are curvatures defined in (2.18). 
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This paper is concerned with a class of nonlinear field theories that exhibit conserved ~articlelike 
structures. An example of such a theory is quoted. Fields belonging to this theory are cl~sslcal fi~lds, 
single-valued under the action of t~e rotation group. It is e~plained how.' when the the~ry IS quantlzed, 
the quantum mechanical stat~ whIch correspo~d to l~p~rttcle systems. I~ the ~nquantlzed theor~ may 
have properties similar to fermIOn states. In partIcular, It. IS. shown that It IS possIble fo~ wav~functl.onals 
to exist which are double-valued under 27T rotations. ThIS IS the first known example m which a smgle
valued field theory can give rise to a quantized theory with half-odd spin properties. 

1. INTRODUCTION 

It is well known that the quantization of a classical 
field introduces a quantity that can be interpreted as 
a particle number. Since by a classical field we mean 
a field that is single-valued under the action of the 
rotation group, it follows that the particles involved 
must be bosons. However, a number of authors1- 7 

have studied field theories which possess particlelike 
structures even in the classical theory. Such structures 
are called "kinks," and such theories are said to 
"admit kinks." The aim of these studies has been to 
examine the possibility that, when theories of this 
type are quantized, the states corresponding to a 1-
kink classical-field configuration are, in fact, fermion 
states. 

Finkelstein5 has investigated these ideas from the 
point of view of algebraic topology and has given 
necessary and sufficient conditions for the existence of 
kinks in terms of the homotopy groups appropriate to 
the theory involved. One of the characteristic proper
ties of a many-fermion state is the double-valuedness 
of the wavefunctional under exchange. For the type 
of theories considered in this paper, it has been 
shown' that double-valuedness under exchange im
plies the double-valued~ess of the I-kink wave
functional under 21T rotation. If a theory is given for 
which kinks exist and if it is also possible to define, 
on the space of fields, functionals which are double
valued under 21T rotation, then we follow the 
terminology of Finkelstein and say that the theory 
"admits spin." 

An example of a I-dimensional field theory that 
admits kinks is found by considering the set of all 
mappingsB ot from the real line R1 into the circle S1, 

ot : R1 ---+ S1. 

S1 can be parametrized by two real variables (4)1' 4>2) 
whose squares add up to 1. To prevent the escape of 
interesting structures at infinity, it is necessary to 

impose boundary conditions. Hence, we consider 
only ot for which 

ot(x)---+ (0,1) as x---+ ±oo, 

where x is any point in R1 and (0, I) is a fixed point 
in S1. A field ot may then be illustrated pictorially by a 
narrow strip stretching from x = - OCJ to x = + OCJ 

such that the angular twist of the strip about its 
center line specifies the value of ot(x) for a given x. 
For a I-kink field, the configuration is similar to 
the twist in the familiar Mobius strip (except that 
the Mobius strip has a twist through 1T, whereas the 
I-kink field has a twist through 21T). Dynamics may 
be introduced into this theory, and it has been shown1 

how a quantum mechanical operator can be con
structed which creates kinks and which anticommutes 
with itself. 

The concept of spin has no meaning in one dimen
sion. However, the simple I-dimensional model has 
been generalized by Skyrme,2.3 who introduces 
mappings cp from 3-dimensional space R3 into the 
3-sphere S3, 

(Ll) 

S3 can be parametrized by four real variables 
(4)1' 4>2' 4>3' CP4) subject to the restriction 

4 

'24>; = 1. 
;=1 

There are three independent fundamental fields which 
might be used to represent the three 1T-meson fields 
of nature. The number of kinks present is equal to the 
degree of the mapping cp, and it is hoped that this may 
be interpreted as the number of baryons. As before, 
to ensure the conservation of kinks, we impose a 
boundary condition 

cp(x) ---+ (0, 0, 0, 1) as Ixl ---+ 00, (1.2) 

2611 
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where x is any point in R3 and (0, 0, 0, 1) is a fixed 
point in S3. It is the purpose of this paper to show 
that this 3-dimensional theory admits spin. 

2. TOPOLOGICAL CONSIDERATIONS 

In this section, we review for completeness the 
general theory of kink fields as given by Finkelstein 
and Rubenstein.6 Let () be a mapping from n-dimen
sional Euclidean space Rn into some manifold Y, 

(2.1) 

subject to the condition 

{)(xI , ••• , xn) --Yo as any IXil-- 00, (2.2) 

where (Xl' ... ,xn) is any point of Rn and Yo is a 
fixed point of Y. We let Q denote the set of all such 
mappings (). Q is divided into a collection of pathwise
connected components Qa' Qb' Qc, ... called homo
topy classes. Any two members of the same homotopy 
class can be joined by a path, but members of different 
homotopy classes cannot. The collection of homotopy 
classes form a group called the nth homotopy group 
of Y, denoted by 7T n( Y, Yo). We assume that the 
manifold Y is pathwise connected, in which case the 
group structure of 7T n( Y, Yo) is independent of which 
particular fixed point Yo is chosen. We write simply 
7T n( Y). If ()a and {)b are mappings belonging to distinct 
homotopy classes Qa and Qb' then it is impossible to 
join {)a and ()b by a path. Since time is a continuous 
parameter that may be used to label a path, this means 
that mappings belonging to Qa possess a certain 
characteristic structure that cannot develop with the 
passage of time into a structure characteristic of 
mappings belonging to Qb. As an illustration, let us 
consider the special case in which Y is the n-sphere 
sn. It is well known from tables9 that 

7Tn(sn) = Z, 

where Z is the additive group of integers. Thus, each 
homotopy class may be characterized by an integer 
which can be interpreted as the number of particles 
or kinks. The homotopy classes may be denoted by ... , 
Q-2' Q-l' Qo, QI' Q2'···· For example, the n = 1 
case refers to the I-dimensional theory mentioned 
previously. Mappings belonging to QI then have a 
single twist through 27T. This is clearly not deformable 
into a mapping without a twist. Similarly, the n = 3 
case applies to the 3-dimensional theory. The number 
of kinks is equal to the degree of the mapping. 

Let us now consider mappings () as given by Eqs. 
(2.1) and (2.2), and focus attention on the set of 
mappings QI. We assume Y to be any pathwise-

connected manifold but shall consider the special case 
of n = 3. We shall investigate the conditions under 
which functionals may be defined on QI which are 
double-valued under 27T rotation. The meaning of the 
expression "double-valued functional" is at first sight 
imprecise and perhaps a contradiction in terms. 
However, the concept may be formulated exactly by 
introducing the idea of universal covering space.S •IO 

This involves labeling the functional by an additional 
parameter which describes the path by which the 
argument of the functional was reached, and it is in 
this sense that we understand double-valuedness. 
Suppose ()l is a mapping belonging to QI. If it is pos
sible to define a double-valued functional on QI' 
then it must be possible to follow a path p in QI' 
starting and ending at ()l' such that the value of the 
functional along the path changes continuously and 
does not return to its original value when the end of 
the path is reached. However, if the functional is 
evaluated after going around a path p2 which is 
equivalent to going twice around the path p, then it 
must return to its original value. Clearly, p must not 
be deformable to a single point of QI or else a contra
diction is obtained. Paths which are deformable to a 
point are called trivial. Otherwise, they are called 
nontrivial. The path p2 must be trivial. Now the 
quantity which contains the information about the 
path structure of QI is the first homotopy group 
7Tl(QI). This is the set of different classes of closed 
paths in QI; A necessary and sufficient condition for 
the existence of double-valued functionals on QI is 
that the group 7TI(QI) have an element of order 2. 
The existence of double-valued functionals alone does 
not imply the existence of spin properties. One must 
show that the double-valuedness arises through 
following a path, starting and ending at some ()l E Ql' 
which corresponds to rotating the system through 27T. 
In summary, given a field theory which admits kinks, 
we say that the theory "admits spin" provided the 
following conditions hold: 

(i) 7TI(QI) has an element of order 2. 
(ii) Paths beginning and ending at some ()1 E Q1 

and corresponding to rotation through 27T are non
trivial. 

Condition (ii) implies (i), but (i) is usually easier to 
verify and can be used as a test for the possibility of (ii). 

We now list a number of results useful in finding 
whether or not a given theory admits spin. First of 
all, condition (ii) holds or not simultaneously for all 
()l E QI.7 It can also be shown that, if condition (ii) 
holds for a particular 27T rotation, then it holds for 
all 27T rotations. This follows from the fact that all 
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27T rotations are homotopic to each other. Let us now 
consider how 7TI(QI) is to be evaluated. It has been 
provedll that there exists an isomorphism 

7TI(Qi) c::: 7TI(Qi) 

and, in particular, 

7TI(QI) c::: 7TI(QO)' (2.3) 

Thus, problems involving paths in QI are transformed 
into problems involving paths in Qo. One example of 
mapping belonging to Qo is the constant mapping 00 , 

which maps the whole of R3 into the fixed point Yo 
of Y: 

Oo(x) = Yo, for all x ERa. 

Mappings which are homotopic to the constant 
mapping are called trivial. Let X be a mapping 

X:RI-+ Qo, 
such that 

X(-oo) = X(+oo) = 00' 

Clearly, X represents a path in Qo beginning and 
ending at °0 , We define a mapping 

H:R4_ Y 
by 

H(x, u) = [X(u)] (x) , 
and note that 

H(x, u) -+ Yo, 
as either of 

lxi, lui - 00. 

Thus, we see that there is a correspondence between 
paths in Qo and mappings from R4 into Y. The 
mapping H is a member of one of the homotopy 
classes which make up the group 7T 4( Y). The triviality 
or nontriviality of the path X depends upon the trivial
ity or nontriviality of the mapping H, and so the 
groups 7TI(QO) and 7T4(Y) are isomorphic, 

7TI(QO)"'" 7T4(Y)' 

It follows from Eq. (2.3) that 

7TI(QI) c::: 7T4(Y)' 

3. CONNECTIVITY OF Q I AND THE 
ROTATION GROUP 

(2.4) 

Consider the 3-dimensional theory given by Eqs. 
(U) and (1.2). In seeking to discover whether or not 
this theory admits spin, the first thing is to check 
whether 7TI(QI) has an element of order 2. It is well 
known9 that 

(3.1) 

where Z2 is the group of integers modulo 2. From Eq. 
(2.4), it follows that condition (i) is satisfied. In Sec. 5, 

TABLE I. Connectivity of Ql and SO(n). 

n 

1 
2 

n~3 

we check condition (ii) , namely that a path in QI 
corresponding to a 27T rotation is nontrivial and 
so belongs to the member of 7TI (Ql), which is of order 
2. However, to get an intuitive understanding of 
how this could arise, let us consider a field theory 
in which the domain of the mappings is R2 and the 
range is S2. By analogy with the 3-dimensional case, 
it follows that 

7TI(QI)"'" 7Ta(S2). 

From tables,9 we find 

(3.2) 

Hence, in the 2-dimensional theory, 7T I (QI) does not 
have an element of order 2, and so the theory does 
not admit spin. This is not surprising. The 2-dimen
sional theories never involve spin because the 2-
dimensional rotation group SO (2) is not doubly 
connected. It is infinitely multiply connected: 

7TI(SO(2) = Z. 

Spin wavefunctions arise because of the doubly 
connectedness of SO(3): 

7Tl(SO(3» = Z2' 

This illustrates a relationship between the connectivity 
of QI (when Y = sn) and that of the corresponding 
rotation group. The relationship holds for any 
dimension, and a list of results may be drawn up as 
shown in Table I. The proofs of the last entries in the 
second and third columns of the table are given by 
Hilton12 and Borel,13 respectively. Table I strongly 
suggests that the connectivity of QI (when Y = sn) is 
directly related to the connectivity of the n-dimensional 
rotation group, and that the triviality or nontriviality 
of a path in SO(n) determines the triviality or non
triviality of the corresponding path in QI' In what 
follows, we prove that this is so for the 3-dimensional 
case. First, however, it is convenient to introduce the 
concept of the Hopf mapping. 

4. THE HOPF MAPPING 

We are interested in the path structure of QI for 
the 3-dimensional theory. We have explained how 
this problem can be reduced to that of studying map
pings from R4 into S3. Before investigating such 
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mappings, it is convenient to examine the lower
dimensional problem of mappings from R3 into S2. 

Let g be any mapping 

g:Ra~S2 

subject to the boundary condition 

g(x) ~ (0, 0, 1), as Ixl ~ 00. 

Because of the boundary condition on g, it is possible 
to deform the domain Ra into the 3-sphere, and so 
we consider mappings 

g:sa ~ sa. 

The topological properties of g are identical with 
those of g. It follows from Eq. (3.2) that the homotopy 
classes of the mappings g (or g) can be labeled by a 
single integer i. We denote them by Q;. To agree with 
previous notation, Q~ denotes the homotopy class 
of the constant mapping which takes the whole of Ra 
(or sa) into a single point of 82, and Q~ denotes the 
first homotopy class [which is one of the two genera
tors of the group 7Ta(sa)]. An example of a mapping 
belonging to Q~ is given by Steenrod.14 Denoting a 
point of sa by (CPl' CP2' CPa) and a point of sa by 
('IJ'I' 'lJ'2' 'lJ'a, 'lJ'4), the mapping is defined by the 
following equations: 

CPl = -2('IJ'4'1J'1 - 'lJ'a'lJ'2), 

CP2 = -2('IJ'4'1J'2 + 'lJ'a'lJ'I)' 

CPa = 1 - 2('IJ'~ + 'IJ'~). 

(4.1 a) 

(4.1b) 

(4.1c) 

It is called the Hopf mapping, and it maps great 
circles in sa into single points of sa. Having found an 
example of a mapping g which belongs to the first 
homotopy class, we now look for an example of a 
mapping 

which also belongs to the first homotopy class. For 
this case, it follows from Eq. (3.1) that there are only 
two homotopy classes, Q~ and Q~. Thus, all the non
trivial examples of lbelong to Q~ . 

Let us define the suspension of a mapping. Suppose 
that A is a mapping between two spheres 

A:Sm ~ sn. 

sm and sn can be regarded as equators of the higher
dimensional spheres sm+! and sn+!. A mapping 

E(A):sm+! ~ sn+l 

can be defined which reduces to ). on the equator and 
maps the northern hemisphere of sm+! into the 
northern hemisphere of sn+l, and the southern 
hemisphere of sm+l into the southern hemisphere of 

sn+l. For a given A, many examples of such a mapping 
E()') can be chosen and anyone of them is called a 
suspension of A. It is a well-known theorem12 that a 
suspension of the Hopf mapping is nontrivial and so 
belongs to the homotopy class Q~. We now mention 
a useful special case. Let us denote the outer product 
of S3 and Jl by sa x Jl. A typical point of sa x Jl is 

written (CPl' CP2' CPa, CP4' s), where (CPl' CP2' CPa, CP4) E 
sm and S E [I. Consider a mapping 

such that 

and 

F:sa X Jl ~ sa, 

F( CPl' CP2' CPa, CP4' 0) = Yo, 

F( CPl' CP2' CP3' cP 4, 1) = Yo, 

for all (CPl' CP2' CP3' CP4) E S3, 

F(cpLcpg,cp~,cP~,s)=yo, forall SEll, 

where Yo denotes a fixed point of the range sphere sa 
and (cp~, cPg, cp~, cp~) denotes a fixed point of the 
domain sphere sa. Because of the boundary conditions, 
the domain sa x [I may be continuously deformed 
into S4 and the mapping F replaced by a mapping 
F between two spheres: 

F:S4~sa. 

One may then try to find a mapping 

.tsa~S2 

such that 
E(l) = F. 

Thus, F is a suspension of l In a similar way, one 
may seek a mapping 

A:S3~S2 

which can be extended to form a mapping 

F:S3 X [I ~ Sa, 

such that F reduces to A when a particular point 
So E [1 is chosen. Clearly, So =F- 0, 1 if A is to be the 
Hopf mapping. We shall shortly see an example in 
which So = !. The process by which Fis obtained from 
A is equivalent topologically to taking the suspension 
of A. We shall, in fact, use the word "suspension" in 
this sense. 

S. PROOF OF THE ADMISSION OF SPIN 

As mentioned before, to prove that the 3-dimen
sional theory admits spin, we need only consider a 
particular mapping belonging to Ql and a particular 
27T rotation. For the latter, we consider a 27T rotation 
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about the z axis: 

As an example of a mapping, we choose 

9'1:Ra ~ S3 

defined by 

where 

¢i = 2ax j /(r 2 + a2
), i = 1,2,3, 

¢4 = (r2 - a2)/(r2 + a2). 

This is the usual stereo graphic projection. It is of 
degree I and so belongs to QI' As S varies between ° and 1, the rotation Ri/S) gives rise to a path in Q1, 
which we denote by P(S)9'I' This constitutes a 
sequence of mappings defined by 

where 

P(S)9'I(X) = (¢1, ¢2, ¢3, ¢4), 

¢i = 2aRii(s)x,/(r2 + a2), i = 1,2,3, 

¢4 = (r2 - a2)/(r2 + a2). 

To show that this path is nontrivial, it is convenient 
to express 9'1 as a mapping between two spheres. 9'1 
is topologically equivalent to the identity mapping 

given by 

CP1: S3 -,>. S3 

¢i = "Pi' i = 1,2,3, 

¢4 = "P4. 

where ("PI, "P2' "Pa, "P4) denotes a point of the domain 
sphere. Thus, P(S)ipl corresponds to the path defined 
by 

P(S)CP1("PI, "P2, "Pa. "P4) = (¢1' ¢2' ¢3. ¢4)' 

where 

¢i = Ri/s)"Pi' i = 1,2,3, 

¢4 = "P4' (5.1) 

At this point, we remark that the space Q of mappings 
may be topologized using the compact-open topol
ogy.1° Now the range S3 of the mappings is a group, 
having the group structure of SU(2). It follows that 
Q is a topological group. It is a well-known factI5 

that the path wise-connected components of a topologi
cal group are homeomorphic, and so the homotopy 
classes Qi are all homeomorphic to each other.16 Let 

us write the path of Eq. (5.1) in the form of a unitary 
matrix 

( 
¢4 + i¢3 ¢2 + i¢l \ 

-¢2 + i¢l ¢4 - i¢J 

( 
"P4 + iRa,(s)"P, 

= -R2;(s)"P; + iRl;(S)"Pi 
R2;(s)"P; + iRI;(S)"P,) 

"P4. - iRa;(s)"Pi 

== U(s). 

This is a path in Ql' It may be transformed into a path 
in Qo by a suitable homeomorphism. A convenient 
choice of a homeomorphism is obtained by multi
plying U(s) from the left by U-I(O). A proof that 
such a unitary quantity represents a homeomorphism 
between different homotopy classes is given by 
Skyrme3 [Eq. (27)] and is a special case of a theorem 
given by Hilton.12 We obtain 

( ¢4 + i~s ¢2 + ~¢1) = U-1(0)U(S). (5.2) 
-¢2 + Z¢l ¢4 - 1¢3 

This describes a path in Qo. When S = 0, 1, 

U-l(O)U(O) = U-l(O)U(1) = (~ ~), 
and so the mapping becomes 

¢i = 0, i = 1,2,3, 

¢4 = 1. 

This is the constant mapping CPo' Writing out Eq. 
(5.2) explicitly, we can calculate the quantities 
¢l' ¢2' ¢3' and ¢4: 

¢1 = "P4["PI(COS 27TS - 1) + "1'2 sin 27TS] 

- "Pa[ - "PI sin 27TS + "P2(COS 27TS - 1)], 

¢2 = "P4[ -"PI sin 27TS + "P2(COS 27TS - 1)] 

+ "PS["Pl(COS 27TS - 1) + "P2 sin 27TS], 

¢3 = -( "P~ + "PD sin 27TS, 

¢4 = 1 + ("P~ + '1p;)(cos 2m - 1). 

These equations specify a path in Qo. We can associate 
a mappinglo with this path: 

lo:s4 ~ S3. 

The parameter s plays the role of the extra variable 
needed to describe S4 rather than S3. The path in Qo 
is nontrivial jf and only if the mappinglo is nontrivial. 
Now 10 is a suspension of the mapping obtained by 
choosing S = 1- To see this, we put S = ! and we 
find 

<p] = -2("P4"P1 - 1J!3"P2), 

rP2 = -2("P4"P2 + "Pa"Pl)' 

<P4 = 1 - 2( "P~ + "PD· 
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This defines a mapping from sa into S2. Reference to 
Eq. (4.1) shows that it is precisely the Hopf mapping. 
Hence,lo is a suspension of the Hopf mapping and 
is consequently nontrivial. This is the desired result. 

6. SUMMARY 

In this paper, we considered a particular 3-dimen
sional nonlinear field theory and set out to show that 
this theory "admitted spin," in the sense that it was 
possible to define I-particle wavefunctionals which 
were double-valued under 27T rotation. The space Q1 
on which these wavefunctionals are defined was shown 
to admit two and only two inequivalent types of path. 
We then showed that a 27T rotation path in Q1 was a 
nontrivial path. To do this, we showed that the non
triviality of this path depended on that of a corre
sponding path in Qo' The nontriviality of this latter 
path was related to that of a mapping from S4 into S3. 
ihis mapping proved to be nontrivial because it was 
shown to be a suspension of the Hopf mapping. This 
completed the proof. 
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